The Immunological Role of Vascular and Lymphatic Endothelial Cells in Filarial Infections
Abstract
:Simple Summary
Abstract
1. Introduction
2. Migration/Adherence
2.1. Brugia malayi
2.2. Ligmosoides sigmodontis
2.3. Wuchereria bancrofti
2.4. Onchocerca volvulus
2.5. Dirofilaria immitis
3. VEGF/Cell Proliferation
3.1. Brugia malayi
3.2. Wuchereria bancrofti
3.3. Onchocerca volvulus (River blindness)
3.4. Dirofilaria immitis
3.5. Dirofilaria repens
4. Plasmin
4.1. Dirofilaria immitis
4.2. Brugia malayi
5. Cytokine Production
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Onchocerciasis. Available online: https://www.who.int/news-room/fact-sheets/detail/onchocerciasis (accessed on 10 January 2022).
- Dantas-Torres, F.; Otranto, D. Overview on Dirofilaria immitis in the Americas, with notes on other filarial worms infecting dogs. Vet. Parasitol. 2020, 282, 109113. [Google Scholar] [CrossRef]
- Otranto, D.; Dantas-Torres, F.; Brianti, E.; Donato, T.; Dusan, P.; Genchi, C.; Capelli, G. Vector-borne helminths of dogs and humans—Focus on central and eastern parts of Europe. Parasites Vectors 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genchi, C.; Kramer, L.H. The prevalence of Dirofilaria immitis and D. repens in the Old World. Vet. Parasitol. 2020, 280, 108995. [Google Scholar] [CrossRef] [PubMed]
- Kondrashin, A.V.; Morozova, L.F.; Stepanova, E.V.; Turbabina, N.A.; Maksimova, M.S.; Morozov, E.N. Anthology of dirofilariasis in Russia (1915–2017). Pathogens 2020, 9, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riebenbauer, K.; Weber, P.B.; Walochnik, J.; Karlhofer, F.; Winkler, S.; Dorfer, S.; Auer, H.; Valencak, J.; Laimer, M.; Handisurya, A. Human dirofilariosis in Austria: The past, the present, the future. Parasites Vectors 2021, 14, 227. [Google Scholar] [CrossRef] [PubMed]
- Sałamatin, R.V.; Pavlikovska, T.M.; Sagach, O.S.; Nikolayenko, S.M.; Kornyushin, V.V.; Kharchenko, V.O.; Masny, A.; Cielecka, D.; Konieczna-Sałamatin, J.; Conn, D.B.; et al. Human dirofilariasis due to Dirofilaria repens in Ukraine, an emergent zoonosis: Epidemiological report of 1465 cases. Acta Parasitol. 2013, 58, 592–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Lymphatic Filariasis. Available online: https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis (accessed on 10 January 2022).
- Kalyanasundaram, R.; Khatri, V.; Chauhan, N. Advances in Vaccine Development for Human Lymphatic Filariasis. Trends Parasitol. 2020, 36, 195–205. [Google Scholar] [CrossRef]
- Hewitt, R.I.; Wallace, W.S.; White, E.; SubbaRow, Y. Experimental chemotherapy of filariasis: I. Experimental methods for testing drugs against naturally acquired filarial infections in cotton rats and dogs. J. Lab. Clin. Med. 1947, 32, 1293–1303. [Google Scholar] [CrossRef]
- Moulia-Pelat, J.-P.; Nguyen, L.N.; Hascoet, H.; Nicolas, L. Associations de l’ivermectine et de la diéthylcarbamazine pour obtenir un meilleur contrôle de l’infection en filariose lymphatique. Parasite 1996, 3, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Campbell, W.C.; Fisher, M.H.; Stapley, E.O.; Albers-Schönberg, G.; Jacob, T.A. Ivermectin: A potent new antiparasitic agent. Science 1983, 221, 823–828. [Google Scholar] [CrossRef]
