The Impact of Zn, Cu and Fe Chelates on the Fatty-Acid Profile and Dietary Value of Broiler-Chicken Thigh Meat
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Factor
2.2. Birds and Experimental Design
2.3. Muscle Samples
2.4. Chemical Analyses
2.5. Determination of pH in Meat
2.6. Calculations and Statistical Analysis
3. Results
3.1. Basic Chemical Composition and pH of Meat
3.2. Cholesterol Levels in Meat
3.3. Fatty Acid Profile of Meat
3.4. Dietary Value of Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dinh, T.T.N.; Thompson, L.D.; Galyean, M.L.; Brooks, J.C.; Patterson, K.Y.; Boylan, L.M. Cholesterol content and methods for cholesterol determination in meat and poultry. Compr. Rev. Food Sci. Food Saf. 2011, 10, 269–289. [Google Scholar] [CrossRef]
- Bird, J.K.; Calder, P.C.; Eggersdorfer, M. The role of n-3 long chain polyunsaturated fatty acids in cardiovascular disease prevention, and interactions with statins. Nutrients 2018, 10, 775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisulewski, P.M. Nutritional potential for improving meat quality in poultry. Anim. Sci. Pap. Rep. 2005, 23, 303–315. [Google Scholar]
- Chung, T.H.; Choi, I.H. Growth performance and fatty acid profiles of broilers given diets supplemented with fermented red ginseng marc powder combined with red koji. Braz. J. Poult. Sci. 2016, 18, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Sanches, A.; da Silva-Buzanello, R.A.; Canan, C.; Bittencourt, P.R.S. Fatty acid profile of meat from broiler chickens fed with different oil sources. Arch. Zootec. 2018, 67, 532–540. [Google Scholar]
- Long, S.; Liu, S.; Wu, D.; Mahfuz, S.; Piao, X. Effects of dietary fatty acids from different sources on growth performance, meat quality, muscle fatty acid deposition, and antioxidant capacity in broilers. Animal 2020, 10, 508. [Google Scholar] [CrossRef] [Green Version]
- Ölmez, M.; Şahin, T.; Karadağoğlu, Ö.; Yörük, M.A.; Kara, K.; Sakine, D. Growth performance, carcass characteristics, and fatty acid composition of breast and thigh meat of broiler chickens fed gradually increasing levels of supplemental blueberry extract. Trop. Anim. Health Prod. 2021, 53, 109. [Google Scholar] [CrossRef] [PubMed]
- Winiarska-Mieczan, A.; Kwiecień, M. The effects of copper-glycine complexes on chemical composition and sensory attributes of raw, cooked and grilled chicken meat. J. Food Sci. Technol. 2015, 52, 4226–4235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winiarska-Mieczan, A.; Kwiecień, M.; Grela, E.R.; Tomaszewska, E.; Klebaniuk, R. The chemical composition and sensory properties of raw, cooked and grilled thigh meat of broiler chickens fed with Fe-Gly chelate. J. Food Sci. Technol. 2016, 53, 3825–3833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winiarska-Mieczan, A.; Kwiecień, M.; Kwiatkowska, K.; Baranowska-Wójcik, E.; Szwajgier, D.; Zaricka, E. Fatty acid profile, antioxidative status and dietary value of the breast muscle of broiler chickens receiving glycine-Zn chelates. Anim. Prod. Sci. 2020, 60, 1095–1102. [Google Scholar] [CrossRef]
- GUS Statistical Yearbook of the Republic of Poland 2020. Available online: https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-the-republic-of-poland-2020,2,22.html (accessed on 7 October 2021).
