Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Welfare Improving Poultry Farming
3. Prevention of the Effects of Piglet Weaning Based on the Use of LAB
4. Prevention of Udder Infections in Cattle with Particular Emphasis on Bacterioci Like-Substance
5. Antibiotics—Future Legal Regulations
- (a)
- it is presented as having properties for treating or preventing disease in animals;
- (b)
- its purpose is to be used in or administered to animals with a view to restoring, correcting, or modifying physiological functions by exerting a pharmacological, immunological, or metabolic action;
- (c)
- its purpose is to be used in animals with a view to making a medical diagnosis;
- (d)
- its purpose is to be used for euthanasia of animals.
- (a)
- antimicrobial medicinal products shall not be applied routinely nor used to compensate for poor hygiene, inadequate animal husbandry, or lack of care or to compensate for poor farm management;
- (b)
- in animals for the purpose of promoting growth nor to increase yield;
- (c)
- prophylaxis other than in exceptional cases for the administration to an individual animal or a restricted number of animals when the risk of an infection or of an infectious disease is very high, and the consequences are likely to be severe. In such cases, the use of antibiotic medicinal products for prophylaxis shall be limited to the administration to an individual animal only, under the conditions laid down in the first subparagraph.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, X.; Yang, Z.; Xu, T.; Qian, M.; Jiang, X.; Zhan, X.; Han, X. Chlortetracycline alters microbiota of gut or faeces in pigs and leads to accumulation and migration of antibiotic resistance genes. Sci. Total Environ. 2021, 796, 148976. [Google Scholar] [CrossRef]
- Schenkenfelder, J.; Winckler, C. Animal welfare outcomes and associated risk indicators on Austrian dairy farms: A cross-sectional study. J. Dairy Sci. 2021, 104, 11091–11107. [Google Scholar] [CrossRef]
- Groot, M.J.; Berendsen, B.J.A.; Cleton, N.B. The Next Step to Further Decrease Veterinary Antibiotic Applications: Phytogenic Alternatives and Effective Monitoring; the Dutch Approach. Front. Vet. Sci. 2021, 8, 709750. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.S.; Zhao, J.L.; Liu, W.R.; Chen, J.; Zhang, Q.Q.; He, L.Y.; Ying, G.G. Variations of antibiotic resistome in swine wastewater during full-scale anaerobic digestion treatment. Environ. Int. 2021, 155, 106694. [Google Scholar] [CrossRef] [PubMed]
- Alliance to Save Our Antibiotics, Antibiotic Overuse in Livestock Farming. Available online: https://www.saveourantibiotics.org/the-issue/antibiotic-overuse-in-livestock-farming/ (accessed on 8 November 2021).
- World Health Organisation, Stop Using Antibiotics in Healthy Animals to Prevent the Spread of Antibiotic Resistance. Available online: https://www.who.int/news/item/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance (accessed on 8 November 2021).
- Chiana’s Multi-Story Hog Hotels Elevate Industrial Farms to Newleves. Available online: https://www.reuters.com/article/us-china-pigs-hotels-insight-idUSKBN1IB362 (accessed on 11 May 2021).
- Graham, J.P.; Leibler, J.H.; Price, L.B.; Otte, J.M.; Pfeiffer, D.U.; Tiensin, T.; Silbergeld, E.K. The animal-human interface and infectious disease in indus-trial food animal production: Rethinking biosecurity and biocontainment. Public Health Rep. 2008, 123, 280–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leibler, J.H.; Dalton, K.; Pekosz, A.; Gray, G.C.; Silbergeld, E.K. Epizootics in in-dustrial livestock production: Preventable gaps in biosecurity and biocon-tainment. Zoonoses Public Health 2017, 64, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Agriculture, Forestry and Fishery Statistics-2020 Edition. Available online: https://ec.europa.eu/eurostat/documents/3217494/12069644/KS-FK-20-001-EN-N.pdf/a7439b01-671b-80ce-85e4-4d803c44340a?t=1608139005821 (accessed on 11 May 2021).
- European Surveillance of Veterinary Antimicrobial Consumption. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2018-trends-2010-2018-tenth-esvac-report_en.pdf (accessed on 11 May 2021).