- Wanji, S.; Eyong, E.E.J.; Tendongfor, N.; Ngwa, C.J.; Esuka, E.N.; Kengne-Ouafo, A.J.; Datchoua-Poutcheu, F.R.; Enyong, P.; Agnew, D.; Eversole, R.R.; et al. Ivermectin treatment of Loa loa hyper-microfilaraemic baboons (Papio anubis): Assessment of microfilarial load reduction, haematological and biochemical parameters and histopathological changes following treatment. PLoS Negl. Trop. Dis. 2017, 11, e0005576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajpai, P.; Srivastava, K.; Shakya, S.; Saxena, P.N.; Misra-hattacharya, S. Improvement in the efficacy of existing combination of antifilarials by inclusion of tetracycline in rodent model of Brugian filariasis. Curr. Sci. 2007, 92, 655–658. [Google Scholar]
- Turner, J.D.; Langley, R.S.; Johnston, K.L.; Gentil, K.; Ford, L.; Wu, B.; Graham, M.; Sharpley, F.; Slatko, B.; Pearlman, E.; et al. Wolbachia lipoprotein stimulates innate and adaptive immunity through toll-like receptors 2 and 6 to induce disease manifestations of filariasis. J. Biol. Chem. 2009, 284, 22364–22378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furlong-Silva, J.; Cross, S.D.; Marriott, A.E.; Pionnier, N.; Archer, J.; Steven, A.; Merker, S.S.; Mack, M.; Hong, Y.K.; Taylor, M.J.; et al. Tetracyclines improve experimental lymphatic filariasis pathology by disrupting interleukin-4 receptor-mediated lymphangiogenesis. J. Clin. Investig. 2021, 131, 140853. [Google Scholar] [CrossRef] [PubMed]
- Evans, H.; Flynn, A.F.; Mitre, E. Endothelial cells release soluble factors that support the long-term survival of filarial worms in vitro. Exp. Parasitol. 2016, 170, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawking, F. The 24-h periodicity of microfilariae: Biological mechanisms responsible for its production and control. Proc. R. Soc. Lond. 1967, 169, 59–76. [Google Scholar] [CrossRef]
- Hayasaki, M. Infrared light photobiostimulation mediates periodicity in Dirofilaria immitis microfilariae. J. Vet. Med. Sci. 2020, 82, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Granger, D.N.; Senchenkova, E. Leukocyte–Endothelial Cell Adhesion. In Inflammation and the Microcirculation; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2010. [Google Scholar]
- Yang, X.Z.; Chang, Y.; Wei, W. Endothelial Dysfunction and Inflammation: Immunity in Rheumatoid Arthritis. Mediat. Inflamm. 2016, 2016, 6813016. [Google Scholar] [CrossRef] [Green Version]
- Pober, J.S.; Sessa, W.C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 2007, 7, 803–815. [Google Scholar] [CrossRef]
- Muller, W.A.; Ratti, C.M.; Mcdonnell, S.L.; Cohn, Z.A. A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. Cultured vascular endothelial cells (EC) 1 actively maintain a polarized distribution of integral membrane proteins between their apical. J. Exp. Med. 1989, 170, 399–414. [Google Scholar] [CrossRef]
- Muller, W.A.; Weigl, S.A.; Deng, X.; Phillips, D.M. PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med. 1993, 178, 449–460. [Google Scholar] [CrossRef]
- Ferrero, E.; Elena, M.; Pardi, R.; Raffaella, M. To Endothelial Barrier Function. FEBS Lett. 1995, 374, 323–326. [Google Scholar] [PubMed] [Green Version]
- Woodfin, A.; Voisin, M.B.; Nourshargh, S. PECAM-1: A multi-functional molecule in inflammation and vascular biology. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2514–2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothlein, R.; Dustin, M.L.; Marlin, S.D.; Springer, T.A. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 1986, 137, 1270–1274. [Google Scholar] [PubMed]
- Springer, T.A. Adhesion receptors of the immune system. Nature 1990, 346, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Harlan, J.M. Leukocyte-Endothelial Interactions. Bloodf 1985, 65, 513–525. [Google Scholar] [CrossRef] [Green Version]
