The Effect of Hybrid Barley in the Diets of Fattening Pigs on Pork Oxidative Stability Related to the Fatty Acid Profile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Feeding
2.2. Meat and Fat Analyses
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sobotka, W.; Denaburski, J.; Jabłońska, A. The effect of grain species and feed enzymes on production results, slaughter value and meat quality in pigs. Pol. J. Nat. Sci. 2011, 26, 37–46. [Google Scholar]
- Turyk, Z.; Osek, M.; Janocha, A.; Olkowski, B. Feeding diets based on barley or triticale during fattening of high-meat PIC pigs: Effects on carcass characteristics and meat quality parameters. Acta Veter. 2011, 61, 67–75. [Google Scholar] [CrossRef]
- Hanczakowski, P.; Szymczyk, B.; Hanczakowska, E. Fatty acid profile and cholesterol content of meat from pigs fed different fats. Ann. Anim. Sci. 2009, 9, 157–163. [Google Scholar]
- Gläser, K.R.; Wenk, C.; Scheeder, M.R.L. Effect of Dietary Mono- and Polyunsaturated Fatty Acids on the Fatty Acid Composition of Pigs’ Adipose Tissues. Arch. Anim. Nutr. 2002, 56, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Kim, Y.Y.; Han, I.K. Effects of Fat Sources on Growth Performance, Nutrient Digestibility, Serum Traits and Intestinal Morphology in Weaning Pigs. Asian-Australasian J. Anim. Sci. 2003, 16, 1035–1040. [Google Scholar] [CrossRef]
- Lampe, J.F.; Baas, T.J.; Mabry, J.W. Comparison of grain sources for swine diets and their effect on meat and fat quality traits. J. Anim. Sci. 2006, 84, 1022–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piotrowska, A.; Świąder, K.; Waszkiewicz-Robak, B.; Świderski, F. Possibility to produce pork meat and pork meat products with increased content of n-3 polyunsaturated fatty acids. Żywność Nauka Technol. Jakość 2012, 5, 5–19. (In Polish) [Google Scholar] [CrossRef]
- Tarricone, S.; Colonna, M.; Giannico, F.; Ragni, M.; Lestingi, A.; Facciolongo, A. Effect of an extruded linseed diet on meat quality traits in Nero Lucano pigs. South Afr. J. Anim. Sci. 2020, 49, 1093–1103. [Google Scholar] [CrossRef]
- Raj, S.; Sobol, M.; Skiba, G.; Weremko, D.; Poławska, E. The relationship between blood lipid indicators and carcass traits and with the concentration of omega-3 fatty acids in the longissimus dorsi muscle of growing pigs. J. Anim. Feed. Sci. 2014, 23, 337–345. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Straarup, E.M.; Danielsen, V.; Hoy, C.-E.; Jakobsen, K. Dietary structured lipids for post-weaning piglets: Fat digestibility, nitrogen retention and fatty acid profiles of tissues. J. Anim. Physiol. Anim. Nutr. 2006, 90, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Liotta, L.; Chiofalo, V.; Presti, V.L.; Chiofalo, B. In Vivo Performances, Carcass Traits, and Meat Quality of Pigs Fed Olive Cake Processing Waste. Animals 2019, 9, 1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Đorđević, V.; Đorđević, J.; Baltic, Ž.M.; Laudanović, M.; Teodorović, V.; Boskovic, M.; Peurača, M.; Marković, R. Effect of Sunflower, Linseed and Soybean Meal in Pig Diet on Chemical Composition, Fatty Acid Profile of Meat and Backfat, and Its Oxidative Stability. Acta Veter 2016, 66, 359–372. [Google Scholar] [CrossRef] [Green Version]
