Enterocytes in Food Hypersensitivity Reactions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Food Allergy across Animal Species
3. Animal Models of Food Allergies
4. The Physiological State in an Organism—Oral Tolerance
5. Break of Oral Tolerance
Enterocytes in Inflammation and upon Break of Oral Tolerance
6. Overview of Morphological Organization of the Intestine
6.1. The Small Intestine
6.2. Enterocytes
6.2.1. Low-Affinity IgE Receptor, CD23, as Molecular Evidence of Enterocyte Involvement in the Modulation of Food Allergy Responses
6.2.2. Proteomics in Revealing Extraordinary Plasticity of Aging and Differently Stimulated Enterocyte Monolayer
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sicherer, S.H.; Sampson, H.A. Food allergy. J. Allergy Clin. Immunol. 2010, 125, S116–S125. [Google Scholar] [CrossRef]
- Cianferoni, A.; Spergel, J.M. Food allergy: Review, classification and diagnosis. Allergol. Int. 2009, 58, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.H., Jr.; Griffin, C.E. Muller and Kirk’ s Small Animal Dermatology; Elsevier Health Science: St. Louis, MO, USA, 2012; pp. 354–421. [Google Scholar]
- Luckschander, N.; Allenspach, K.; Hall, J.; Seibold, F.; Gröne, A.; Doherr, G.M.; Gaschen, F. Perinuclear antineutrophilic cytoplasmic antibody and response to treatment in diarrheic dogs with food responsive disease or inflammatory bowel disease. J. Vet. Intern. Med. 2006, 20, 221–227. [Google Scholar] [CrossRef]
- Crowe, S.E.; Perdue, M.H. Gastrointestinal food hypersensitivity: Basic mechanisms of pathophysiology. Gastroenterology 1992, 103, 1075–1095. [Google Scholar] [CrossRef]
- Favrot, C.; Steffan, J.; Seewald, W.; Picco, F. A prospective study on the clinical features of chronic canine atopic dermatitis and its diagnosis. Vet. Dermatol. 2010, 21, 23–31. [Google Scholar] [CrossRef]
- Jackson, H.A.; Jackson, M.W.; Coblentz, L.; Hammerberg, B. Evaluation of the clinical and allergen specific serum immunoglobulin E responses to oral challenge with cornstarch, corn, soy and a soy hydrolysate diet in dogs with spontaneous food allergy. Vet. Dermatol. 2003, 14, 181–187. [Google Scholar] [CrossRef]
- Ognjenovic, J.; Milcic-Matic, N.; Smiljanic, K.; Vuckovic, O.; Burazer, L.; Popovic, N.; Stanic-Vucinic, D.; Velickovic, T.C. Immunoproteomic characterization of Ambrosia artemisiifolia pollen allergens in canine atopic dermatitis. Vet. Immunol. Immunopathol. 2013, 155, 38–47. [Google Scholar] [CrossRef]
- Pedersen, N.C. A review of immunologic diseases of the dog. Vet. Immunol. Immunopathol. 1999, 69, 251–342. [Google Scholar] [CrossRef]
- Olivry, T.; Mueller, R.S. Critically appraised topic on adverse food reactions of companion animals (7): Signalment and cutaneous manifestations of dogs and cats with adverse food reactions. BMC Vet. Res. 2019, 15, 140. [Google Scholar] [CrossRef] [Green Version]
- Mueller, R.S.; Olivry, T. Critically appraised topic on adverse food reactions of companion animals (6): Prevalence of noncutaneous manifestations of adverse food reactions in dogs and cats. BMC Vet. Res. 2018, 14, 341. [Google Scholar] [CrossRef]
- Olivry, T.; Mueller, R.S. Critically appraised topic on adverse food reactions of companion animals (3): Prevalence of cutaneous adverse food reactions in dogs and cats. BMC Vet. Res. 2017, 13, 51. [Google Scholar] [CrossRef] [Green Version]
- Mueller, R.S.; Olivry, T. Critically appraised topic on adverse food reactions of companion animals (4): Can we diagnose adverse food reactions in dogs and cats with in vivo or in vitro tests? BMC Vet. Res. 2017, 13, 275. [Google Scholar] [CrossRef]