- Hughes, R.C. Adhesive Glycoproteins and Receptors; Masson, S.A.S., Ed.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 29, Chapter 14. [Google Scholar]
- Osborn, L.; Hession, C.; Tizard, R.; Vassallo, C.; Luhowskyj, S.; Chi-Rosso, G.; Lobb, R. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 1989, 59, 1203–1211. [Google Scholar] [CrossRef]
- Elices, M.J.; Osborn, L.; Takada, Y.; Crouse, C.; Luhowskyj, S.; Hemler, M.E.; Lobb, R.R. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/Fibronectin binding site. Cell 1990, 60, 577–584. [Google Scholar] [CrossRef]
- Vinay, K.; Aster, A.K.A.; Jon, C.A. Robbins & Cotran Pathologic Basis of Disease, 10th ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Kwa, B.H.; Buck, R.; Nayar, J.K.; Vickery, A.C. Cultured endothelial cells from lymphatics of nude mice parasitized by Brugia malayi. Lymphology 1991, 24, 22–25. [Google Scholar]
- Laurence, B.R.; Simpson, M.G. Structure and taxonomy of microfilariae. Trans. R. Soc. Trop. Med. Hyg. 1969, 63, 428. [Google Scholar]
- Schroeder, J.H.; Simbi, B.H.; Ford, L.; Cole, S.R.; Taylor, M.J.; Lawson, C.; Lawrence, R.A. Live Brugia malayi Microfilariae Inhibit Transendothelial Migration of Neutrophils and Monocytes. PLoS Negl. Trop. Dis. 2012, 6, e1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; T-To, S.S.; Schrieber, L.; King, N.J. Early E-selectin, VCAM-1, ICAM-1, and late major histocompatibility complex antigen induction on human endothelial cells by flavivirus and comodulation of adhesion molecule expression by immune cytokines. J. Virol. 1997, 71, 9323–9332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, J.H.; McCarthy, D.; Szestak, T.; Cook, D.A.; Taylor, M.J.; Craig, A.G.; Lawson, C.; Lawrence, R.A. Brugia malayi microfilariae adhere to human vascular endothelial cells in a C3-dependent manner. PLoS Negl. Trop. Dis. 2017, 11, e0005592. [Google Scholar] [CrossRef] [PubMed]
- Meri, T.; Jokiranta, T.S.; Hellwage, J.; Bialonski, A.; Zipfel, P.F.; Meri, S. Onchocerca volvulus microfilariae avoid complement attack by direct binding of factor H. J. Infect. Dis. 2002, 185, 1786–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haapasalo, K.; Meri, T.; Jokiranta, T.S. Loa loa Microfilariae evade complement attack in vivo by acquiring regulatory proteins from host plasma. Infect. Immun. 2009, 77, 3886–3893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.X.; Serhan, C.N.; Weller, P.F. Intravascular filarial parasites elaborate cyclooxygenase-derived eicosanoids. J. Exp. Med. 1990, 172, 993–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.X.; Buhlmann, J.E.; Weller, P.F. Release of prostaglandin E2 by microfilariae of Wuchereria bancrofti and Brugia malayi. Am. J. Trop. Med. Hyg. 1992, 46, 520–523. [Google Scholar] [CrossRef]
- Hawking, F.; Gammage, K. The periodic migration of microfilariae of Brugia malayi and its response to various stimuli. Am. J. Trop. Med. Hyg. 1968, 17, 724–729. [Google Scholar] [CrossRef]
- Weinkopff, T.; Lammie, P. Lack of evidence for the direct activation of endothelial cells by adult female and microfilarial excretory-secretory products. PLoS ONE 2011, 6, e22282. [Google Scholar] [CrossRef]
- Esterre, P.; Plichart, C.; Huin-Blondey, M.O.; Nguyen, L.N. Soluble cellular adhesion molecules, selectins, VEGF and endothelin-1 in patients with Wuchereria bancrofti infection and association with clinical status. Parasite Immunol. 2005, 27, 9–16. [Google Scholar] [CrossRef]