- Nutrient Requirements of Swine. Nutrient Requirements and Nutritional Value of Feed for Swine; The Kielanowski Institute of Animal Physiology and Nutrition PAN: Jabłonna, Poland, 1993. (In Polish) [Google Scholar]
- Szuba-Trznadel, A.; Hikawczuk, T.; Korzeniowska, M.; Fuchs, B. Effect of Different Amounts of Hybrid Barley in Diets on the Growth Performance and Selected Biochemical Parameters of Blood Serum Characterizing Health Status in Fattening Pigs. Animals 2020, 10, 1987. [Google Scholar] [CrossRef]
- Szmańko, T. The equipment used for measurement of water holding capacity. Poland, patent No 40767. Biul. Urz. Patentowego RP 1986, 5, 38. [Google Scholar]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Polish Standard PN-75/A-04018:1975-Agro-food products. In Determination of Nitrogen by Kjeldahl Methods and Protein Content Calculation; Polish Committee for Standardization: Warsaw, Poland, 1975. (In Polish)
- Polish Standard PN-ISO 1444:2000. Meat and meat products. In Determination of Water Content; Polish Committee for Standardization: Warsaw, Poland, 2000. (In Polish)
- Polish Standard PN-ISO 1442:2000. Meat and meat products. In Determination of Free Lipids; Polish Committee for Standardization: Warsaw, Poland, 2000. (In Polish)
- Polish Standard PN-ISO 936:2000. Meat and meat products. In Determination of Ash; Polish Committee for Standardization: Warsaw, Poland, 2000. (In Polish)
- Christie, W.W. The isolation of lipids from tissues. In Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids; Christie, W.W., Ed.; Oxford Pergamon Press: Oxford, UK, 1973; pp. 39–40. [Google Scholar]
- Luciano, G.; Moloney, A.P.; Priolo, A.; Rohrle, F.T.; Vasta, V.; Biondi, L.; Monahan, F.J. Vitamin E and polyunsaturated fatty acids in bovine muscle and the oxidative stability of beef from cattle receiving grass or concentrate-based rations. J. Anim. Sci. 2011, 89, 3759–3768. [Google Scholar] [CrossRef]
- Polish Standard PN-ISO 4121:1998. Sensory analysis–Methodology. In Evaluation of Food Products by Methods Using Scales; Polish Committee for Standardization: Warsaw, Poland, 1998. (In Polish)
- Lewless, H.T.; Hildegarde, H. Sensory Evaluation of Food. In Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Statsoft. In Statistica (Data Analysis Software System); Version 13; Statsoft Inc.: Tulsa, OK, USA, 2014.
- Banaszkiewicz, T.; Kaszperuk, K.; Bombik, T. Effect of cereal grain type used in diets on the fattening performance and slaughter value of pigs. Acta Sci. Pol. Zootech. 2015, 14, 15–24. [Google Scholar]
- Zhou, X.; Beltranena, E.; Zijlstra, R.T. Effect of feeding wheat- or barley-based diets with low or high nutrient density on nutrient digestibility and growth performance in weaned pigs. Anim. Feed Sci. Technol. 2016, 218, 93–99. [Google Scholar] [CrossRef]
- Fernandez-Figares, I.; Conde-Aguilera, J.A.; Nieto, R.; Lachica, M.; Aguilera, J.F. Synergistic effects of betaine and conjugated linoleic acid on the growth and carcass composition of growing Iberian pigs. J. Anim. Sci. 2008, 86, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Hurnik, D. Loin Eye Size and What Factors Drive It? Atlantic Swine Research Partnership Inc. Annual Report. 2004, pp. 18–20. Available online: https://www.thepigsite.com/articles/loin-eye-size-and-what-factors-drive-it (accessed on 19 June 2021).
