The Role of Quarantine on Post-Mortem Performances of Charolaise Young Bulls
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Post-Mortem Data
2.3. Data Analysis
3. Results
3.1. Effects of Quarantine Status, Farm, and Season of Arrival on the Studied Traits
3.2. Number of Parenteral Antimicrobial Treatments by Group and Reason of Administration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Organization for Animal Health (Office International des Épizooties, OIE). Terrestrial Animal Health Code, 21st ed.; World Organisation for Animal Health (OIE): Paris, Fance, 2017; Available online: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_aw_beef_catthe.pdf (accessed on 11 February 2021).
- Mõtus, K.; Reimus, K.; Orro, T.; Viltrop, A.; Emanuelson, U. On-farm mortality, causes and risk factors in Estonian beef cow-calf herds. Prev. Vet. Med. 2017, 139, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority (EFSA). Scientific opinion on the welfare of cattle kept for beef production and the welfare in intensive calf farming systems. EFSA J. 2012, 10, 2669. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.A. Impact of disease on feedlot performance: A review. J. Anim. Sci. 1998, 76, 272. [Google Scholar] [CrossRef] [PubMed]
- Baptista, A.L.; Rezende, A.L.; Fonseca, P.A.; Massi, R.P.; Nogueira, G.M.; Magalhães, L.Q.; Headley, S.A.; Menezes, G.L.; Alfieri, A.A.; Saut, J.P.E. Bovine respiratory disease complex associated mortality and morbidity rates in feedlot cattle from southeastern Brazil. J. Infect. Dev. Ctries. 2017, 11, 791–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cusack, P.M.V.; McMeniman, N.; Lean, I.J. The medicine and epidemiology of bovine respiratory disease in feedlots. Aust. Vet. J. 2003, 81, 480–487. [Google Scholar] [CrossRef]
- Blakebrough-Hall, C.; McMeniman, J.P.; González, L.A. An evaluation of the economic effects of bovine respiratory disease on animal performance, carcass traits, and economic outcomes in feedlot cattle defined using four BRD diagnosis methods. J. Anim. Sci. 2020, 98, skaa005. [Google Scholar] [CrossRef]
- Gardner, B.A.; Dolezal, H.G.; Bryant, L.K.; Owens, F.N.; Smith, R.A. Health of finishing steers: Effects on performance, carcass traits, and meat tenderness. J. Anim. Sci. 1999, 77, 3168–3175. [Google Scholar] [CrossRef]
- Pardon, B.; Hostens, M.; Duchateau, L.; Dewulf, J.; De Bleecker, K.; Deprez, P. Impact of respiratory disease, diarrhea, otitis and arthritis on mortality and carcass traits in white veal calves. BMC Vet. Res. 2013, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Wulf, D.M.; Emnett, R.S.; Leheska, J.M.; Moeller, S.J. Relationships among glycolytic potential, dark cutting (dark, firm, and dry) beef, and cooked beef palatability. J. Anim. Sci. 2002, 80, 1895–1903. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, H.F.; De Kock, H.L.; Webb, E.C. Consumer acceptability of dark, firm and dry (DFD) and normal pH beef steaks. Meat Sci. 2002, 61, 181–185. [Google Scholar] [CrossRef]
- Meat and Livestock Australia (MLA). The Effect of pH on Beef Eating Quality. In Tips and Tools—Meat Standards Australia; Meat and Livestock Australia (MLA): North Sydney, NSW, Australia, 2014; Available online: https://www.mla.com.au/globalassets/mla-corporate/effect-of-ph-on-beef-eating-quality_sep11.pdf (accessed on 18 February 2021).