- Kaifi, J.T.; Diaconu, E.; Pearlman, E. Distinct Roles for PECAM-1, ICAM-1, and VCAM-1 in Recruitment of Neutrophils and Eosinophils to the Cornea in Ocular Onchocerciasis (River Blindness). J. Immunol. 2001, 166, 6795–6801. [Google Scholar] [CrossRef] [PubMed]
- Morchón, R.; Rodríguez-Barbero, A.; Velasco, S.; López-Belmonte, J.; Simón, F. Vascular endothelial cell activation by adult Dirofilaria immitis antigens. Parasitol. Int. 2008, 57, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Simón, F.; Morchón, R.; Rodríguez-Barbero, A.; López-Belmonte, J.; Grandi, G.; Genchi, C. Dirofilaria immitis and Wolbachia-derived antigens: Its effect on endothelial mammal cells. Vet. Parasitol. 2008, 158, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Card, C.M.; Yu, S.S.; Swartz, M.A.; Card, C.M.; Yu, S.S.; Swartz, M.A. Emerging roles of lymphatic endothelium in regulating adaptive immunity: Review series Emerging roles of lymphatic endothelium in regulating adaptive immunity. J. Clin. Investig. 2014, 124, 943–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Saredy, J.; Yang, W.Y.; Sun, Y.; Lu, Y.; Saaoud, F.; Drummer, C.; Johnson, C.; Xu, K.; Jiang, X.; et al. Vascular Endothelial Cells and Innate Immunity. Arterioscler. Thromb. Vasc. Biol. 2020, 40, E138–E152. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Houck, K.; Jakeman, L.; Leung, D.W. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr. Rev. 1992, 13, 18–32. [Google Scholar] [CrossRef]
- Romanque, P.; Piguet, A.C.; Dufour, J.F. Targeting vessels to treat hepatocellular carcinoma. Clin. Sci. 2008, 114, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Debrah, A.Y.; Mand, S.; Specht, S.; Marfo-Debrekyei, Y.; Batsa, L.; Pfarr, K.; Larbi, J.; Lawson, B.; Taylor, M.; Adjei, O.; et al. Doxycycline reduces plasma VEGF-C/sVEGFR-3 and improves pathology in lymphatic filariasis. PLoS Pathog. 2006, 2, e92. [Google Scholar] [CrossRef] [Green Version]
- Bennuru, S.; Nutman, T.B. Lympangiogenesis and Lymphatic Remodeling Induced by Filarial Parasites: Implications for Pathogenesis. PLoS Pathog. 2009, 5, e1000688. [Google Scholar] [CrossRef] [Green Version]
- Jeeva, J.D.; Dhanraj, M.; Solaiappan, S.; Sivanesan, S.; Kron, M.; Dhanasekaran, A. Brugia malayi asparaginyl—Trna synthetase stimulates endothelial cell proliferation, vasodilation and angiogenesis. PLoS ONE 2016, 11, e0146132. [Google Scholar] [CrossRef] [Green Version]
- Rao, U.R.; Zometa, C.S.; Vickery, A.C.; Kwa, B.H.; Nayar, J.K.; Sutton, E.T. Effect of Brugia malayi on the growth and proliferation of endothelial cells in vitro. J. Parasitol. 1996, 82, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Debrah, A.Y.; Mand, S.; Toliat, M.R.; Marfo-Debrekyei, Y.; Batsa, L.; Nürnberg, P.; Lawson, B.; Adjei, O.; Hoerauf, A.; Pfarr, K. Plasma vascular endothelial growth factor-A (VEGF-A) and VEGF-A gene polymorphism are associated with hydrocele development in lymphatic filariasis. Am. J. Trop. Med. Hyg. 2007, 77, 601–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korpelainen, E.I.; Alitalo, K. Signaling angiogenesis and lymphangiogenesis. Curr. Opin. Cell Biol. 1998, 10, 159–164. [Google Scholar] [CrossRef]
- Achen, M.G.; Jeltsch, M.; Kukk, E.; Mäkinen, T.; Vitali, A.; Wilks, A.F.; Alitalo, K.; Stacker, S.A. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl. Acad. Sci. USA 1998, 95, 548–553. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Linden, P.; Farnebo, J.; Cao, R.; Eriksson, A.; Kumar, V.; Qi, J.H.; Claesson-Welsh, L.; Alitalo, K. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc. Natl. Acad. Sci. USA 1998, 95, 14389–14394. [Google Scholar] [CrossRef] [Green Version]