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Visioli, F.; Poli, A. Fatty acids and cardiovascular risk. evidence, lack of evidence, and diligence. Nutrients 2020, 12, 3782. [Google Scholar] [CrossRef]
- Krężel, A.; Maret, M. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Stawarska, A.; Czerwonka, M.; Wyrębiak, R.; Wrzesień, R.; Bobrowska-Korczak, B. Zinc affects cholesterol oxidation products and fatty acids composition in rats’ serum. Nutrients 2021, 13, 1563. [Google Scholar] [CrossRef]
- Adisa, A.O.; Odutuga, A.A. Metabolic interactions between zinc and essential fatty acids in the mammalian organism. Nutr. Food Sci. 1999, 99, 99–104. [Google Scholar] [CrossRef]
- Hernandez, M.C.; Rojas, P.; Carrasco, F.; Basfifer, K.; Codoce, J.; Inostroza, J.; Ruz, M. Zinc supplementation reduces free fatty acid concentration in patients with type 2 diabetes. Rev. Chil. Nutr. 2020, 47, 1000–1008. [Google Scholar]
- Coverdale, J.P.C.; Khazaipoul, S.; Arya, S.; Stewart, A.J.; Blindauer, C.A. Crosstalk between zinc and free fatty acids in plasma. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef]
- Tang, Z.; Gasperkova, D.; Xu, J.; Baillie, R.; Lee, J.; Clarke, S. Copper deficiency induces hepatic fatty acid synthase gene transcription in rats by increasing the nuclear content of mature sterol regulatory element binding protein 1. J. Nutr. 2000, 130, 2915–2921. [Google Scholar] [CrossRef]
- Huster, D.; Purnat, T.D.; Burkhead, J.L.; Ralle, M.; Fiehn, O.; Stuckert, F.; Olson, N.E.; Teupser, D.; Lutsenko, S. High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease. J. Biol. Chem. 2007, 282, 8343–8355. [Google Scholar] [CrossRef] [Green Version]
- Morrell, A.; Tallino, S.; Yu, L.; Burkhead, J.L. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 2017, 69, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelmańska, E. Regulation of extramitochondrial malic enzyme gene expression in lipogenic tissues. Postepy Hig. Med. Dosw. 2007, 61, 664–671. [Google Scholar]
- al-Othman, A.; Rosenstein, F.; Lei, K. Pool size and concentration of plasma cholesterol are increased and tissue copper levels are reduced during early stages of copper deficiency in rats. J. Nutr. 1994, 124, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Wen, A.; Dai, S.; Wu, X.; Cai, Z. Copper bioavailability, mineral utilization, and lipid metabolism in broilers. Czech J. Anim. Sci. 2019, 64, 483–490. [Google Scholar] [CrossRef]
- Sevcikova, S.; Skrivan, M.; Skrivanova, V.; Koucky, M.; Tumova, E.; Koucky, M. Effect of supplementation of copper in copper sulphate and Cu-glycine on fatty acid profile in meat of broiler chickens, cholesterol content and oxidation stability of fat. Czech J. Anim. Sci. 2003, 48, 432–440. [Google Scholar]
- Rockfield, S.; Chhabra, R.; Robertson, M.; Rehman, N.; Bisht, R.; Nanjundan, M. Links between iron and lipids: Implications in some major human diseases. Pharmaceuticals 2018, 11, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bu, W.; Liu, R.; Cheung-Lau, J.C.; Dmochowski, I.J.; Loll, P.J.; Eckenhoff, R.G. Ferritin couples iron and fatty acid metabolism. FASEB J. 2012, 26, 2394–2400. [Google Scholar] [CrossRef] [Green Version]
- Ogłuszka, M.; Lipiński, P.; Starzyński, R.R. Interaction between iron and omega-3 fatty acids metabolisms: Where is the cross-link? Crit. Rev. Food Sci. Nutr. 2020, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, R.; Rincon-Cervera, M.A.; Echeverria, F.; Barrera, C.; Espinosa, A.; Hernandez-Rodas, M.C.; Ortiz, M.; Valenzuela, A.; Videla, L.A. Iron-induced pro-oxidant and pro-lipogenic responses in relation to impaired synthesis and accretion of long-chain polyunsaturated fatty acids in rat hepatic and extrahepatic tissues. Nutrition 2018, 45, 49–58. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Y.; Qian, Z.; Shen, X. The mechanism of Fe2+-initiated lipid peroxidation in liposomes: The dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical. Biochem. J. 2000, 352, 27–36. [Google Scholar] [CrossRef]
- Kwiecień, M.; Winiarska-Mieczan, A.; Milczarek, A.; Klebaniuk, R. Biological response of broiler chickens to decreasing dietary inclusion levels of zinc glycine chelate. Biol. Trace Elem. Res. 2017, 175, 204–213. [Google Scholar] [CrossRef]
- Kwiatkowska, K.; Winiarska-Mieczan, A.; Kwiecień, M. Effect of application of Fe-glycinate chelate in diet for broiler chickens in an amount covering 50 or 25% of the requirement on physical, morphometric, and strength parameters of tibia bones. Biol. Trace Elem. Res. 2018, 184, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska, E.; Dobrowolski, P.; Kwiecień, M.; Winiarska-Mieczan, A.; Tomczyk, A.; Muszyński, S. The influence of the dietary Cu-glycine complex on the histomorphology of cancellous bone, articular cartilage, and growth plate as well as bone mechanical and geometric parameters is dose-dependent. Biol. Trace Elem. Res. 2017, 178, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Winiarska-Mieczan, A.; Kwiecień, M.; Mieczan, T.; Kwiatkowska, K.; Jachimowicz, K. The effect of Cu, Zn and Fe chelates on the antioxidative status of thigh meat of broiler chickens. Animal 2021, 15, 100367. [Google Scholar] [CrossRef]
- Aviagen. Ross 308 Parent Stock: Nutrition Specifications. 2016. Available online: www.aviagen.com (accessed on 20 October 2019).