- Geay, Y.; Bauchart, D.; Hocquette, J.F.; Culioli, J. Effect of nutritional factors on biochemical, structural and metabolic characteristics of muscles in ruminants, consequences on dietetic value and sensorial qualities of meat. Reprod. Nutr. Dev. 2001, 41, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Węglarz, A. Meat quality defined based on pH and color depending on cattle category and slaughter season. Czech J. Anim. Sci. 2010, 55, 548–556. [Google Scholar] [CrossRef] [Green Version]
- Schwartzkopf-Genswein, K.S.; Faucitano, L.; Dadgar, S.; Shand, P.; González, L.A.; Crowe, T.G. Road transport of cattle, swine and poultry in North America and its impact on animal welfare, carcass and meat quality: A review. Meat Sci. 2012, 92, 227–243. [Google Scholar] [CrossRef]
- Hessman, B.E.; Fulton, R.W.; Sjeklocha, D.B.; Murphy, T.A.; Ridpath, J.F.; Payton, M.E. Evaluation of economic effects and the health and performance of the general cattle population after exposure to cattle persistently infected with bovine viral diarrhea virus in a starter feedlot. Am. J. Vet. Res. 2009, 70, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Stokstad, M.; Klem, T.B.; Myrmel, M.; Oma, V.S.; Toftaker, I.; Østerås, O.; Nødtvedt, A. Using biosecurity measures to combat respiratory disease in cattle: The Norwegian control program for bovine respiratory syncytial virus and bovine coronavirus. Front. Vet. Sci. 2020, 7, 167. [Google Scholar] [CrossRef]
- Postma, M.; Dewulf, J. Biosecurity and its relationship with health, production and antimicrobial use. In Biosecurity in Animal Production and Veterinary Medicine: From Principles to Practice, 1st ed.; Dewulf, J., Van Immerseel, F., Eds.; ACCO: Leuven, Belgium, 2018; pp. 77–94. [Google Scholar]
- Sibley, D. Biosecurity in the beef herd. In Pract. 2014, 36, 238–248. [Google Scholar] [CrossRef]
- Huston, C.L. Biosecurity for beef and dairy herds. In Bovine Reproduction, 2nd ed.; Hopper, M.R., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2021; Volume 28, pp. 349–358. [Google Scholar]
- Wheeler, T.L.; Kalchayanand, N.; Bosilevac, J.M. Pre- and post-harvest interventions to reduce pathogen contamination in the U.S. beef industry. Meat Sci. 2014, 98, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.W.; Dargatz, D.A.; Garry, F.B. Biosecurity practices of beef cow-calf producers. J. Am. Vet. Med. Assoc. 2000, 217, 185–189. [Google Scholar] [CrossRef]
- Damiaans, B.; Sarrazin, S.; Heremans, E.; Dewulf, J. Perception, motivators and obstacles of biosecurity in cattle production. Vlaams Diergeneeskundig Tijdschrift 2018, 87, 150–163. [Google Scholar] [CrossRef]
- Santinello, M.; Diana, A.; De Marchi, M.; Scali, F.; Bertocchi, L.; Lorenzi, V.; Alborali, G.L.; Penasa, M. Promoting a judicious antimicrobial use in beef production: The role of quarantine. Animals 2022, 12, 116. [Google Scholar] [CrossRef]
- Gallo, L.; De Marchi, M.; Bittante, G. A survey on feedlot performance of purebred and crossbred European young bulls and heifers managed under intensive conditions in Veneto, northeast Italy. Ital. J. Anim. Sci. 2014, 13, 3285. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union. Regulation (EU) No. 1308/2013 of the European Parliament and of the Council of 17 December 2013 Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No. 922/72, (EEC) No. 234/79, (EC) No. 1037/2001 and (EC) No. 1234/2007. 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013R1308 (accessed on 18 May 2021).
- Gondekovà, M.; Demo, P.; Salagovà, Z.; Pavlík, I.; Huba, J. Seurop beef and pig carcass classification in Slovakia: A review. Slovak J. Anim. Sci. 2020, 53, 32–41. [Google Scholar]
- Tablante, N.L.; San Myint, M.; Johnson, Y.J.; Rhodes, K.; Colby, M.; Hohenhaus, G. A survey of biosecurity practices as risk factors affecting broiler performance on the Delmarva Peninsula. Avian Dis. 2002, 46, 730–734. [Google Scholar] [CrossRef]
- Laanen, M.; Persoons, D.; Ribbens, S.; de Jong, E.; Callens, B.; Strubbe, M.; Maes, D.; Dewulf, J. Relationship between biosecurity and production/antimicrobial treatment characteristics in pig herds. Vet. J. 2013, 198, 508–512. [Google Scholar] [CrossRef]
- Assié, S.; Seegers, H.; Makoschey, B.; Désiré-Bousquié, L.; Bareille, N. Exposure to pathogens and incidence of respiratory disease in young bulls on their arrival at fattening operations in France. Vet. Rec. 2009, 165, 195–199. [Google Scholar] [CrossRef]
- Taylor, J.D.; Fulton, R.W.; Lehenbauer, T.W.; Step, D.L.; Confer, A.W. The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors? Can. Vet. J. 2010, 51, 1095–1102. [Google Scholar]
- Cortez, M.; Gockenbach, M.; Huang, Y.; Padgett, R.; Nazari, F.; Arriola, L.; Kribs, C. The Effects of Culling and Quarantine on Reducing Antibiotic Resistance in a Cohort of Beef Cattle. 2016. Available online: https://qrlssp.asu.edu/sites/default/files/mtbi-13-02m.pdf (accessed on 22 March 2021).