- Debrah, A.Y.; Mand, S.; Marfo-Debrekyei, Y.; Batsa, L.; Pfarr, K.; Lawson, B.; Taylor, M.; Adjei, O.; Hoerauf, A. Reduction in levels of plasma vascular endothelial growth factor-A and improvement in hydrocele patients by targeting endosymbiotic Wolbachia sp. in Wuchereria bancrofti with doxycycline. Am. J. Trop. Med. Hyg. 2009, 80, 956–963. [Google Scholar] [CrossRef]
- Bennuru, S.; Maldarelli, G.; Kumaraswami, V.; Klion, A.D.; Nutman, T.B. Elevated levels of plasma angiogenic factors are associated with human lymphatic filarial infections. Am. J. Trop. Med. Hyg. 2010, 83, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.K.; Sahoo, P.K.; Kerketta, A.S.; Kar, S.K.; Ravindran, B.; Satapathy, A.K. Human Lymphatic Filariasis: Genetic Polymorphism of Endothelin-1 and Tumor Necrosis Factor Receptor II Correlates with Development of Chronic Disease. J. Infect. Dis. 2011, 204, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, W.; Cheng, S.-F.; Dastjerdi, M.H.; Ferrari, G.; Dana, R. Corneal neovascularization and the utility of topical VEGF inhibition: Ranibizumab (Lucentis) vs. bevacizumab (Avastin). Ocul. Surf. 2012, 10, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Regenfuss, B.; Cursiefen, C. Concept of angiogenic privilege. Encycl. Eye 2010, 334–338. [Google Scholar] [CrossRef]
- Hamrah, P.; Chen, L.; Zhang, Q.; Dana, M.R. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am. J. Pathol. 2003, 163, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Ottesen, E.A.; Weller, P.F.; Heck, L. Specific cellular immune unresponsiveness in human filariasis. Immunology 1977, 33, 413–421. [Google Scholar] [PubMed]
- Brattig, N.W. Pathogenesis and host responses in human onchocerciasis: Impact of Onchocerca filariae and Wolbachia endobacteria. Microbes Infect. 2004, 6, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Zueva, T.; Morchón, R.; Carretón, E.; Montoya-Alonso, J.A.; Santana, A.; Bargues, M.D.; Mas-Coma, S.; Rodríguez-Barbero, A.; Simón, F. Angiogenic response in an in vitro model of dog microvascular endothelial cells stimulated with antigenic extracts from Dirofilaria immitis adult worms. Parasites Vectors 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Zueva, T.; Morchón, R.; Carretón, E.; Ollauri-Ibáñez, C.; Pericacho, M.; Rodríguez-Barbero, A.; Simón, F. Angiogenesis in cardiopulmonary dirofilariosis: Does the Wolbachia surface protein have a pro-or anti-angiogenic effect? J. Helminthol. 2020, 94, e162. [Google Scholar] [CrossRef]
- Ilyasov, B.; Kartashev, V.; Bastrikov, N.; Madjugina, L.; González-Miguel, J.; Morchón, R.; Simón, F. Thirty cases of human subcutaneous dirofilariasis reported in Rostov-on-Don (Southwestern Russian Federation). Enferm. Infecc. Microbiol. Clin. 2015, 33, 233–237. [Google Scholar] [CrossRef]
- Astrup, T.; Permin, P.M. Fibrinolysis in the animal organism. Nature 1947, 159, 681. [Google Scholar] [CrossRef]
- McColl, B.K.; Baldwin, M.E.; Roufail, S.; Freeman, C.; Moritz, R.L.; Simpson, P.J.; Alitalo, K.; Stacker, S.A.; Achen, M.G. Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D. J. Exp. Med. 2003, 198, 863–868. [Google Scholar] [CrossRef]
- Tsirka, S.E.; Rogove, A.D.; Strickland, S. Neuronal cell death and tPA. Nature 1996, 384, 123–124. [Google Scholar] [CrossRef]
- Tsirka, S.E.; Gualandris, A.; Amaral, D.G.; Strickland, S. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 1995, 377, 340–344. [Google Scholar] [CrossRef]