- NRC, National Research Council. Nutrient Requirements of Poultry; National Academy Press: Washington, DC, USA, 1994.
- AOAC. Official Methods of Analysis. International 17th edn; AOAC International: Gaithersburg, MA, USA, 2000. [Google Scholar]
- Kwiecień, M.; Winiarska-Mieczan, A.; Krusiński, R.; Kwiatkowska, K. Sensory evaluation of breast meat of broilers fed Fe chelate with glycine. Probl. Hig. Epidemiol. 2014, 95, 134–137. [Google Scholar]
- Santé, V.; Fernandez, X. The measurement of pH in raw and frozen turkey Pectoralis superficialis muscle. Meat Sci. 2000, 55, 503–506. [Google Scholar] [CrossRef]
- Sousa, A.B.B.; de Oliveira Santos Júnior, O.; Visentainer, J.V.; de Almeida, N.M. Total lipid nutritional quality of the adipose tissue from the orbital cavity in Nile tilapia from continental aquaculture. Acta Sci. Anim. Sci. 2017, 39, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Lebret, B. Effects of feeding and rearing systems on growth, carcass composition and meat quality in pigs. Animal 2008, 2, 1548–1558. [Google Scholar] [CrossRef] [Green Version]
- Basri, M.; Nur Hidayat, M.; Rysny, R. Percentage of carcass and protein content of breast meat of native chicken given apu-apu flour (Pistia stratiotes). Chalaza J. Anim. Hus. 2020, 5, 22–28. [Google Scholar] [CrossRef]
- Molina, E.; González-Redondo, P.; Moreno-Rojas, R.; Montero-Quintero, K.; Sánchez-Urdaneta, A. Effect of the inclusion of Amaranthus dubius in diets on carcass characteristics and meat quality of fattening rabbits. J. Appl. Anim. Res. 2017, 46, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Obeidat, B.S. The inclusion of black cumin meal improves the carcass characteristics of growing Awassi lambs. Vet. World 2021, 14, 237–241. [Google Scholar] [CrossRef]
- Selim, N.A.; Refaie, A.M.; Khosht, A.R.; Abd El-Hakim, A.S. Effect of sources and inclusion levels of zinc in broiler diets containing different vegetable oils during summer season conditions on meat quality. Int. J. Poult. Sci. 2014, 13, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, H.A.; Jalal, M.; AL-Titi, H.H.; Souad, A. Effect of sources and levels of dietary zinc on the performance, carcass traits and blood parameters of broilers. Braz. J. Poult. Sci. 2017, 19, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Eskandani, M.; Janmohammadi, H.; Mirghelenj, S.A.; Ebrahimi, M.; Kalanaky, S. Effects of zinc nanoparticles on growth performance, carcass characteristics, immunity, and meat quality of broiler chickens. Iran. J. Appl. Anim. Sci. 2021, 11, 135–146. [Google Scholar]
- Lei, L.; Xiaoyi, S.; Fuchang, L. Effect of dietary copper addition on lipid metabolism in rabbits. Food Nutr. Res. 2017, 61, 1348866. [Google Scholar] [CrossRef] [Green Version]
- Skřivan, M.; Ševčiková, S.; Tůmová, E.; Skřivanová, V.; Marounek, M. Effect of copper supplementation on performance of broiler chickens, cholesterol content and fatty acid profile of meat. Czech J. Anim. Sci. 2002, 47, 275–280. [Google Scholar]