- Banerjee, S.; Sar, A.; Misra, A.; Pal, S.; Chakraborty, A.; Dam, B. Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology 2018, 164, 142–153. [Google Scholar] [CrossRef]
- Graham, J.P.; Evans, S.L.; Price, L.B.; Silbergeld, E.K. Fate of antimicrobial-resistant enterococci and staphylococci and resistance determinants in stored poultry litter. Environ. Res. 2009, 109, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Williams, N.T. Probiotics. Am. J. Health Syst. Pharm. 2010, 67, 449–458. [Google Scholar] [CrossRef]
- Zoumpopoulou, G.; Tzouvanou, A.; Mavrogonatou, E.; Alexandraki, V.; Georgalaki, M.; Anastasiou, R.; Papadelli, M.; Manolopoulou, E.; Kazou, M.; Kletsas, D.; et al. Probiotic Features of Lactic Acid Bacteria Isolated from a Diverse Pool of Traditional Greek Dairy Products Regarding Specific Strain-Host Interactions. Probiotics Antimicrob. Proteins 2018, 10, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Macuamule, C.L.; Wiid, I.J.; van Helden, P.D.; Tanner, M.; Witthuhn, R.C. Effect of milk fermentation by kefir grains and selected single strains of lactic acid bacteria on the survival of Mycobacterium bovis BCG. Int. J. Food Microbiol. 2016, 217, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Talib, N.; Mohamad, N.E.; Yeap, S.K.; Hussin, Y.; Aziz, M.; Masarudin, M.J.; Sharifuddin, S.A.; Hui, Y.W.; Ho, C.L.; Alitheen, N.B. Isolation and Characterization of Lactobacillus spp. from Kefir Samples in Malaysia. Molecules 2019, 24, 2606. [Google Scholar] [CrossRef] [Green Version]
- Touret, T.; Oliveira, M.; Semedo-Lemsaddek, T. Putative probiotic lactic acid bacteria isolated from sauerkraut fermentations. PLoS ONE 2018, 13, e0203501. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Zhang, X.; Li, S.; Li, C.; Li, D.; Yang, Z. Evaluation of probiotic properties of Lactobacillus plantarum strains isolated from Chinese sauerkraut. World J. Microbiol. Biotechnol. 2013, 29, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Lee, C.Y.; Chung, D.K. Probiotic Lactic Acid Bacteria and Skin Health. Crit. Rev. Food Sci. Nutr. 2016, 56, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Naghmouchi, K.; Belguesmia, Y.; Bendali, F.; Spano, G.; Seal, B.S.; Drider, D. Lactobacillus fermentum: A bacterial species with potential for food preservation and biomedical applications. Crit. Rev. Food Sci. Nutr. 2020, 60, 3387–3399. [Google Scholar] [CrossRef]
- Cui, X.; Shi, Y.; Gu, S.; Yan, X.; Chen, H.; Ge, J. Antibacterial and Antibiofilm Activity of Lactic Acid Bacteria Isolated from Traditional Artisanal Milk Cheese from Northeast China Against Enteropathogenic Bacteria. Probiotics Antimicrob. Proteins 2018, 10, 601–610. [Google Scholar] [CrossRef]
- Pandey, K.R.; Naik, S.R.; Vakil, B.V. Probiotics, prebiotics and synbiotics—A review. J. Food Sci. Technol. 2015, 52, 7577–7587. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Harper’s Illustrated Biochemistry. Available online: http://www.eqas.ir/pdf/lib/Harper%20Illustrated%20Biochemistry%202003.pdf (accessed on 18 November 2021).
- Śliżewska, K.; Markowiak-Kopeć, P.; Żbikowski, A.; Szeleszczuk, P. The effect of synbiotic preparations on the intestinal microbiota and her metabolism in broiler chickens. Sci. Rep. 2020, 10, 4281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Li, L.; Lv, Y.; Chen, Q.; Feng, J.; Zhao, X. Lactobacillus plantarum restores intestinal permeability disrupted by Salmonella infection in newly-hatched chicks. Sci. Rep. 2018, 8, 2229. [Google Scholar] [CrossRef] [PubMed]
- Olnood, C.G.; Beski, S.S.M.; Choct, M.; Iji, P.A. Use of Lactobacillus johnsonii in broilers challenged with Salmonella sofia. Anim. Nutr. 2015, 1, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.; Adams, M.; La Ragione, R.M.; Woodward, M.J. Colonisation of poultry by Salmonella Enteritidis S1400 is reduced by combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33. Vet. Microbiol. 2017, 199, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wan, C.; Shuju, Z.; Yang, Z.; Celi, P.; Ding, X.; Bai, S.; Zeng, Q.; Mao, X.; Xu, S.; et al. Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poult. Sci. 2021, 100, 1109–1119. [Google Scholar] [CrossRef]