- Guilford, W.G.; Jones, B.R.; Markwell, P.J.; Arthur, D.G.; Collett, M.G.; Harte, J.G. Food sensitivity in cats with chronic idiopathic gastrointestinal problems. J. Vet. Intern. Med. 2001, 15, 7–13. [Google Scholar] [CrossRef]
- Olivry, T.; Mueller, R.S.; Prélaud, P. Critically appraised topic on adverse food reactions of companion animals (1): Duration of elimination diets. BMC Vet. Res. 2015, 11, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivry, T.; Mueller, R.S. Critically appraised topic on adverse food reactions of companion animals (9): Time to flare of cutaneous signs after a dietary challenge in dogs and cats with food allergies. BMC Vet. Res. 2020, 16, 158. [Google Scholar] [CrossRef]
- Pali-Schöll, I.; De Lucia, M.; Jackson, H.; Janda, J.; Mueller, R.S.; Jensen-Jarolim, E. Comparing immediate-type food allergy in humans and companion animals-revealing unmet needs. Allergy 2017, 72, 1643–1656. [Google Scholar] [CrossRef] [Green Version]
- Aldemir, H.; Bars, R.; Herouet-Guicheney, C. Murine models for evaluating the allergenicity of novel proteins and foods. Regul. Toxicol. Pharmacol. 2009, 54, S52–S57. [Google Scholar] [CrossRef]
- Knippels, L.M.J.; Penninks, A.H.; Meeteren, M.V. Humoral and Cellular Immune Responses in Different Rat Strains on Oral Exposure to Ovalbumin. Food Chem. Toxicol. 1999, 37, 881–888. [Google Scholar] [CrossRef]
- Radcliffe, J.S.; Brito, L.F.; Reddivari, L.; Schmidt, M.; Herman, E.M.; Schinckel, A.P. A swine model of soy protein–induced food allergenicity: Implications in human and swine nutrition. Anim. Front. 2019, 9, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Gramberg, J.L.V.; Veer, M.J.D.; Hehir, R.E.O.; Meeusen, E.N.T.; Bischof, R.J. Induction of Allergic Responses to Peanut Allergen in Sheep. PLoS ONE 2012, 7, e51386. [Google Scholar] [CrossRef] [Green Version]
- Teuber, S.S.; Del Val, G.; Morigasaki, S.; Jung, H.R.; Eisele, P.H.; Frick, O.L.; Buchanan, B.B. The atopic dog as a model of peanut and tree nut food allergy. J. Allergy Clin. Immunol. 2002, 110, 921–927. [Google Scholar] [CrossRef]
- Santoro, D.; Marsella, R. Animal Models of Allergic Diseases. Vet. Sci. 2014, 1, 192–212. [Google Scholar] [CrossRef]
- Liu, T.; Navarro, S.; Lopata, A.L. Current advances of murine models for food allergy. Mol. Immunol. 2016, 70, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Gonipeta, B.; Kim, E.; Gangur, V. Mouse models of food allergy: How well do they simulate the human disorder? Crit. Rev. Food Sci. Nutr. 2015, 55, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Knippels, L.M.; Penninks, A.H. Recent advances using rodent models for predicting human allergenicity. Toxicol. Appl. Pharmacol. 2005, 207, 157–160. [Google Scholar] [CrossRef]
- Behroo, L. Fascinating Findings from Sensitizing the Wistar Strain Rats Recruited as Peanut-Allergy Model. EC Nutr. 2015, 1, 192–202. [Google Scholar]
- Contreras, M.; Pacheco, I.; Alberdi, P.; Díaz-Sánchez, S.; Artigas-Jerónimo, S.; Mateos-Hernández, L.; Villar, M.; Cabezas-Cruz, A.; de la Fuente, J. Allergic Reactions and Immunity in Response to Tick Salivary Biogenic Substances and Red Meat Consumption in the Zebrafish Model. Front. Cell Infect. Microbiol. 2020, 10, 78. [Google Scholar] [CrossRef]
- Bailone, R.L.; de Aguiar, L.K.; de Oliveira Roca, R.; Borra, R.C.; Corrêa, T.; Janke, H.; Fukushima, H.C.S. Zebrafish as an animal model for food safety research: Trends in the animal research. Food Biotechnol. 2019, 33, 283–302. [Google Scholar] [CrossRef]
- Fuentes-Appelgren, P.; Opazo, R.; Barros, L.; Feijoó, C.G.; Urzúa, V.; Romero, J. Effect of the dietary inclusion of soybean components on the innate immune system in zebrafish. Zebrafish 2014, 11, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ermel, R.W.; Kock, M.; Griffey, S.M.; Reinhart, G.A.; Frick, O.L. The atopic dog: A model for food allergy. Lab. Anim. Sci. 1997, 47, 40–49. [Google Scholar]
