Isoflavone Containing Legumes Mitigate Ergot Alkaloid-Induced Vasoconstriction in Goats (Capra hircus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Color Doppler-Ultrasonography
2.3. Isoflavone Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, F.N.; Stuedemann, J.A.; Hill, N.S. Anti-quality factors associated with alkaloids in eastern temperate pasture. Rangel. Ecol. Manag. J. Range Manag. Arch. 2001, 54, 474–489. [Google Scholar]
- Bacon, C.W.; Porter, J.K.; Robbins, J.D.; Luttrell, E.S. Epichloë typhina from toxic tall fescue grasses. Appl. Environ. Microbiol. 1977, 34, 576–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belesky, D.P.; Stringer, W.C.; Plattner, R.D. Influence of endophyte and water regime upon tall fescue accessions. II. Pyrrolizidine and ergopeptine alkaloids. Ann. Bot. 1989, 64, 343–349. [Google Scholar] [CrossRef]
- Siegel, M.R.; Latch, G.C.M.; Bush, L.P.; Fannin, F.F.; Rowan, D.D.; Tapper, B.A.; Bacon, C.W.; Johnson, M.C. Fungal endophyte-infected grasses: Alkaloid accumulation and aphid response. J. Chem. Ecol. 1990, 16, 3301–3315. [Google Scholar] [CrossRef] [PubMed]
- Lyons, P.C.; Plattner, R.D.; Bacon, C.W. Occurrence of peptide and clavine ergot alkaloids in tall fescue grass. Science 1986, 232, 487–489. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.W. Pathophysiologic response to endophyte toxins. In Neotyphodium in Cool-Season Grasses; Blackwell: Ames, IA, USA, 2005; pp. 291–304. [Google Scholar]
- Aldrich, C.G.; Paterson, J.A.; Tate, J.L.; Kerley, M.S. The effects of endophyte-infected tall fescue consumption on diet utilization and thermal regulation in cattle. J. Anim. Sci. 1993, 71, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.K.; Thompson, F.N., Jr. Effects of fescue toxicosis on reproduction in livestock. J. Anim. Sci. 1992, 70, 1594–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.P.; Osborn, T.G. Effects of endophyte-infected tall fescue on animal performance. Agric. Ecosyst. Environ. 1993, 44, 233–262. [Google Scholar] [CrossRef]
- Strickland, J.R.; Looper, M.L.; Matthews, J.C.; Rosenkrans, C.F., Jr.; Flythe, M.D.; Brown, K.R. Board-invited review: St. Anthony’s Fire in livestock: Causes, mechanisms, and potential solutions. J. Anim. Sci. 2011, 89, 1603–1626. [Google Scholar] [CrossRef]
- Evans, J.D.; Martin, S.A. Effects of thymol on ruminal microorganisms. Curr. Microbiol. 2000, 41, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Petit, H.V.; Berthiaume, R.; Whyte, T.D.; Chouinard, P.Y. Effects of addition of essential oils and monensin premix on digestion, ruminal fermentation, milk production, and milk composition in dairy cows. J. Dairy Sci. 2006, 89, 4352–4364. [Google Scholar] [CrossRef]
- Flythe, M.D. The antimicrobial effects of hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria. Lett. Appl. Microbiol. 2009, 48, 712–717. [Google Scholar]
- Flythe, M.; Kagan, I. Antimicrobial effect of red clover (Trifolium pratense) phenolic extract on the ruminal hyper ammonia-producing bacterium, Clostridium sticklandii. Curr. Microbiol. 2010, 61, 125–131. [Google Scholar] [CrossRef]
- Harlow, B.E.; Flythe, M.D.; Kagan, I.A.; Aiken, G.E. Biochanin A (an isoflavone produced by red clover) promotes weight gain of steers grazed in mixed grass pastures and fed dried-distillers’ grains. Crop. Sci. 2017, 57, 506–514. [Google Scholar] [CrossRef]