- Penha Filho, R.A.; Díaz, S.J.; Fernando, F.S.; Chang, Y.F.; Andreatti Filho, R.L.; Berchieri Junior, A. Immunomodulatory activity and control of Salmonella Enteritidis colonization in the intestinal tract of chickens by Lactobacillus based probiotic. Vet. Immunol. Immunopathol. 2015, 167, 64–69. [Google Scholar] [CrossRef]
- Prado-Rebolledo, O.F.; Delgado-Machuca, J.J.; Macedo-Barragan, R.J.; Garcia- Marquez, L.J.; Morales-Barrera, J.E.; Latorre, J.D.; Hermandez-Velasco, X.; Tellez, G. Evaluation of a selected lactic acid bacteria-based probiotic on Salmonella enterica serovar Entertitidis colonization and intestinal permeability in broiler chickens. Avian Pathol. 2017, 46, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, T.; Ashida, N.; Nakagawa, K.; Iwatani, S.; Yamamoto, N. Dietary Bacillus subtilis C-3102 Supplementation Enhances the Exclusion of Salmonella enterica from Chickens. J. Poult. Sci. 2021, 58, 138–145. [Google Scholar] [CrossRef]
- Han, G.G.; Song, A.A.; Kim, E.B.; Yoon, S.H.; Bok, J.D.; Cho, C.S.; Kil, D.Y.; Kang, S.K.; Choi, Y.J. Improved antimicrobial activity of Pediococcus acidilactici against Salmonella Gallinarum by UV mutagenesis and genome shuffling. Appl. Microbiol. Biotechnol. 2017, 101, 5353–5363. [Google Scholar] [CrossRef]
- Ščerbová, J.; Lauková, A. Sensitivity to Enterocins of Thermophilic Campylobacter spp. from Different Poultry Species. Foodborne Pathog. Dis. 2016, 13, 668–673. [Google Scholar] [CrossRef]
- Razmyar, J.; Peighambari, S.M.; Zamani, A.H. Detection of a Newly Described Bacteriocin, Perfrin, Among Clostridium perfringens Isolates from Healthy and Diseased Ostriches and Broiler Chickens in Iran. Avian Dis. 2017, 61, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Neal-McKinney, J.M.; Lu, X.; Duong, T.; Larson, C.L.; Call, D.R.; Shah, D.H.; Konkel, M.E. Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PLoS ONE 2012, 7, e43928. [Google Scholar] [CrossRef] [PubMed]
- Weerts, E.; Matthijs, M.; Bonhof, J.; van Haarlem, D.A.; Dwars, R.M.; Gröne, A.; Verheije, M.H.; Jansen, C.A. The contribution of the immune response to enhanced colibacillosis upon preceding viral respiratory infection in broiler chicken in a dual infection model. Vet. Immunol. Immunopathol. 2021, 238, 110276. [Google Scholar] [CrossRef]
- Li, T.; Castañeda, C.D.; Miotto, J.; McDaniel, C.; Kiess, A.S.; Zhang, L. Effects of in ovo probiotic administration on the incidence of avian pathogenic Escherichia coli in broilers and an evaluation on its virulence and antimicrobial resistance properties. Poult. Sci. 2021, 100, 100903. [Google Scholar] [CrossRef] [PubMed]
- Tarabees, R.; Gafar, K.M.; El-Sayed, M.S.; Shehata, A.A.; Ahmed, M. Effects of Dietary Supplementation of Probiotic Mix and Prebiotic on Growth Performance, Cecal Microbiota Composition, and Protection against Escherichia coli O78 in Broiler Chickens. Probiotics Antimicrob. Proteins 2019, 11, 981–989. [Google Scholar] [CrossRef]
- Kierończyk, B.; Sassek, M.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.; Rawski, M.; Świątkiewicz, S.; Józefiak, D. The physiological response of broiler chickens to the dietary supplementation of the bacteriocin nisin and ionophore coccidiostats. Poult. Sci. 2017, 96, 4026–4037. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Molnár, A.; Hollmann, M.; Magowan, E.; Hawken, R.J.; Lawlor, P.G.; Zebeli, Q. Comparison of growth performance and excreta composition in broiler chickens when ranked according to various feed efficiency metrics. J. Anim. Sci. 2016, 94, 2890–2899. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.T.; Breukink, E.; Tischenko, E.; Lutters, M.A.; de Kruijff, B.; Kaptein, R.; Bonvin, A.M.; van Nuland, N.A. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat. Struct. Mol. Biol. 2004, 11, 963–967. [Google Scholar] [CrossRef] [Green Version]
- Fernández, L.; Delgado, S.; Herrero, H.; Maldonado, A.; Rodríguez, J.M. The bacteriocin nisin, an effective agent for the treatment of staphylococcal mastitis during lactation. J. Human Lact. 2008, 24, 311–316. [Google Scholar] [CrossRef]