- Buchanan, B.; Frick, O. The Dog as a Model for Food Allergy. Ann. N. Y. Acad. Sci. 2002, 964, 173–183. [Google Scholar] [CrossRef]
- Helm, R.M.; Furuta, G.T.; Stanley, J.S.; Ye, J.; Cockrell, G.; Connaughton, C.; Simpson, P.; Bannon, G.A.; Burks, A.W. A neonatal swine model for peanut allergy. J. Allergy Clin. Immunol. 2002, 109, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Rupa, P.; Hamilton, K.; Cirinna, M.; Wilkie, B.N. A neonatal swine model of allergy induced by the major food allergen chicken ovomucoid (Gal d 1). Int. Arch. Allergy Immunol. 2008, 146, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Kanagaratham, C.; Sallis, B.F.; Fiebiger, E. Experimental Models for Studying Food Allergy. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 356–369.e351. [Google Scholar] [CrossRef]
- Huang, J.; Liu, C.; Wang, Y.; Wang, C.; Xie, M.; Qian, Y.; Fu, L. Application of in vitro and in vivo models in the study of food allergy. Food Sci. Hum. Wellness 2018, 7, 235–243. [Google Scholar] [CrossRef]
- Berin, M.C.; Kiliaan, A.J.; Yang, P.C.; Groot, J.A.; Taminiau, J.A.; Perdue, M.H. Rapid transepithelial antigen transport in rat jejunum: Impact of sensitization and the hypersensitivity reaction. Gastroenterology 1997, 113, 856–864. [Google Scholar] [CrossRef]
- Yu, L.C.H.; Yang, P.C.; Berin, M.C.; Di Leo, V.; Conrad, D.H.; McKay, D.M.; Satoskar, A.R.; Perdue, M.H. Enhanced transepithelial antigen transport in intestine of allergic mice is mediated by IgE/CD23 and regulated by interleukin-4. Gastroenterology 2001, 121, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Van Niel, G.; Mallegol, J.; Bevilacqua, C.; Candalh, C.; Brugière, S.; Tomaskovic-Crook, E.; Heath, J.K.; Cerf-Bensussan, N.; Heyman, M. Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 2003, 52, 1690–1697. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.C.; Berin, M.C.; Yu, L.C.; Conrad, D.H.; Perdue, M.H. Enhanced intestinal transepithelial antigen transport in allergic rats is mediated by IgE and CD23 (FcepsilonRII). J. Clin. Investig. 2000, 106, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ghoshal, S.; Ward, M.; de Villiers, W.; Woodward, J.; Eckhardt, E. Chylomicrons Promote Intestinal Absorption and Systemic Dissemination of Dietary Antigen (Ovalbumin) in Mice. PLoS ONE 2009, 4, e8442. [Google Scholar] [CrossRef]
- Zeng, H.T.; Liu, J.Q.; Zhao, M.; Yu, D.; Yang, G.; Mo, L.H.; Liu, Z.Q.; Wang, S.; Liu, Z.G.; Yang, P.C. Exosomes carry IL-10 and antigen/MHC II complexes to induce antigen-specific oral tolerance. Cytokine 2020, 133, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.R.; Hautefort, I.; Dalton, J.E.; Overweg, K.; Egan, C.E.; Bongaerts, R.J.; Newton, D.J.; Cruickshank, S.M.; Andrew, E.M.; Carding, S.R. Intestinal Intraepithelial Lymphocyte-Enterocyte Crosstalk Regulates Production of Bactericidal Angiogenin 4 by Paneth Cells upon Microbial Challenge. PLoS ONE 2013, 8, e84553. [Google Scholar] [CrossRef]
- Sodhi, C.; Levy, R.; Gill, R.; Neal, M.D.; Richardson, W.; Branca, M.; Russo, A.; Prindle, T.; Billiar, T.R.; Hackam, D.J. DNA attenuates enterocyte Toll-like receptor 4-mediated intestinal mucosal injury after remote trauma. Am. J. Physiol. -Gastrointest. Liver Physiol. 2011, 300, G862–G873. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, Y.; Tang, L.; de Villiers, W.J.S.; Cohen, D.; Woodward, J.; Finkelman, F.D.; Eckhardt, E.R.M. Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice. J. Allergy Clin. Immunol. 2013, 131, 442–450. [Google Scholar] [CrossRef] [Green Version]