- Vago, J.P.; Sugimoto, M.A.; Lima, K.M.; Negreiros-Lima, G.L.; Baik, N.; Teixeira, M.M.; Perretti, M.; Parmer, R.J.; Miles, L.A.; Sousa, L.P. Plasminogen and the plasminogen receptor, PLG-RKT, regulate macrophage phenotypic, and functional changes. Front. Immunol. 2019, 10, 1458. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.A.; Ribeiro, A.L.C.; Costa, B.R.C.; Vago, J.P.; Lima, K.M.; Carneiro, F.S.; Ortiz, M.M.O.; Lima, G.L.N.; Carmo, A.A.F.; Rocha, R.M.; et al. Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1. Blood 2017, 129, 2896–2907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebbink, M.F.B.G. Tissue-type plasminogen activator-mediated plasminogen activation and contact activation, implications in and beyond haemostasis. J. Thromb. Haemost. 2011, 9, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Ayón-Núñez, D.A.; Fragoso, G.; Bobes, R.J.; Laclette, J.P. Plasminogen-binding proteins as an evasion mechanism of the host’s innate immunity in infectious diseases. Biosci. Rep. 2018, 38, BSR20180705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Miguel, J.; Morchón, R.; Carretón, E.; Montoya-Alonso, J.A.; Simón, F. Can the activation of plasminogen/plasmin system of the host by metabolic products of Dirofilaria immitis participate in heartworm disease endarteritis? Parasites Vectors 2015, 8, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Miguel, J.; Morchón, R.; Siles-Lucas, M.; Simón, F. Fibrinolysis and proliferative endarteritis: Two related processes in chronic infections? The model of the blood-borne pathogen Dirofilaria immitis. PLoS ONE 2015, 10, e0124445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Miguel, J.; Morchón, R.; Carretón, E.; Montoya-Alonso, J.A.; Simón, F. Surface associated antigens of Dirofilaria immitis adult worms activate the host fibrinolytic system. Vet. Parasitol. 2013, 196, 235–240. [Google Scholar] [CrossRef]
- Diosdado, A.; Gómez, P.J.; Morchón, R.; Simón, F.; González-Miguel, J. Interaction between Wolbachia and the fibrinolytic system as a possible pathological mechanism in cardiopulmonary dirofilariosis. Vet. Parasitol. 2017, 247, 64–69. [Google Scholar] [CrossRef]
- Foster, C.B.; Flanigan, T.P.; Kazura, J.W.; Dumenco, L.L.; Ratnoff, O.D. Inhibition of the activation of Hageman factor (factor XII) and of platelet aggregation by extracts of Brugia molayi microfilariae. J. Lab. Clin. Med. 1991, 117, 344–352. [Google Scholar] [CrossRef]
- Lisinski, T.J.; Furie, M.B. Interleukin-10 inhibits proinflammatory activation of endothelium in response to Borrelia burgdorferi or lipopolysaccharide but not interleukin-1β or tumor necrosis factor α. J. Leukoc. Biol. 2002, 72, 503–511. [Google Scholar] [CrossRef]
- Gleissner, C.A.; Zastrow, A.; Klingenberg, R.; Kluger, M.S.; Konstandin, M.; Celik, S.; Haemmerling, S.; Shankar, V.; Giese, T.; Katus, H.A.; et al. IL-10 inhibits endothelium-dependent T cell costimulation by up-regulation of ILT3/4 in human vascular endothelial cells. Eur. J. Immunol. 2007, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, E.; Hall, L.R. Immune mechanisms in Onchocerca volvulus-mediated corneal disease (river blindness). Parasite Immunol. 2000, 22, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Doetze, A.; Satoguina, J.; Burchard, G.; Rau, T.; Löliger, C.; Fleischer, B.; Hoerauf, A. Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int. Immunol. 2000, 12, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoerauf, A.; Satoguina, J.; Saeftel, M.; Specht, S. Immunomodulation by filarial nematodes. Parasite Immunol. 2005, 27, 417–429. [Google Scholar] [CrossRef]