- Price, H.; Williamson, S.; Henson, J.; McKeith, A.G. Effects of Various Levels of Protein, Lysine, Fat, and Fiber on Swine Growth and Pork Quality. Meat Muscle Biol. 2017, 1, 157. [Google Scholar] [CrossRef]
- Hasan, M.S.; Crenshaw, M.A.; Liao, S.F. Dietary lysine affects amino acid metabolism and growth performance, which may not involve the GH/IGF-1 axis, in young growing pigs. J. Anim. Sci. 2020, 98, 1–7. [Google Scholar] [CrossRef]
- Fermandez, X.; Monin, G.; Talmant, A.; Mourot, J.; Lebret, B. Influence of intramuscular fat content on the quality of pig meat—Consumer acceptability of m. longissimus lumborum. Meat Sci. 1999, 53, 67–72. [Google Scholar] [CrossRef]
- Hodgson, R.R.; Davis, G.W.; Smith, G.C.; Savell, J.W.; Cross, H.R. Relationships between pork loin palatability traits and physical characteristics of cooked chops. J. Anim. Sci. 1991, 69, 4858–4865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, S.; Gardner, G.; McGilchrist, P.; Pethick, D.; Polkinghorne, R.; Thompson, J.; Tarr, G. Prediction of consumer palatability in beef using visual marbling scores and chemical intramuscular fat percentage. Meat Sci. 2020, 108322. [Google Scholar] [CrossRef] [PubMed]
- Ringkob, T.P. Comparing pork fat color from barley and corn fed pork using image analysis. In Proceedings of the 56th Reciprocal Meat Conference, Lansing, MI, USA, 28–31 July 2003. [Google Scholar]
- Kim, B.G.; Wulf, D.M.; Maddock, R.J.; Peters, D.N.; Pedersen, C.; Lin, Y.; Stein, H.H. Effects of dietary barley on growth performance, carcass traits and pork quality of finishing pigs. Rev. Colomb. Cienc. Pec. 2014, 27, 102–113. [Google Scholar]
- Joven, M.; Pintos, E.; Latorre, M.A.; Suárez-Belloch, J.; Guada, J.; Fondevila, M. Effect of replacing barley by increasing levels of olive cake in the diet of finishing pigs: Growth performances, digestibility, carcass, meat and fat quality. Anim. Feed. Sci. Technol. 2014, 197, 185–193. [Google Scholar] [CrossRef]
- Almeida, V.V.; da Silva, J.P.; Meira, A.N.; Moreira, G.C.M.; Gomes, J.D.; Poleti, M.D.; Dargelio, M.D.B.; Patinho, I.; Contrevas-Castillo, C.J.; Coutinho, L.L. Effects of increasing dietary fat inclusion from different sources on growth performance, carcass and meat traits, and pork nutritional prole quality. Res. Sq. 2020, 7–8. [Google Scholar] [CrossRef]
- Picard, B.; Lebret, B.; Cassar-Malek, I.; Liaubet, L.; Berri, C.; Le Bihan-Duval, E.; Hocquette, J.-F.; Renand, G. Recent advances in omic technologies for meat quality management. Meat Sci. 2015, 109, 18–26. [Google Scholar] [CrossRef]
- Luo, J.; Zeng, D.; Cheng, L.; Mao, X.; Yu, J.; Yu, B.; Chen, D. Dietary β-glucan supplementation improves growth performance, carcass traits and meat quality of finishing pigs. Anim. Nutr. 2019, 5, 380–385. [Google Scholar] [CrossRef]
- Gatlin, L.A.; See, M.T.; Hansen, J.A.; Sutton, D.; Odle, J. The effects of dietary fat sources, levels, and feeding intervals on pork fatty acid composition. J. Anim. Sci. 2002, 80, 1606–1615. [Google Scholar] [CrossRef]