- Montagnac, G.; Yu, L.C.; Bevilacqua, C.; Heyman, M.; Conrad, D.H.; Perdue, M.H.; Benmerah, A. Differential role for CD23 splice forms in apical to basolateral transcytosis of IgE/allergen complexes. Traffic 2005, 6, 230–242. [Google Scholar] [CrossRef]
- Lexmond, W.S.; Goettel, J.A.; Sallis, B.F.; McCann, K.; Rings, E.H.H.M.; Jensen-Jarolim, E.; Nurko, S.; Snapper, S.B.; Fiebiger, E. Spontaneous food allergy in Was−/− mice occurs independent of FcεRI-mediated mast cell activation. Allergy 2017, 72, 1916–1924. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.M.C.; Weiner, H.L. Oral tolerance. Immunol. Rev. 2005, 206, 232–259. [Google Scholar] [CrossRef] [PubMed]
- Tordesillas, L.; Gómez-Casado, C.; Garrido-Arandia, M.; Murua-García, A.; Palacín, A.; Varela, J.; Konieczna, P.; Cuesta-Herranz, J.; Akdis, C.A.; O’Mahony, L.; et al. Transport of Pru p 3 across gastrointestinal epithelium—An essential step towards the induction of food allergy? Clin. Exp. Allergy 2013, 43, 1374–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoop, K.A.; Miller, M.J.; Newberry, R.D. Transepithelial antigen delivery in the small intestine: Different paths, different outcomes. Curr. Opin. Gastroenterol. 2013, 29, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Verhasselt, V. Oral tolerance in neonates: From basics to potential prevention of allergic disease. Mucosal Immunol. 2010, 3, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Thorstenson, K.M.; Khoruts, A. Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J. Immunol. 2001, 167, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Tordesillas, L.; Berin, M.C. Mechanisms of Oral Tolerance. Clin. Rev. Allergy Immunol. 2018, 55, 107–117. [Google Scholar] [CrossRef]
- McDole, J.R.; Wheeler, L.W.; McDonald, K.G.; Wang, B.; Konjufca, V.; Knoop, K.A.; Newberry, R.D.; Miller, M.J. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 2012, 483, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, A.; Carrier, Y.; Peron, J.P.; Bettelli, E.; Kamanaka, M.; Flavell, R.A.; Kuchroo, V.K.; Oukka, M.; Weiner, H.L. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat. Immunol. 2007, 8, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Inobe, J.; Kuchroo, V.K.; Baron, J.L.; Janeway, C.A., Jr.; Weiner, H.L. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: Suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc. Natl. Acad. Sci. USA 1996, 93, 388–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahenzli, J.; Köller, Y.; Wyss, M.; Geuking, M.B.; McCoy, K.D. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 2013, 14, 559–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atarashi, K.; Tanoue, T.; Oshima, K.; Suda, W.; Nagano, Y.; Nishikawa, H.; Fukuda, S.; Saito, T.; Narushima, S.; Hase, K.; et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, K.P.; Buning, J.; Weber, P.; Kaiserlian, D.; Strobel, S. Modulation of Antigen Trafficking to MHC Class II–Positive Late Endosomes of Enterocytes. Gatroenterology 2000, 118, 128–137. [Google Scholar] [CrossRef]
- Kucuk, Z.Y.; Strait, R.; Khodoun, M.V.; Mahler, A.; Hogan, S.; Finkelman, F.D. Induction and suppression of allergic diarrhea and systemic anaphylaxis in a murine model of food allergy. J. Allergy Clin. Immunol. 2012, 129, 1343–1348. [Google Scholar] [CrossRef] [Green Version]
- Lönnroth, I.; Holmgren, J. Subunit structure of cholera toxin. J. Gen. Microbiol 1973, 76, 417–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snider, D.P.; Marshall, J.S.; Perdue, M.H.; Liang, H. Production of IgE antibody and allergic sensitization of intestinal and peripheral tissues after oral immunization with protein Ag and cholera toxin. J. Immunol. 1994, 153, 647–657. [Google Scholar] [PubMed]