- Harlow, B.E.; Flythe, M.D.; Kagan, I.A.; Goodman, J.P.; Klotz, J.L.; Aiken, G.E. Isoflavone supplementation, via red clover hay, alters the rumen microbial community and promotes weight gain of steers grazing mixed grass pastures. PLoS ONE 2020, 15, e0229200. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, F.M.; Guthrie, N.L.; Villablanca, A.C.; Kumar, K.; Murray, M.J. Soy protein with isoflavones has favorable effects on endothelial function that are independent of lipid and antioxidant effects in healthy postmenopausal women. Am. J. Clin. Nutr. 2003, 78, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teede, H.J.; McGrath, B.P.; DeSilva, L.; Cehun, M.; Fassoulakis, A.; Nestel, P.J. Isoflavones reduce arterial stiffness: A placebo-controlled study in men and postmenopausal women. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1066–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, V.; Rohr, U.; Jungbauer, A. Phytoestrogens derived from red clover: An alternative to estrogen replacement therapy? J. Steroid Biochem. Mol. Biol. 2005, 94, 499–518. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.N.; Luksha, L.; Logman, H.; Poston, L.; Agewall, S.; Kublickiene, K. Acute responses to phytoestrogens in small arteries from men with coronary heart disease. Am. J. Physiol.-Heart Circul. Physiol. 2006, 290, H1969–H1975. [Google Scholar] [CrossRef] [PubMed]
- Aiken, G.E.; Flythe, M.D.; Kagan, I.A.; Ji, H.; Bush, L.P. Mitigation of ergot vasoconstriction by clover isoflavones in goats (Capra hircus). Front. Vet. Sci. 2016, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Harlow, B.E.; Flythe, M.D.; Hamilton, T.A.; Ji, H.; Schrick, F.N.; Aiken, G.E. Impacts of overseeding red clover in endophyte-infected tall fescue pastures on steer physiology and performance. Appl. Anim. Sci. 2021, 37, 748–757. [Google Scholar] [CrossRef]
- Eldridge, A.C.; Kwolek, W.F. Soybean isoflavones: Effect of environment and variety on composition. J. Agric. Food Chem. 1983, 31, 394–396. [Google Scholar] [CrossRef] [PubMed]
- Flachowsky, G.; Hünerberg, M.; Meyer, U.; Kammerer, D.R.; Carle, R.; Goerke, M.; Eklund, M. Isoflavone concentration of soybean meal from various origins and transfer of isoflavones into milk of dairy cows. J. Consum. Protect. Food Saf. 2011, 6, 449–456. [Google Scholar] [CrossRef]
- Kicel, A.; Wolbiś, M. Phenolic content and DPPH radical scavenging activity of the flowers and leaves of Trifolium repens. Nat. Prod. Commun. 2013, 8, 1934578X1300800122. [Google Scholar] [CrossRef] [Green Version]
- Kagan, I.A.; Goff, B.M.; Flythe, M.D. Soluble phenolic compounds in different cultivars of red clover and alfalfa, and their implication for protection against proteolysis and ammonia production in ruminants. Nat. Prod. Commun. 2015, 10, 1934578X1501000732. [Google Scholar] [CrossRef] [Green Version]
- FASS. Guide for the Care and Use of Agricultural Animals in Research and Teaching; FASS Inc.: Champaign, IL, USA, 2010. [Google Scholar]
- Koontz, A.F.; Bush, L.P.; Klotz, J.L.; McLeod, K.R.; Schrick, F.N.; Harmon, D.L. Evaluation of a ruminally dosed tall fescue seed extract as a model for fescue toxicosis in steers. J. Anim. Sci. 2012, 90, 914–921. [Google Scholar] [CrossRef]
- Foote, A.P.; Kristensen, N.B.; Klotz, J.L.; Kim, D.H.; Koontz, A.F.; McLeod, K.R.; Bush, L.P.; Schrick, F.N.; Harmon, D.L. Ergot alkaloids from endophyte-infected tall fescue decrease reticuloruminal epithelial blood flow and volatile fatty acid absorption from the washed reticulorumen. J. Anim. Sci. 2013, 91, 5366–5378. [Google Scholar] [CrossRef] [PubMed]
- Ahn, G.; Ricconi, K.; Avila, S.; Klotz, J.L.; Harmon, D.L. Ruminal motility, reticuloruminal fill, and eating patterns in steers exposed to ergovaline. J. Anim. Sci. 2020, 98, p.skz374. [Google Scholar] [CrossRef] [PubMed]
- Yates, S.G.; Powell, R.G. Analysis of ergopeptine alkaloids in endophyte-infected tall fescue. J. Agric. Food Chem. 1988, 36, 337–340. [Google Scholar] [CrossRef]
- Carter, J.M.; Aiken, G.E.; Dougherty, C.T.; Schrick, F.N. Steer responses to feeding soybean hulls and steroid hormone implantation on toxic tall fescue pasture. J. Anim. Sci. 2010, 88, 3759–3766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiken, G.E.; Strickland, J.R.; Looper, M.L.; Bush, L.P.; Schrick, F.N. Hemodynamics are altered in the caudal artery of beef heifers fed different ergot alkaloid concentrations. J. Anim. Sci. 2009, 87, 2142–2150. [Google Scholar] [CrossRef] [PubMed]