- Taylor, M.D.; LeGoff, L.; Harris, A.; Malone, E.; Allen, J.E.; Maizels, R.M. Removal of Regulatory T Cell Activity Reverses Hyporesponsiveness and Leads to Filarial Parasite Clearance In Vivo. J. Immunol. 2005, 174, 4924–4933. [Google Scholar] [CrossRef]
- Bennuru, S.; Semnani, R.; Meng, Z.; Ribeiro, J.M.C.; Veenstra, T.D.; Nutman, T.B. Brugia malayi excreted/secreted proteins at the host/parasite interface: Stage- and gender-specific proteomic profiling. PLoS Negl. Trop. Dis. 2009, 3, e410. [Google Scholar] [CrossRef]
- Tang, L.; Ou, X.; Henkle-Duhrsen, K.; Selkirk, M.E. Extracellular and cytoplasmic CuZn superoxide dismutases from Brugia lymphatic filarial nematode parasites. Infect. Immun. 1994, 62, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Ou, X.; Thomas, G.R.; Chacón, M.R.; Tang, L.; Selkirk, M.E. Brugia malayi: Differential susceptibility to and metabolism of hydrogen peroxide in adults and microfilariae. Exp. Parasitol. 1995, 80, 530–540. [Google Scholar] [CrossRef]
- Anand, S.B.; Rajagopal, V.; Kaliraj, P. Brugia malayi thioredoxin peroxidase as a potential vaccine candidate antigen for lymphatic filariasis. Appl. Biochem. Biotechnol. 2012, 167, 1351–1364. [Google Scholar] [CrossRef]
- Thomas, G.R.; McCrossan, M.; Selkirk, M.E. Cytostatic and cytotoxic effects of activated macrophages and nitric oxide donors on Brugia malayi. Infect. Immun. 1997, 65, 2732–2739. [Google Scholar] [CrossRef] [Green Version]
- Kilgore, K.S.; Flory, C.M.; Miller, B.F.; Evans, V.M.; Warren, J.S. The membrane attack complex of complement induces interleukin-8 and monocyte chemoattractant protein-1 secretion from human umbilical vein endothelial cells. Am. J. Pathol. 1996, 149, 953–961. [Google Scholar] [PubMed]
- Weinkopff, T.; Mackenzie, C.; Eversole, R.; Lammie, P.J. Filarial excretory-secretory products induce human monocytes to produce lymphangiogenic mediators. PLoS Negl. Trop. Dis. 2014, 8, e2893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morchón, R.; Bazzocchi, C.; López-Belmonte, J.; Martín-Pacho, J.R.; Kramer, L.H.; Grandi, G.; Simón, F. iNOs expression is stimulated by the major surface protein (rWSP) from Wolbachia bacterial endosymbiont of Dirofilaria immitis following subcutaneous injection in mice. Parasitol. Int. 2007, 56, 71–75. [Google Scholar] [CrossRef]
- Rajan, T.V.; Porte, P.; Yates, J.A.; Keeper, L.; Shultz, L.D. Role of nitric oxide in host defense against an extracellular, metazoan parasite, Brugia malayi. Infect. Immun. 1996, 64, 3351–3353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysmołek, M.E.; Długosz, E.; Wiśniewski, M. The Immunological Role of Vascular and Lymphatic Endothelial Cells in Filarial Infections. Animals 2022, 12, 426. https://doi.org/10.3390/ani12040426
Wysmołek ME, Długosz E, Wiśniewski M. The Immunological Role of Vascular and Lymphatic Endothelial Cells in Filarial Infections. Animals. 2022; 12(4):426. https://doi.org/10.3390/ani12040426
Chicago/Turabian StyleWysmołek, Magdalena Elżbieta, Ewa Długosz, and Marcin Wiśniewski. 2022. "The Immunological Role of Vascular and Lymphatic Endothelial Cells in Filarial Infections" Animals 12, no. 4: 426. https://doi.org/10.3390/ani12040426
APA StyleWysmołek, M. E., Długosz, E., & Wiśniewski, M. (2022). The Immunological Role of Vascular and Lymphatic Endothelial Cells in Filarial Infections. Animals, 12(4), 426. https://doi.org/10.3390/ani12040426