- Yamamoto, M.; Kiyono, H.; Kweon, M.N.; Yamamoto, S.; Fujihashi, K.; Kurazono, H.; Imaoka, K.; Bluethmann, H.; Takahashi, I.; Takeda, Y.; et al. Enterotoxin adjuvants have direct effects on T cells and antigen-presenting cells that result in either interleukin-4-dependent or-independent immune responses. J. Infect. Dis. 2000, 182, 180–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, R.; Wallmann, J.; Szalai, K.; Karagiannis, P.; Kopp, T.; Scheiner, O.; Jensen-Jarolim, E.; Pali-Schöll, I. The impact of aluminium in acid-suppressing drugs on the immune response of BALB/c mice. Clin. Exp. Allergy 2007, 37, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.C.; Jury, J.; Söderholm, J.D.; Sherman, P.M.; McKay, D.M.; Perdue, M.H. Chronic psychological stress in rats induces intestinal sensitization to luminal antigens. Am. J. Pathol. 2006, 168, 104–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kean, D.E.; Goodridge, H.S.; McGuinness, S.; Harnett, M.M.; Alcocer, M.J.C.; Harnett, W. Differential Polarization of Immune Responses by Plant 2S Seed Albumins, Ber e 1, and SFA8. J. Immunol. 2006, 177, 1561. [Google Scholar] [CrossRef] [Green Version]
- Martos, G.; Lopez-Exposito, I.; Bencharitiwong, R.; Berin, M.C.; Nowak-Węgrzyn, A. Mechanisms underlying differential food allergy response to heated egg. J. Allergy Clin. Immunol. 2011, 127, 990–997.e2. [Google Scholar] [CrossRef] [Green Version]
- Radosavljevic, J.; Nordlund, E.; Mihajlovic, L.; Krstic, M.; Bohn, T.; Buchert, J.; Velickovic, T.C.; Smit, J. Sensitizing potential of enzymatically cross-linked peanut proteins in a mouse model of peanut allergy. Mol. Nutr. Food Res. 2014, 58, 635–646. [Google Scholar] [CrossRef]
- Mihajlovic, L.; Radosavljevic, J.; Nordlund, E.; Krstic, M.; Bohn, T.; Smit, J.; Buchert, J.; Cirkovic Velickovic, T. Peanut protein structure, polyphenol content and immune response to peanut proteins in vivo are modulated by laccase. Food Funct. 2016, 7, 2357–2366. [Google Scholar] [CrossRef]
- Dwinell, M.B.; Johanesen, P.A.; Smith, J.M. Immunobiology of epithelial chemokines in the intestinal mucosa. Surgery 2003, 133, 601–607. [Google Scholar] [CrossRef]
- Steele, L.; Mayer, L.; Berin, M.C. Mucosal immunology of tolerance and allergy in the gastrointestinal tract. Immunol. Res. 2012, 54, 75–82. [Google Scholar] [CrossRef]
- Vitale, S.; Picascia, S.; Gianfrani, C. The cross-talk between enterocytes and intraepithelial lymphocytes. Mol. Cell Pediatr. 2016, 3, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, E.J.; German, A.J.; Willard, M.D.; Lappin, M.R.; Cave, N.; Washabau, R.J.; Bergman, P.J. Small Intestine. In Canine and Feline Gastroenterology; Elsevier Health Sciences: St. Louis, MO, USA, 2012; pp. 651–728. [Google Scholar] [CrossRef]
- Shanahan, F. The host-microbe interface within the gut. Bailliere’s Best Pract. Res. Clin. Gastroenterol. 2002, 16, 915–931. [Google Scholar] [CrossRef]
- Macia, L.; Tan, J.; Vieira, A.T.; Leach, K.; Stanley, D.; Luong, S.; Maruya, M.; Ian McKenzie, C.; Hijikata, A.; Wong, C.; et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kittana, H.; Gomes-Neto, J.C.; Heck, K.; Geis, A.L.; Segura Muñoz, R.R.; Cody, L.A.; Schmaltz, R.J.; Bindels, L.B.; Sinha, R.; Hostetter, J.M.; et al. Commensal Escherichia coli Strains Can Promote Intestinal Inflammation via Differential Interleukin-6 Production. Front. Immunol. 2018, 9, 2318. [Google Scholar] [CrossRef] [Green Version]
- Corfield, A.P.; Carroll, D.; Myerscough, N.; Probert, C.S.J. Mucins in the gastrointestinal tract in health and disease. Front. Biosci. 2001, 6, 1321–1357. [Google Scholar] [CrossRef]