- Klotz, J.L.; Brown, K.R.; Xue, Y.; Matthews, J.C.; Boling, J.A.; Burris, W.R.; Bush, L.P.; Strickland, J.R. Alterations in serotonin receptor-induced contractility of bovine lateral saphenous vein in cattle grazing endophyte-infected tall fescue. J. Anim. Sci. 2012, 90, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, M.T.; Paterson, J.A.; Kerley, M.S.; Garner, H.E.; Laughlin, M.H. Reduced blood flow to peripheral and core body tissues in sheep and cattle induced by endophyte-infected tall fescue. J. Anim. Sci. 1991, 69, 2033–2043. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.W. Physiological manifestations of endophyte toxicosis in ruminant and laboratory species. In Neotyphodium/Grass Interactions; Springer: Boston, MA, USA, 1997; pp. 311–346. [Google Scholar]
- Aiken, G.E.; Kirch, B.H.; Strickland, J.R.; Bush, L.P.; Looper, M.L.; Schrick, F.N. Hemodynamic responses of the caudal artery to toxic tall fescue in beef heifers. J. Anim. Sci. 2007, 85, 2337–2345. [Google Scholar] [CrossRef] [Green Version]
- Foote, A.P.; Harmon, D.L.; Strickland, J.R.; Bush, L.P.; Klotz, J.L. Effect of ergot alkaloids on contractility of bovine right ruminal artery and vein. J. Anim. Sci. 2011, 89, 2944–2949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egert, A.M.; Kim, D.H.; Schrick, F.N.; Harmon, D.L.; Klotz, J.L. Dietary exposure to ergot alkaloids decreases contractility of bovine mesenteric vasculature. J. Anim. Sci. 2014, 92, 1768–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoveland, C.S.; Harris, R.R.; Thomas, E.E.; Clark, E.M.; McGuire, J.A.; Eason, J.T.; Ruf, M.E. Tall fescue with ladino clover or birdsfoot trefoil as pasture for steers in northern Alabama. Ala. Agric. Exp. Stn. 1981, 530, 1–12. [Google Scholar]
- McMurphy, W.E.; Lusby, K.S.; Smith, S.C.; Muntz, S.H.; Strasia, C.A. Steer performance on tall fescue pasture. J. Prod. Agric. 1990, 3, 100–102. [Google Scholar] [CrossRef]
- Aiken, G.E.; Strickland, J.R. Forages and pastures symposium: Managing the tall fescue–fungal endophyte symbiosis for optimum forage-animal production. J. Anim. Sci. 2013, 91, 2369–2378. [Google Scholar] [CrossRef] [PubMed]
- Shappell, N.W.; Flythe, M.D.; Aiken, G.E. The effects of steroid implant and dietary soybean hulls on estrogenic activity of sera of steers grazing toxic endophyte-infected tall fescue pasture. Front. Vet. Sci. 2015, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Ball, D.M. An overview of fescue toxicity research. Auburn Vet. 1984, 39, 66–70. [Google Scholar]
- Goetsch, A.L.; Jones, A.L.; Stokes, S.R.; Beers, K.W.; Piper, E.L. Intake, digestion, passage rate and serum prolactin in growing dairy steers fed endophyte-infected fescue with noninfected fescue, clover or wheat straw. J. Anim. Sci. 1987, 64, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Fribourg, H.A.; Chestnut, A.; Thompson, R.W.; McLaren, J.B.; Carlisle, R.J.; Gwinn, K.D.; Dixon, M.C.; Smith, M.C. Steer performance in fescue-clover pastures with different levels of endophyte infestation. Agron. J. 1991, 83, 777–781. [Google Scholar] [CrossRef]
- Roberts, C.; Andrae, J. Tall fescue toxicosis and management. Online Crop Manag. 2004. [Google Scholar] [CrossRef]
- Wu, J.H.; Li, Q.; Wu, M.Y.; Guo, D.J.; Chen, H.L.; Chen, S.L.; Seto, S.W.; Au, A.L.S.; Poon, C.C.W.; Leung, G.P.H.; et al. Formononetin, an isoflavone, relaxes rat isolated aorta through endothelium-dependent and endothelium-independent pathways. J. Nutr. Biochem. 2010, 21, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Rivas, M.; Garay, R.P.; Escanero, J.F.; Cia, P., Jr.; Cia, P.; Alda, J.O. Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension. J. Nutr. 2002, 132, 1900–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahn, K.; Borrás, C.; Knock, G.A.; Taylor, P.; Khan, I.Y.; Sugden, D.; Poston, L.; Ward, J.P.; Sharpe, R.M.; Viña, J.; et al. Dietary soy isoflavone-induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure In Vivo. FASEB J. 2005, 19, 1755–1757. [Google Scholar] [CrossRef] [PubMed]