- Łopacka, J.; Lipińska, A. Oxidative changes during storage of beef under modified atmosphere and thermal treatment and its potential impact on human health. Probl. Hig. Epidemiol. 2015, 96, 719–726. [Google Scholar]
- Mapiye, C.; Chimonyo, M.; Dzama, K.; Hugo, A.; Strydom, P.E.; Muchenje, V. Fatty acid composition of beef from Nguni Steers supplemented with Acacia karroo leaf-meal. J. Food Compos. Anal. 2011, 24, 523–528. [Google Scholar] [CrossRef]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty acid and cholesterol profiles, hypocholesterolemic, atherogenic, and thrombogenic indices of broiler meat in the retail market. Lipids Health Dis. 2017, 16, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, A.A.; Ragab, M.M.; Ahmed, E.A.M.; Abudabos, A.M.; Ebeid, T.A. Effect of dietary zinc-methionine supplementation on growth performance, nutrient utilization, antioxidative properties and immune response in broiler chickens under high ambient temperature. J. Appl. Anim. Res. 2018, 46, 820–827. [Google Scholar] [CrossRef]
- Espinosa, C.D.; Fry, R.S.; Kocher, M.E.; Stein, H.H. Effects of copper hydroxychloride on growth performance and abundance of genes involved in lipid metabolism of growing pigs. J. Anim. Sci. 2020, 98, 369. [Google Scholar] [CrossRef]
- Engle, T.E. Copper and lipid metabolism in beef cattle: A review. J. Anim. Sci. 2011, 89, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.L.; Wang, Y.; Spears, J.W.; Lin, X.; Guo, C.H. Effect of copper on performance, carcass characteristics, and muscle fatty acid composition of meat goat kids. J. Anim. Sci. 2013, 91, 5004–5010. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Ralle, M.; Wolfgang, M.J.; Dhawan, N.; Burkhead, J.L.; Rodriguez, S.; Kaplan, J.H.; Wong, G.W.; Haughey, N.; Lutsenko, S. Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biol. 2018, 16, e2006519. [Google Scholar] [CrossRef] [PubMed]
- Makarski, B.; Zadura, A.; Kwiecień, M. The effect of Cu-lysine chelate in turkeys diets on the results of slaughter analysis, chemical composition and the fatty acids profile in tissues. Acta Sci. Pol. Zootech. 2006, 5, 57–66. [Google Scholar]
Feeding Groups | ||||
---|---|---|---|---|
Control | Zn-Gly-50 | Cu-Gly-50 | Fe-Gly-50 | |
Starter (1–21 days) | Standard mixture a,b (contained 99.71 mg Zn, 22.10 mg Cu and 42.31 mg Fe per kg at the form of sulphates) * | Standard mixture (contained 63.07 mg Zn per kg at the form of glycine chelate) ** | Standard mixture (contained 11.78 mg Cu per kg at the form of glycine chelate) ** | Standard mixture (contained 22.03 mg Fe per kg at the form of glycine chelate) ** |
Grower (22–35 days) | Standard mixture (contained 98.50 mg Zn, 22.21 mg Cu and 39.82 mg Fe per kg at the form of sulphates) * | Standard mixture (contained 56.92 mg Zn per kg at the form of glycine chelate) ** | Standard mixture (contained 13.15 mg Cu per kg at the form of glycine chelate) ** | Standard mixture (contained 25.30 mg Fe per kg at the form of glycine chelate) ** |