- Butler, J.E.; Sinkora, M. The enigma of the lower gut-associated lymphoid tissue (GALT). J. Leukoc. Biol. 2013, 94, 259–270. [Google Scholar] [CrossRef]
- Fujita, M.; Reinhart, F.; Neutrat, M. Convergence of apical and basolateral endocytic pathways at apical late endosomes in absorptive cells of suckling rat ileum in vivo. J. Cell Sci. 1988, 97, 385–394. [Google Scholar] [CrossRef]
- Grozdanovic, M.M.; Čavić, M.; Nešić, A.; Andjelković, U.; Akbari, P.; Smit, J.J.; Gavrović-Jankulović, M. Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions. Biochim. Biophys. Acta-Gen. Subj. 2016, 1860, 516–526. [Google Scholar] [CrossRef] [Green Version]
- Nešić, A.; Stam, A.; Čavić, M.; Ten Klooster, J.P.; Pieters, R.; Smit, J.; Gavrović-Jankulović, M. Activation of epithelial cells by the major kiwifruit allergen Act d 1 in human and mouse-derived intestinal model. J. Funct. Foods 2019, 62. [Google Scholar] [CrossRef]
- Mestecky, J. Mucosal Immunology; Elsevier Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2005. [Google Scholar]
- Miron, N.; Cristea, V. Enterocytes: Active cells in tolerance to food and microbial antigens in the gut. Clin. Exp. Immunol. 2012, 167, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.T. Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 2010, 10, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Steiniger, B.; Falk, P.; Lohmuller, M.; Van Der Meide, P.H. Class II MHC antigens in the rat digestive system. Normal distribution and induced expression after interferon-gamma treatment in vivo. Immunology 1989, 68, 507–513. [Google Scholar] [PubMed]
- Shaykhiev, R.; Bals, R. Interactions between epithelial cells and leukocytes in immunity and tissue homeostasis. J. Leukoc. Biol. 2007, 82, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Conrad, D.H. Fc epsilon RII/CD23: The low affinity receptor for IgE. Annu. Rev. Immunol. 1990, 8, 623–645. [Google Scholar] [CrossRef] [PubMed]
- Sutton, B.J.; Davies, A.M.; Sutton, B.J. Structure and dynamics of IgE—receptor interactions: Fc e RI and CD23 / Fc e RII. Immunol. Rev. 2015, 268, 222–235. [Google Scholar] [CrossRef]
- Mallegol, J.; Van Niel, G.; Lebreton, C.; Lepelletier, Y.; Candalh, C.; Dugave, C.; Heath, J.K.; Raposo, G.; Cerf-Bensussan, N.; Heyman, M. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 2007, 132, 1866–1876. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Salim, S.A.; Bourgeois, J.; Di Leo, V.; Irvine, E.J.; Marshall, J.K.; Perdue, M.H. CD23-mediated IgE transport across human intestinal epithelium: Inhibition by blocking sites of translation or binding. Gastroenterology 2005, 129, 928–940. [Google Scholar] [CrossRef]
- Yu, L.C.-H. Intestinal Epithelial Barrier Dysfunction in Food Hypersensitivity. J. Allergy 2012, 2012, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebert, N.; Cheng, C.-W.; Kirkpatrick, J.M.; Di Fraia, D.; Yun, J.; Schädel, P.; Pace, S.; Garside, G.B.; Werz, O.; Rudolph, K.L.; et al. Region-Specific Proteome Changes of the Intestinal Epithelium during Aging and Dietary Restriction. Cell Rep. 2020, 31, 107565. [Google Scholar] [CrossRef]
Animal Models of Food Allergy | |||||
---|---|---|---|---|---|
Small Animal Models | Large Animal Models (Non-Murine Models) | ||||
Murine Models | Zebrafish model | Dog Model | Pig Model | Sheep Model | |
Mice strains | Rat strains | ||||
BALB/c; C57BL/6; A/J; C3H/HcJ; Liu, Navarro and Lopata [24]; Gonipeta, Kim and Gangur [25] | SD; Wistar; BN; Knippels and Penninks [26]; Behroo [27] | Contreras, et al. [28]; Bailone, et al. [29]; Fuentes-Appelgren, et al. [30] | Ermel, et al. [31]; Buchanan and Frick [32] | Helm, et al. [33]; Rupa, et al. [34] | Gramberg, Veer, Hehir, Meeusen and Bischof [21] |