- Schnyder, P.; Schönecker, L.; Schüpbach-Regula, G.; Meylan, M. Effects of management practices, animal transport and barn climate on animal health and antimicrobial use in Swiss veal calf operations. Prev. Vet. Med. 2019, 167, 146–157. [Google Scholar] [CrossRef]
- Magrin, L.; Gottardo, F.; Brscic, M.; Contiero, B.; Cozzi, G. Health behaviour and growth performance of Charolais and Limousin bulls fattened on different types of flooring. Animal 2019, 13, 2603–2611. [Google Scholar] [CrossRef] [Green Version]
- Compiani, R.; Rossi, C.A.S.; Baldi, G.; Desrochers, A. Dealing with lameness in Italian beef cattle rearing. Large Anim. Rev. 2014, 20, 239–247. [Google Scholar]
- Neath, K.E.; Del Barrio, A.N.; Lapitan, R.M.; Herrera, J.R.V.; Cruz, L.C.; Fujihara, T.; Muroya, S.; Chikuni, K.; Hirabayashi, M.; Kanai, Y. Difference in tenderness and pH decline between water buffalo meat and beef during postmortem aging. Meat Sci. 2007, 75, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Barbera, S.; Cannizzo, F.T.; Biolatti, B. Effects of illegal treatments on meat quality of Charolaise bulls. In Proceedings of the 57th International Congress of Meat Science and Technology, Ghent, Belgium, 7–12 August 2011; pp. 1022–1025. [Google Scholar]
- Park, S.J.; Beak, S.H.; Jung, D.J.S.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1043–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Antimicrobial Resistance: Global Report on Surveillance. 2014. Available online: https://www.who.int/drugresistance/documents/surveillancereport/en/ (accessed on 27 April 2021).
Effect | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Farm | Quarantine | Season of Arrival | Season*Quarantine | Farm*Quarantine | R2 | RMSE | ||||||
Trait | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | ||
ADG30 (kg/d) | 0.60 | 0.4399 | 9.63 | 0.0020 | 15.50 | <0.0001 | 4.40 | 0.0045 | 1.56 | 0.2128 | 0.13 | 0.61 |
ADG31-end (kg/d) | 5.34 | 0.0212 | 1.91 | 0.1677 | 4.50 | 0.0039 | 1.27 | 0.2846 | 12.58 | 0.0004 | 0.06 | 0.25 |
ADGtot (kg/d) | 5.15 | 0.0236 | 5.41 | 0.0204 | 9.59 | <0.0001 | 0.48 | 0.6957 | 10.96 | 0.0010 | 0.08 | 0.23 |
BWfinal (kg) | 15.07 | 0.0001 | 4.53 | 0.0338 | 7.06 | 0.0001 | 0.42 | 0.7387 | 9.45 | 0.0022 | 0.15 | 45.73 |
Hot carcass weight (kg) | 11.96 | 0.0006 | 1.68 | 0.1952 | 7.05 | 0.0001 | 0.25 | 0.8604 | 8.15 | 0.0045 | 0.12 | 30.13 |
Dressing percentage (%) | 0.51 | 0.4768 | 2.01 | 0.1573 | 8.77 | <0.0001 | 0.76 | 0.5176 | 0.04 | 0.8504 | 0.09 | 1.80 |
pH60 | 11.85 | 0.0006 | 12.33 | 0.0005 | 12.14 | <0.0001 | 6.12 | 0.0004 | 0.01 | 0.9053 | 0.21 | 0.18 |
SEUROP conformation | 0.15 | 0.7012 | 9.93 | 0.0017 | 9.75 | <0.0001 | 1.75 | 0.1549 | 2.45 | 0.1183 | 0.09 | 1.47 |
Fat cover | 28.05 | <0.0001 | 0.40 | 0.5261 | 24.84 | <0.0001 | 0.39 | 0.7596 | 6.86 | 0.0091 | 0.14 | 1.24 |