Finisher (36–42 days) | Standard mixture (contained 98.52 mg Zn, 21.95 mg Cu and 38.61 mg Fe per kg at the form of sulphates) * | Standard mixture (contained 56.09 mg Zn per kg at the form of glycine chelate) ** | Standard mixture (contained 12.02 mg Fe per kg at the form of glycine chelate) ** | Standard mixture (contained 20.46 mg Fe per kg at the form of glycine chelate) ** |
Access to feed and water | Free | Free | Free | Free |
Number of chickens in the experiments | 50 | 50 | 50 | 50 |
Number of chickens for dissection | 10 | 10 | 10 | 10 |
Feeding Groups | ||||
---|---|---|---|---|
Control | Zn-Gly-25 | Cu-Gly-25 | Fe-Gly-25 | |
Starter (1–21 days) | Standard mixture a,b (contained 99.71 mg Zn, 22.10 mg Cu and 42.31 mg Fe per kg at the form of sulphates) * | Standard mixture (contained 27.03 mg Zn per kg at the form of glycine chelate) ** | Standard mixture (contained 6.12 mg Cu per kg at the form of glycine chelate) ** | Standard mixture (contained 13.01 mg Fe per kg at the form of glycine chelate) ** |
Grower (22–35 days) | Standard mixture (contained 98.50 mg Zn, 22.21 mg Cu and 39.82 mg Fe per kg at the form of sulphates) * | Standard mixture (contained 34.23 mg Zn per kg at the form of glycine chelate) ** | Standard mixture (contained 6.97 mg Cu per kg at the form of glycine chelate) ** | Standard mixture (contained 11.83 mg Fe per kg at the form of glycine chelate) ** |
Finisher (36–42 days) | Standard mixture (contained 98.52 mg Zn, 21.95 mg Cu and 38.61 mg Fe per kg at the form of sulphates) * | Standard mixture (contained 30.05 mg Zn per kg at the form of glycine chelate) ** | Standard mixture (contained 6.70 mg Fe per kg at the form of glycine chelate) ** | Standard mixture (contained 12.40 mg Fe per kg at the form of glycine chelate) ** |
Access to feed and water | Free | Free | Free | Free |
Number of chickens in the experiments | 50 | 50 | 50 | 50 |
Number of chickens for dissection | 10 | 10 | 10 | 10 |
Starter 1–21 Days | Grower 22–35 Days | Finisher 36–42 Days | |
---|---|---|---|
Myristic (14:0) | 0.02 | 0.08 | 0.07 |
Palmitic (16:0) | 1.39 | 1.19 | 1.10 |
Stearic (18:0) | 0.31 | 0.29 | 0.35 |
Oleic (18:1n-9) | 2.24 | 2.20 | 2.16 |
Linoleic (18:2n-6) | 4.69 | 4.97 | 4.92 |
Linolenic (18:3n-3) | 1.16 | 0.87 | 0.91 |
Treatment I—50% of the Mineral in the Form of Chelate | ||||||
Control | Zn-Gly-50 | Cu-Gly-50 | Fe-Gly-50 | SEM | p Value | |
pH15 | 6.15 ± 0.05 | 6.21 ± 0.03 | 6.20 ± 0.05 | 6.17 ± 0.01 | 1.33 | 0.14 |
pH45 | 5.32 ± 0.03 | 5.35 ± 0.04 | 5.24 ± 0.05 | 5.31 ± 0.06 | 1.20 | 0.33 |
Moisture, % | 73.0 ± 0.83 | 72.6 ± 0.61 | 73.9 ± 0.99 | 73.7 ± 1.15 | 5.88 | 0.29 |
Crude ash, % | 1.20 ± 0.02 | 1.16 ± 0.01 | 1.13 ± 0.01 | 1.09 ± 0.07 | 2.85 | 0.08 |