Murine Models (Mice and Rat Strains) | Allergenic Food Source/ Allergen | Findings of Enterocytes Involvement | References |
---|---|---|---|
Wistar male rats | Horseradish peroxidase | Increased antigen uptake was observed within the endosomal compartment of jejunal enterocytes in sensitized rats before mast cell activation | Berin, et al. [37] |
BALB/c mice | Horseradish peroxidase | IL-4 regulates IgE/CD23-mediated enhanced transepithelial antigen transport in the sensitized mouse intestine. | Yu, et al. [38] |
C3H/He mice | Ovalbumin (digested) | Epithelial exosomes are antigen-presenting vesicles bearing MHC class II/peptide complexes that prime for an immunogenic response rather than tolerogenic in the systemic challenge. | Van Niel, et al. [39] |
Sprague-Dawley rats | Ovalbumin and horseradish peroxidase | Translocations of CD23 from the cell surface to the membrane of allergen-containing endosomes, confirms the internalization of CD23 protein upon luminal antigen challenge in the sensitized intestine. | Yang, et al. [40] |
BALB/c mice | Ovalbumin used as antigen | Postprandial chylomicron formation profoundly affects the absorption and systemic dissemination of dietary antigens. The fat content of a meal may affect immune responses to dietary antigens by modulating antigen absorption and transport. | Wang, et al. [41] |
BALB/c mice | Ovalbumin used as antigen | Vasoactive intestinal peptides deficient mice failed to induce type 1 regulatory T cells in the intestine and retarded the establishment of antigen (Ag)-specific immune tolerance. | Zeng, et al. [42] |
C57BL/6J mice | n/a # | Intestinal intraepithelial lymphocyte to enterocyte crosstalk regulates the production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge. | Walker, et al. [43] |
C3H/HeOuJ and C57Bl-6 mice (males) | n/a # | A novel link between remote injury and enterocyte TLR4 signaling leading to barrier injury, potentially through HMGB1 as a ligand, demonstrating the reversal of adverse effects through activation of TLR9. | Sodhi, et al. [44] |
C3H/HeJ mice | peanut butter protein | Dietary medium-chain triglycerides promote allergic sensitization and anaphylaxis by affecting antigen absorption and availability and by stimulating TH2 responses. | Li, et al. [45] |
Female Balb/C mice | Horseradish peroxidase | bDelta5 slice form of low-affinity CD23 receptor mediates the apical to basolateral transport of free IgE, whereas classical b from is much more efficient in mediating the transcytosis of IgE/allergen complexes. | Montagnac, et al. [46] |
Wiskott-Aldrich syndrome Balb/C mice | Ovalbumin& Horseradish peroxidase | Spontaneous sensitization and intestinal allergy occurred independently of FcεRI expression on mast cells and basophils. results imply that therapeutic targeting of the IgE/FcεRI activation cascade will not affect sensitization to food. | Lexmond, et al. [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krstić Ristivojević, M.; Apostolović, D.; Smiljanić, K. Enterocytes in Food Hypersensitivity Reactions. Animals 2021, 11, 2713. https://doi.org/10.3390/ani11092713
Krstić Ristivojević M, Apostolović D, Smiljanić K. Enterocytes in Food Hypersensitivity Reactions. Animals. 2021; 11(9):2713. https://doi.org/10.3390/ani11092713
Chicago/Turabian StyleKrstić Ristivojević, Maja, Danijela Apostolović, and Katarina Smiljanić. 2021. "Enterocytes in Food Hypersensitivity Reactions" Animals 11, no. 9: 2713. https://doi.org/10.3390/ani11092713
APA StyleKrstić Ristivojević, M., Apostolović, D., & Smiljanić, K. (2021). Enterocytes in Food Hypersensitivity Reactions. Animals, 11(9), 2713. https://doi.org/10.3390/ani11092713