Farm | Quarantine | |||||||
---|---|---|---|---|---|---|---|---|
Farm 1 | Farm 2 | NO-QUA | QUA | |||||
Trait * | LSM | SE | LSM | SE | LSM | SE | LSM | SE |
ADG30 (kg/d) | 1.97 a | 0.04 | 1.93 a | 0.05 | 1.85 a | 0.04 | 2.05 b | 0.04 |
ADG31-end (kg/d) | 1.61 a | 0.02 | 1.55 b | 0.02 | 1.56 a | 0.02 | 1.60 a | 0.02 |
ADGtot (kg/d) | 1.68 a | 0.02 | 1.62 b | 0.02 | 1.62 a | 0.02 | 1.68 b | 0.02 |
BWfinal (kg) | 727.36 a | 2.93 | 709.68 b | 3.68 | 713.36 a | 3.42 | 723.68 b | 3.45 |
Hot carcass weight (kg) | 446.30 a | 1.93 | 435.91 b | 2.42 | 439.04 a | 2.25 | 443.16 a | 2.25 |
Dressing percentage (%) | 61.37 a | 0.11 | 61.50 a | 0.14 | 61.57 a | 0.13 | 61.30 a | 0.14 |
pH60 | 6.55 a | 0.12 | 6.62 b | 0.15 | 6.62 a | 0.14 | 6.55 b | 0.14 |
SEUROP conformation | 4.85 a | 0.09 | 4.79 a | 0.12 | 5.07 a | 0.11 | 4.58 b | 0.11 |
Fat cover | 5.03 a | 0.08 | 5.68 b | 0.10 | 5.31 a | 0.09 | 5.40 a | 0.09 |
Season of Arrival | ||||||||
---|---|---|---|---|---|---|---|---|
Autumn | Winter | Spring | Summer | |||||
Trait * | LSM | SE | LSM | SE | LSM | SE | LSM | SE |
ADG30 (kg/d) | 1.65 a | 0.06 | 1.94 abc | 0.09 | 2.21 c | 0.05 | 2.01 b | 0.04 |
ADG31-end (kg/d) | 1.55 ab | 0.02 | 1.64 a | 0.04 | 1.60 a | 0.02 | 1.52 b | 0.02 |
ADGtot (kg/d) | 1.58 a | 0.02 | 1.69 ab | 0.04 | 1.72 b | 0.02 | 1.61 a | 0.02 |
BWfinal (kg) | 705.32 a | 4.65 | 726.97 ab | 7.12 | 729.31 b | 3.77 | 712.48 a | 3.27 |
Hot carcass weight (kg) | 437.56 ab | 3.08 | 445.64 ab | 4.65 | 447.66 b | 2.48 | 433.54 a | 2.15 |
Dressing percentage (%) | 62.03 a | 0.18 | 61.27 ab | 0.28 | 61.54 a | 0.15 | 60.90 b | 0.13 |
pH60 | 6.61 ac | 0.02 | 6.53 bc | 0.03 | 6.67 a | 0.01 | 6.54 b | 0.01 |
SEUROP conformation | 4.71 a | 0.15 | 4.87 ab | 0.23 | 4.41 a | 0.12 | 5.29 b | 0.11 |
Fat cover | 5.03 a | 0.13 | 5.38 a | 0.19 | 4.97 a | 0.10 | 6.04 b | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diana, A.; Santinello, M.; De Marchi, M.; Pellattiero, E.; Penasa, M. The Role of Quarantine on Post-Mortem Performances of Charolaise Young Bulls. Animals 2022, 12, 425. https://doi.org/10.3390/ani12040425
Diana A, Santinello M, De Marchi M, Pellattiero E, Penasa M. The Role of Quarantine on Post-Mortem Performances of Charolaise Young Bulls. Animals. 2022; 12(4):425. https://doi.org/10.3390/ani12040425
Chicago/Turabian StyleDiana, Alessia, Matteo Santinello, Massimo De Marchi, Erika Pellattiero, and Mauro Penasa. 2022. "The Role of Quarantine on Post-Mortem Performances of Charolaise Young Bulls" Animals 12, no. 4: 425. https://doi.org/10.3390/ani12040425
APA StyleDiana, A., Santinello, M., De Marchi, M., Pellattiero, E., & Penasa, M. (2022). The Role of Quarantine on Post-Mortem Performances of Charolaise Young Bulls. Animals, 12(4), 425. https://doi.org/10.3390/ani12040425