- Bee, G.; Gebert, S.; Messikommer, R. Effect of dietary energy supply and fat source on the fatty acid pattern of adipose and lean tissues and lipogenesis in the pig. J. Anim. Sci. 2002, 80, 1564–1574. [Google Scholar] [CrossRef]
- Schinckel, A.P.; Mills, S.E.; Weber, T.E.; Eggert, J.M. A review of genetic and nutritional factors affecting fat quality and belly firmness. In Proceedings of the National Swine Improvement Federation: Conference and Annual Meeting, Nashville, TN, USA, 5–6 December 2002; pp. 89–113. [Google Scholar]
- Daza, A.; Latorre, M.A.; López-Bote, C.J. The use of barley as single ingredient in the diet provided during the finishing period may improve the meat quality of heavy pigs from PO Teruel ham (Spain). Span. J. Agric. Res. 2010, 8, 607. [Google Scholar] [CrossRef] [Green Version]
- Skelley, G.C.; Borgman, R.F.; Handlin, D.L.; Acton, J.C.; McConnell, J.C.; Wardlaw, F.B.; Evans, E.J. Influence of Diet on Quality, Fatty Acids and Acceptability of Pork. J. Anim. Sci. 1975, 41, 1298–1304. [Google Scholar] [CrossRef]
- Colonna, M.; Tarricone, S.; Giannico, F.; Selvaggi, M.; Carriero, F.; Crupi, P.; Corbo, F.; Clodoveo, M. Dietary Effects of Extra Virgin Olive Oil Extracted by Ultrasound Technology or Refined Olive Oil on the Quality Traits of Pork and “Capocollo di Martina Franca” Dry-Cured Meat. Animals 2021, 11, 954. [Google Scholar] [CrossRef]
- Fontanillas, R.; Barroeta, A.C.; Baucells, M.D.; Codony, R. Effect of Feeding Highly Cis-Monounsaturated, Trans, orn−3 Fats on Lipid Composition of Muscle and Adipose Tissue of Pigs. J. Agric. Food Chem. 1997, 45, 3070–3075. [Google Scholar] [CrossRef]
- Razmaitė, V.; Šiukščius, A.; Šveistienė, R.; Bliznikas, S.; Jatkauskienė, V. Relationships between Fat and Cholesterol Contents and Fatty Acid Composition in Different Meat-Producing Animal Species. Acta Veter 2020, 70, 374–385. [Google Scholar] [CrossRef]
- Grześkowiak, E.; Borzuta, K.; Borys, A.; Grześkowiak, S.; Strzelecki, J. The composition of fatty acids in longissimus dorsi and biceps femoris muscles of pigs Puławska x Polish Landrace and Naima x P-76 from peasant farms. Żywność Nauka Technol. Jakość 2005, 3, 48–52. (In Polish) [Google Scholar]
- Jacyno, E.; Pietruszka, A.; Kołodziej, A. Influence of pig meatiness on pork meat quality. Polish J. Food Nutr. Sci. 2006, 15, 137–140. [Google Scholar]
- Migdał, W.; Koczanowski, J.; Paściak, P.; Borowiec, F.; Barowicz, T.; Pieszka, M.; Wojtysiak, D.; Orzechowska, B.; Klocek, C.; Tuz, R. Fatty acid profile in blood serum and in fat of ham and loin of cross-breed fatteners. Prace Mater. Zootech. 2004, 15, 239–240. (In Polish) [Google Scholar]
- Lachman, J.; Martinek, P.; Kotikova, Z.; Orsak, M.; Šulc, M. Genetics and chemistry of pigments in wheat grain—A review. J. Cereal Sci. 2017, 74, 145–154. [Google Scholar] [CrossRef]
- McConnel, J.C.; Skelley, G.C.; Handlin, D.L.; Johnston, W.E. Corn, Wheat, Milo and Barley with Soybean Meal or Roasted Soybeans and Their Effect on Feedlot Performance, Carcass Traits and Pork Acceptability. J. Anim. Sci. 1975, 41, 1021–1030. [Google Scholar] [CrossRef]