Crude protein, % | 18.9 ± 0.74 | 19.1 ± 0.88 | 19.6 ± 1.02 | 19.6 ± 0.61 | 10.3 | 0.10 |
Crude fat, % | 6.77 ± 1.38 | 6.55 ± 1.03 | 6.62 ± 0.95 | 6.56 ± 1.19 | 5.56 | 0.25 |
Cholesterol, mg/100 g | 89.7 ± 5.33 b | 88.3 ± 6.41 b | 79.2 ± 5.09 a | 81.0 ± 4.77 a | 1.35 | 0.03 |
Treatment II—25% of the Mineral in the Form of Chelate | ||||||
Control | Zn-Gly-25 | Cu-Gly-25 | Fe-Gly-25 | SEM | p Value | |
pH15 | 6.22 ± 0.07 | 6.17 ± 0.03 | 6.24 ± 0.07 | 6.20 ± 0.04 | 1.23 | 0.09 |
pH45 | 5.51 ± 0.04 | 5.55 ± 0.02 | 5.43 ± 0.05 | 5.47 ± 0.02 | 1.54 | 0.10 |
Moisture, % | 73.3 ± 1.11 | 73.2 ± 1.37 | 73.5 ± 1.42 | 73.6 ± 1.23 | 12.1 | 0.08 |
Crude ash, % | 1.00 ± 0.01 | 1.00 ± 0.01 | 0.99 ± 0.01 | 1.00 ± 0.01 | 2.33 | 0.22 |
Crude protein, % | 18.9 ± 0.30 | 19.2 ± 0.20 | 19.2 ± 0.27 | 18.8 ± 0.18 | 7.24 | 0.06 |
Crude fat, % | 6.60 ± 0.66 | 6.67 ± 0.59 | 6.69 ± 0.14 | 6.72 ± 0.30 | 3.38 | 0.06 |
Cholesterol, mg/100 g | 91.3 ± 4.55 b | 88.2 ± 6.32 b | 80.3 ± 3.98 a | 82.5 ± 3.76 a | 2.76 | 0.04 |
Control | Zn-Gly-50 | Cu-Gly-50 | Fe-Gly-50 | SEM | p Value | |
---|---|---|---|---|---|---|
6:0 | 0.012 ± 0.01 b | 0.010 ± 0.01 a,b | 0.011 ± 0.01 a,b | 0.009 ± 0.01 a | 0.33 | <0.01 |
8:0 | 0.012 ± 0.01 a | 0.015 ± 0.01 b | 0.018 ± 0.02 c | 0.022 ± 0.01 d | 0.17 | <0.01 |
10:0 | 0.014 ± 0.01 b | 0.010 ± 0.01 a | 0.011 ± 0.01 a | 0.016 ± 0.01 c | 0.54 | 0.01 |
12:0 | 0.254 ± 0.02 b | 0.231 ± 0.03 a | 0.249 ± 0.02 b | 0.233 ± 0.02 a | 1.74 | 0.04 |
14:0 | 0.434 ± 0.16 a | 0.516 ± 0.04 d | 0.470 ± 0.07 b | 0.498 ± 0.09 c | 1.45 | 0.02 |
15:0 | 0.103 ± 0.03 a | 0.111 ± 0.02 b | 0.099 ± 0.01 a | 0.103 ± 0.01 a | 0.87 | 0.03 |
16:0 | 22.16 ± 2.39 a | 22.13 ± 2.25 a | 23.10 ± 2.43 b | 23.82 ± 2.58 c | 5.33 | 0.05 |
17:0 | 0.149 ± 0.02 c | 0.133 ± 0.02 a | 0.130 ± 0.02 a | 0.141 ± 0.02 b | 0.47 | 0.01 |
18:0 | 6.501 ± 0.69 a | 6.486 ± 0.57 a | 6.974 ± 1.31 b | 6.394 ± 1.12 b | 0.88 | 0.03 |
20:0 | 0.121 ± 0.03 b | 0.115 ± 0.02 a | 0.135 ± 0.02 c | 0.131 ± 0.01 c | 0.12 | 0.03 |
16:1 | 2.671 ± 0.53 b | 2.429 ± 0.79 a | 3.134 ± 0.62 c | 3.340 ± 0.33 d | 0.55 | <0.01 |
17:1 | 0.049 ± 0.03 c | 0.055 ± 0.02 c | 0.030 ± 0.02 b | 0.025 ± 0.01 a | 0.04 | <0.01 |
18:1 n-9 | 34.48 ± 1.57 c | 35.16 ± 1.45 d | 32.87 ± 1.67 a | 33.20 ± 1.31 b | 9.31 | 0.03 |
18:1 n-11 | 2.453 ± 0.16 c | 2.264 ± 0.42 b | 2.110 ± 0.28 a | 2.511 ± 0.21 d | 0.48 | 0.03 |
20:1 n-7 | 0.068 ± 0.02 b | 0.061 ± 0.01 a | 0.070 ± 0.01 b | 0.063 ± 0.01 a | 0.02 | 0.04 |
20:1 n-9 | 0.015 ± 0.01 a,b | 0.020 ± 0.01 b | 0.013 ± 0.01 a | 0.018 ± 0.01 b | 0.10 | 0.02 |
20:1 n-11 | 0.300 ± 0.05 b | 0.295 ± 0.06 b | 0.254 ± 0.09 a | 0.305 ± 0.06 b | 0.11 | <0.01 |
18:2 n-6 | 25.53 ± 1.47 d | 24.70 ± 1.68 b | 25.16 ± 1.12 c | 24.11 ± 2.63 a | 4.55 | 0.03 |
20:2 n-6 | 0.319 ± 0.05 c | 0.293 ± 0.07 b | 0.284 ± 0.03 b | 0.220 ± 0.08 a | 0.34 | 0.02 |
18:3 n-3 | 2.298 ± 0.17 a | 2.650 ± 0.35 c | 2.499 ± 0.18 b | 2.474 ± 0.24 b | 0.56 | 0.02 |