- Beck, P.A.; Haque, M.; Biermacher, J.T.; Hopkins, A.A.; Hubbell, D.S.; Hess, T. Impact of clover additions to toxic or nontoxic endophyte-infected tall fescue on animal performance and economics of stocker programs. Prof. Anim. Sci. 2012, 28, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Harmon, D.L.; Flythe, M.D.; Klotz, J.L. Interaction of isoflavones and endophyte-infected tall fescue seed extract on vasoactivity of bovine mesenteric vasculature. Front. Nutr. 2015, 2, 32. [Google Scholar] [CrossRef]
- Setchell, K.D. Soy isoflavones—benefits and risks from nature’s selective estrogen receptor modulators (SERMs). J. Am. Coll. Nutr. 2001, 20, 354–362. [Google Scholar] [CrossRef]
- Dickinson, J.M.; Smith, G.R.; Randel, R.D.; Pemberton, I.J. In Vitro metabolism of formononetin and biochanin A in bovine rumen fluid. J. Anim. Sci. 1988, 66, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Ibarreta, D.; Daxenberger, A.; Meyer, H.H. Possible health impact of phytoestrogens and xenoestrogens in food. Apmis 2001, 109, S402–S425. [Google Scholar] [CrossRef]
- Shutt, D.A.; Cox, R.I. Steroid and phyto-oestrogen binding to sheep uterine receptors In Vitro. J. Endocrin. 1972, 52, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Setchell, K.; Adlercreutz, H. Mammalian lignans and phytooestrogens recent studies on their formation, metabolism and biological role in health and disease. In Role of the Gut Flora in Toxicity and Cancer, 1st ed.; Academic Press, Inc.: San Diego, CA, USA, 1988; pp. 315–345. [Google Scholar]
Nutrient 2 | Hay | Red Clover | White Clover | Soybean Meal |
---|---|---|---|---|
DM, % | 89.41 | 88.13 | 88.84 | 86.36 |
CP, % | 8.89 | 15.46 | 17.34 | 46.14 |
ADF, % | 38.12 | 32.32 | 29.64 | 6.84 |
NDF, % | 65.81 | 40.21 | 38.11 | 14.36 |
IVTD, % | 60.19 | 72.61 | 76.32 | 82.14 |
Isoflavone (µg g DM−1) | Red Clover | White Clover | Soybean Meal |
---|---|---|---|
Biochanin A | 1979.35 | 8.05 | 14.61 |
Biochanin A Glucoside (sissotrin) | 696.39 | 2.55 | 0.00 |
Biochanin A Malonyl-Glucoside | 3295.44 | 24.50 | 0.00 |
Formononetin | 2580.05 | 176.45 | 7.52 |
Formononetin Glucoside (ononin) | 659.94 | 26.74 | 0.90 |
Formononetin Malonyl-Glucoside | 3252.64 | 284.99 | 0.00 |
Genistein | 102.75 | 11.82 | 31.57 |
Genistein Glucoside (genistin) | 124.02 | 1.67 | 622.38 |
Daidzein | 106.84 | 3.32 | 20.15 |
Daidzein Glucoside (daidzin) | 287.96 | 2.90 | 592.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harlow, B.E.; Flythe, M.D.; Goodman, J.P.; Ji, H.; Aiken, G.E. Isoflavone Containing Legumes Mitigate Ergot Alkaloid-Induced Vasoconstriction in Goats (Capra hircus). Animals 2022, 12, 750. https://doi.org/10.3390/ani12060750
Harlow BE, Flythe MD, Goodman JP, Ji H, Aiken GE. Isoflavone Containing Legumes Mitigate Ergot Alkaloid-Induced Vasoconstriction in Goats (Capra hircus). Animals. 2022; 12(6):750. https://doi.org/10.3390/ani12060750
Chicago/Turabian StyleHarlow, Brittany E., Michael D. Flythe, Jack P. Goodman, Huihua Ji, and Glen E. Aiken. 2022. "Isoflavone Containing Legumes Mitigate Ergot Alkaloid-Induced Vasoconstriction in Goats (Capra hircus)" Animals 12, no. 6: 750. https://doi.org/10.3390/ani12060750
APA StyleHarlow, B. E., Flythe, M. D., Goodman, J. P., Ji, H., & Aiken, G. E. (2022). Isoflavone Containing Legumes Mitigate Ergot Alkaloid-Induced Vasoconstriction in Goats (Capra hircus). Animals, 12(6), 750. https://doi.org/10.3390/ani12060750