- Morgan, J.B.; Smith, G.C.; Fitzgerald, S.K.; Sherbeck, J.A.; Kukay, C.C.; Rodakovich, W.L.; Neel, S.W. International Pork Quality Audit: A foreign market audit of U.S. Pork. In Final Report US Meat Export Federation; Colorado State University: Fort Collins, CO, USA, 1995; pp. 1–55. [Google Scholar]
Treatment | SEM | p-Value | |||
---|---|---|---|---|---|
I | II | III | |||
HB 80% | HB 40% W 40% | W 80% | |||
Nutrients, % | |||||
Dry Matter | 27.41 | 27.82 | 27.30 | 0.078 | 0.733 |
Ash | 1.62 | 1.75 | 1.68 | 0.081 | 0.808 |
Nutrients as % of Dry Matter | |||||
Protein | 69.11 A | 69.94 A | 71.74 B | 0.194 | 0.000 |
Fat | 25.51 b | 24.15 a,b | 22.84 a | 0.110 | 0.027 |
pH | 5.77 | 5.77 | 5.78 | 0.012 | 0.962 |
Oxidation potential, µmol TE/100 g | 176.11 | 179.17 | 187.97 | 3.690 | 0.424 |
Water activity | 0.90 | 0.91 | 0.90 | 0.002 | 0.177 |
WHC*, % | 36.04 | 36.12 | 36.14 | 0.012 | 0.273 |
FA | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
I | II | III | |||
HB 80% | HB 40% W 40% | W 80% | |||
Palmitic | 21.5 a | 23.1 b | 22.7 b | 0.241 | 0.007 |
Palmitoleic | 3.58 | 3.50 | 4.15 | 0.408 | 0.803 |
Stearic | 15.1 | 16.1 | 15.6 | 0.208 | 0.171 |
Oleic | 44.7 b | 42.6 a | 43.6 a,b | 0.358 | 0.049 |
Linoleic | 10.3 | 10.3 | 9.5 | 0.312 | 0.578 |
Eicosenoic | 1.01 | 1.17 | 1.58 | 0.173 | 0.407 |
Arachidic | 3.86 | 3.26 | 2.83 | 0.198 | 0.097 |
Saturated (SFA) | 36.60 a | 39.14 b | 38.32 b | 0.409 | 0.021 |
Monounsaturated (MUFA) | 48.28 | 46.14 | 47.73 | 0.516 | 0.227 |
Polyunsaturated (PUFA) | 15.12 | 14.72 | 13.96 | 0.392 | 0.503 |
Colour Parameter | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
I | II | III | |||
HB 80% | HB 40% W 40% | W 80% | |||
Raw meat | |||||
L* | 48.3 b | 46.6 a | 48.5 b | 0.299 | 0.014 |
a** | 6.66 b | 4.92 a | 5.97 b | 0.155 | 0.000 |
b*** | 2.58 b | 0.90 a | 1.97 b | 0.131 | 0.000 |
Meat after heat treatment | |||||
L* | 71.7 a | 71.4 a | 73.0 b | 0.219 | 0.007 |
a** | 3.43 a | 3.05 a | 2.43 b | 0.094 | 0.000 |
b*** | 11.10 | 11.20 | 11.00 | 0.080 | 0.550 |
Treatment | SEM | p-Value | |||
---|---|---|---|---|---|
I | II | III | |||
HB 80% | HB 40% W 40% | W 80% | |||
Cooking losses % | 29.93 | 29.29 | 29.55 | 0.350 | 0.768 |
Flavour * | 3.36 | 3.57 | 3.93 | 0.127 | 0.182 |
Taste * | 3.79 | 4.29 | 3.57 | 0.145 | 0.119 |
Colour * | 3.79 | 3.93 | 3.93 | 0.168 | 0.926 |
Consistency * | 2.86 | 3.50 | 3.29 | 0.179 | 0.335 |
Marbling score * | 3.14 | 3.64 | 3.71 | 0.142 | 0.202 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szuba-Trznadel, A.; Korzeniowska, M.; Hikawczuk, T.; Fuchs, B. The Effect of Hybrid Barley in the Diets of Fattening Pigs on Pork Oxidative Stability Related to the Fatty Acid Profile. Animals 2021, 11, 2134. https://doi.org/10.3390/ani11072134
Szuba-Trznadel A, Korzeniowska M, Hikawczuk T, Fuchs B. The Effect of Hybrid Barley in the Diets of Fattening Pigs on Pork Oxidative Stability Related to the Fatty Acid Profile. Animals. 2021; 11(7):2134. https://doi.org/10.3390/ani11072134
Chicago/Turabian StyleSzuba-Trznadel, Anna, Małgorzata Korzeniowska, Tomasz Hikawczuk, and Bogusław Fuchs. 2021. "The Effect of Hybrid Barley in the Diets of Fattening Pigs on Pork Oxidative Stability Related to the Fatty Acid Profile" Animals 11, no. 7: 2134. https://doi.org/10.3390/ani11072134