20:3 n-3 | 0.174 ± 0.04 b | 0.174 ± 0.01 b | 0.148 ± 0.02 a | 0.140 ± 0.02 a | 0.15 | 0.01 |
20:4 n-6 | 0.101 ± 0.01 a | 0.100 ± 0.01 a | 0.115 ± 0.02 b | 0.116 ± 0.02 b | 0.07 | 0.01 |
Σ SFA | 30.23 ± 3.11 a,b | 29.77 ± 2.30 a | 30.71 ± 2.07 a,b | 31.94 ± 3.56 b | 6.22 | 0.01 |
Σ MUFA | 39.99 ± 1.64 | 40.23 ± 1.51 | 38.45 ± 1.92 | 39.43 ± 1.48 | 8.74 | 0.07 |
Σ PUFA | 28.42 ± 1.55 | 27.92 ± 1.65 | 28.21 ± 1.12 | 27.06 ± 2.67 | 3.09 | 0.06 |
Σ UFA | 68.41 ± 2.49 | 68.15 ± 2.12 | 66.65 ± 2.28 | 66.49 ± 3.36 | 12.8 | 0.05 |
Σ PUFA n-3 | 2.471 ± 0.20 a,b | 2.824 ± 0.35 b | 2.646 ± 0.19 a,b | 2.614 ± 0.24 a | 0.98 | 0.01 |
Σ PUFA n-6 | 25.95 ± 1.47 b | 25.09 ± 1.66 a,b | 25.56 ± 1.11 a,b | 24.44 ± 2.65 a | 3.22 | 0.01 |
Σ PUFA/SFA | 0.952 ± 0.14 b | 0.945 ± 0.12 b | 0.922 ± 0.07 a,b | 0.864 ± 0.18 a | 0.27 | 0.04 |
Σ SFA/UFA | 0.434 ± 0.06 a | 0.429 ± 0.05 a | 0.452 ± 0.05 b | 0.474 ± 0.08 b | 0.65 | 0.03 |
n-6/n-3 | 10.54 ± 0.87 b | 9.011 ± 1.30 a | 9.705 ± 0.86 a,b | 9.415 ± 1.29 a | 4.09 | 0.02 |
Control | Zn-Gly-25 | Cu-Gly-25 | Fe-Gly-25 | SEM | p Value | |
---|---|---|---|---|---|---|
6:0 | 0.012 ± 0.01 a | 0.026 ± 0.01 b | 0.028 ± 0.03 b,c | 0.034 ± 0.02 c | 0.02 | <0.01 |
8:0 | 0.012 ± 0.01 a,b | 0.011 ± 0.01 a | 0.014 ± 0.01 b | 0.021 ± 0.01 c | 0.03 | <0.01 |
10:0 | 0.014 ± 0.01 a | 0.014 ± 0.01 a | 0.018 ± 0.01 b | 0.021 ± 0.01 c | 0.03 | <0.01 |
12:0 | 0.254 ± 0.02 c | 0.216 ± 0.02 a,b | 0.204 ± 0.07 a | 0.224 ± 0.06 b | 0.11 | 0.03 |
14:0 | 0.434 ± 0.16 c | 0.393 ± 0.15 a | 0.395 ± 0.10 a | 0.414 ± 0.09 b | 0.10 | 0.03 |
15:0 | 0.103 ± 0.03 a | 0.102 ± 0.02 a | 0.108 ± 0.02 a | 0.118 ± 0.01 b | 0.03 | 0.01 |
16:0 | 22.16 ± 2.39 | 22.97 ± 1.86 | 22.40 ± 1.63 | 22.70 ± 0.85 | 3.98 | 0.02 |
17:0 | 0.149 ± 0.02 a | 0.154 ± 0.01 a | 0.154 ± 0.01 a | 1.168 ± 0.04 b | 0.95 | 0.01 |
18:0 | 6.501 ± 0.69 b | 6.379 ± 1.27 a | 6.469 ± 0.60 c | 6.475 ± 0.63 d | 1.34 | 0.02 |
20:0 | 0.121 ± 0.03 a | 0.130 ± 0.02 b | 0.151 ± 0.07 c | 0.160 ± 0.02 c | 0.33 | 0.04 |
16:1 | 2.671 ± 0.53 a | 3.293 ± 0.33 c | 3.103 ± 0.17 b | 3.195 ± 0.46 b,c | 0.79 | <0.01 |
17:1 | 0.049 ± 0.03 c | 0.033 ± 0.02 b | 0.024 ± 0.01 a | 0.022 ± 0.01 a | 0.05 | <0.01 |
18:1 n-9 | 34.48 ± 1.57 | 34.43 ± 1.73 | 35.40 ± 0.66 | 34.65 ± 1.12 | 6.34 | 0.06 |
18:1 n-11 | 2.453 ± 0.16 b | 2.274 ± 0.19 a | 2.232 ± 0.23 a | 2.235 ± 0.14 a | 1.08 | 0.01 |
20:1 n-7 | 0.068 ± 0.02 c | 0.050 ± 0.02 b | 0.040 ± 0.01 a | 0.041 ± 0.01 a | 0.11 | 0.01 |
20:1 n-9 | 0.015 ± 0.01 a | 0.023 ± 0.01 b | 0.020 ± 0.01 b | 0.019 ± 0.01 b | 0.13 | 0.02 |
20:1 n-11 | 0.300 ± 0.05 b | 0.257 ± 0.05 a | 0.246 ± 0.05 a | 0.252 ± 0.06 a | 0.54 | 0.01 |
18:2 n-6 | 25.53 ± 1.47 | 24.61 ± 1.26 | 25.16 ± 1.00 | 24.73 ± 0.78 | 4.45 | 0.05 |
20:2 n-6 | 0.319 ± 0.05 c | 0.196 ± 0.04 b | 0.210 ± 0.11 b | 0.159 ± 0.09 a | 0.33 | 0.01 |
18:3 n-3 | 2.298 ± 0.17 a | 2.419 ± 0.29 c | 2.355 ± 0.18 b | 2.408 ± 0.13 c | 1.68 | 0.01 |
20:3 n-3 | 0.174 ± 0.04 c | 0.147 ± 0.03 a | 0.161 ± 0.02 b | 0.148 ± 0.02 a | 0.22 | 0.02 |
20:4 n-6 | 0.101 ± 0.01 a | 0.113 ± 0.03 b | 0.166 ± 0.03 c | 0.158 ± 0.02 c | 0.40 | <0.01 |
Σ SFA | 30.23 ± 3.11 | 30.54 ± 1.58 | 29.19 ± 2.61 | 31.32 ± 0.97 | 5.07 | 0.06 |
Σ MUFA | 39.99 ± 1.64 | 40.32 ± 1.60 | 41.04 ± 0.75 | 40.39 ± 0.89 | 10.8 | 0.05 |
Σ PUFA | 28.42 ± 1.55 | 27.48 ± 1.45 | 28.05 ± 0.98 | 27.60 ± 0.79 | 7.12 | 0.07 |
Σ UFA | 68.41 ± 2.49 | 67.81 ± 2.38 | 69.09 ± 1.11 | 68.00 ± 0.85 | 9.84 | 0.05 |
Σ PUFA n-3 | 2.471 ± 0.20 a | 2.566 ± 0.29 c | 2.516 ± 0.17 a,b | 2.555 ± 0.14 b | 0.32 | 0.03 |
Σ PUFA n-6 | 25.95 ± 1.47 b | 24.92 ± 1.29 a | 25.53 ± 1.11 a,b | 25.05 ± 0.77 a,b | 7.01 | 0.04 |
Σ PUFA/SFA | 0.952 ± 0.14 a,b | 0.903 ± 0.08 a,b | 0.970 ± 0.12 b | 0.888 ± 0.04 a | 0.32 | 0.03 |
Σ SFA/UFA | 0.434 ± 0.06 | 0.441 ± 0.03 | 0.413 ± 0.04 | 0.435 ± 0.02 | 0.21 | 0.07 |
n-6/n-3 | 10.54 ± 0.87 | 9.797 ± 0.96 | 10.21 ± 1.07 | 9.827 ± 0.59 | 1.09 | 0.08 |
Treatment I—50% of the Mineral in the Form of Chelate | ||||||
Control | Zn-Gly-50 | Cu-Gly-50 | Fe-Gly-50 | SEM | p Value | |
AI | 0.354 a | 0.360 a | 0.380 b | 0.394 c | 1.09 | 0.04 |
TI | 0.733 b | 0.709 a | 0.752 c | 0.790 d | 0.36 | 0.03 |
h/H | 2.798 c | 2.795 c | 2.599 b | 2.498 a | 0.55 | 0.01 |
Treatment II—25% of the Mineral in the Form of Chelate | ||||||
Control | Zn-Gly-25 | Cu-Gly-25 | Fe-Gly-25 | SEM | p Value | |
AI | 0.354 a,b | 0.363 b | 0.348 a | 0.359 a,b | 2.34 | 0.03 |
TI | 0.733 b | 0.741 c | 0.697 a | 0.731 b | 0.70 | 0.03 |
h/H | 2.798 d | 2.657 a | 2.782 c | 2.684 b | 1.05 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winiarska-Mieczan, A.; Jachimowicz, K.; Kwiecień, M.; Kislova, S.; Baranowska-Wójcik, E.; Zasadna, Z.; Yanovych, D.; Kowalczuk-Vasilev, E. The Impact of Zn, Cu and Fe Chelates on the Fatty-Acid Profile and Dietary Value of Broiler-Chicken Thigh Meat. Animals 2021, 11, 3115. https://doi.org/10.3390/ani11113115
Winiarska-Mieczan A, Jachimowicz K, Kwiecień M, Kislova S, Baranowska-Wójcik E, Zasadna Z, Yanovych D, Kowalczuk-Vasilev E. The Impact of Zn, Cu and Fe Chelates on the Fatty-Acid Profile and Dietary Value of Broiler-Chicken Thigh Meat. Animals. 2021; 11(11):3115. https://doi.org/10.3390/ani11113115
Chicago/Turabian StyleWiniarska-Mieczan, Anna, Karolina Jachimowicz, Małgorzata Kwiecień, Svitlana Kislova, Ewa Baranowska-Wójcik, Zvenyslava Zasadna, Dmytro Yanovych, and Edyta Kowalczuk-Vasilev. 2021. "The Impact of Zn, Cu and Fe Chelates on the Fatty-Acid Profile and Dietary Value of Broiler-Chicken Thigh Meat" Animals 11, no. 11: 3115. https://doi.org/10.3390/ani11113115
APA StyleWiniarska-Mieczan, A., Jachimowicz, K., Kwiecień, M., Kislova, S., Baranowska-Wójcik, E., Zasadna, Z., Yanovych, D., & Kowalczuk-Vasilev, E. (2021). The Impact of Zn, Cu and Fe Chelates on the Fatty-Acid Profile and Dietary Value of Broiler-Chicken Thigh Meat. Animals, 11(11), 3115. https://doi.org/10.3390/ani11113115