- Kierończyk, B.; Rawski, M.; Mikołajczak, Z.; Świątkiewicz, S.; Józefiak, D. Nisin as a Novel Feed Additive: The Effects on Gut Microbial Modulation and Activity, Histological Parameters, and Growth Performance of Broiler Chickens. Animals 2020, 10, 101. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, Q.; Ye, F.; Tang, H.; Xiong, Y.; Wu, Y.; Wang, L.; Feng, X.; Zhang, S.; Wan, Y.; et al. Dietary purslane (Portulaca oleracea L.) promotes the growth performance of broilers by modulation of gut microbiota. AMB Express 2021, 11, 31. [Google Scholar] [CrossRef]
- Liang, W.; Li, H.; Zhou, H.; Wang, M.; Zhao, X.; Sun, X.; Li, C.; Zhang, X. Effects of Taraxacum and Astragalus extracts combined with probiotic Bacillus subtilis and Lactobacillus on Escherichia coli-infected broiler chickens. Poult. Sci. 2021, 100, 101007. [Google Scholar] [CrossRef]
- Nassik, S.; Tallouzt, S.; Karbach, N.; Touzani, C.; Bidoudan, Y.; Aamarine, N.; Hess, C. First Report of Isolation of Gallibacterium anatis from Layer Chickens in Morocco with Decrease in Laying Performance. Avian Dis. 2019, 63, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Allahghadry, T.; Ng, D.; Dibaei, A.; Bojesen, A.M. Clonal spread of multi-resistant Gallibacterium anatis isolates among Iranian broilers and layers. Vet. Res. 2021, 52, 27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; HuangFu, H.; Wang, X.; Zhao, S.; Liu, Y.; Lv, H.; Qin, G.; Tan, Z. Antibacterial Activity of Lactic Acid Producing Leuconostoc mesenteroides QZ1178 Against Pathogenic Gallibacterium anatis. Front. Vet. Sci. 2021, 8, 630294. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhou, Y.; Mao, Y.; Gong, L.; Li, X.; Xu, S.; Wang, F.; Guo, Q.; Zhang, H.; Li, W. Dietary Supplementation With Lactobacillus plantarum Ameliorates Compromise of Growth Performance by Modulating Short-Chain Fatty Acids and Intestinal Dysbiosis in Broilers Under Clostridium perfringens Challenge. Front. Nutr. 2021, 8, 706148. [Google Scholar] [CrossRef]
- Gong, L.; Wang, B.; Zhou, Y.; Tang, L.; Zeng, Z.; Zhang, H.; Li, W. Protective Effects of Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 Against Clostridium perfringens Infection in Broilers. Front. Immunol. 2021, 11, 628374. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, K.; Zhang, A.; Chang, W.; Zheng, A.; Chen, Z.; Cai, H.; Liu, G. Effects of Lactobacillus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poult. Sci. 2021, 100, 101323. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, G.; Shao, D.; Wang, Q.; Hu, Y.; Wu, T.; Ji, C.; Shi, S. Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community. Poult. Sci. 2021, 100, 100935. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Zaki, R.S.; Negm, E.A.; Mahmoud, M.A.; Cheng, H.W. Effects of dietary supplementation of a probiotic (Bacillus subtilis) on bone mass and meat quality of broiler chickens. Poult. Sci. 2021, 100, 100906. [Google Scholar] [CrossRef]
- Rivera-Pérez, W.; Barquero-Calvo, E.; Chaves, A.J. Effect of the use of probiotic Bacillus subtilis (QST 713) as a growth promoter in broilers: An alternative to bacitracin methylene disalicylate. Poult. Sci. 2021, 100, 101372. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Heng, C.; Zhou, X.; Cao, G.; Jiang, L.; Wang, J.; Li, K.; Wang, D.; Zhan, X. Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. Br. J. Nutr. 2021, 125, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Keerqin, C.; Rhayat, L.; Zhang, Z.H.; Gharib-Naseri, K.; Kheravii, S.K.; Devillard, E.; Crowley, T.M.; Wu, S.B. Probiotic Bacillus subtilis 29,784 improved weight gain and enhanced gut health status of broilers under necrotic enteritis condition. Poult. Sci. 2021, 100, 100981. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, X.; Dong, Y.; Lei, J.; Ito, K.; Zhang, B. Enterococcus faecium PNC01 isolated from the intestinal mucosa of chicken as an alternative for antibiotics to reduce feed conversion rate in broiler chickens. Microb. Cell Fact. 2021, 20, 122. [Google Scholar] [CrossRef] [PubMed]
- Inoue, R.; Tsukahara, T.; Nakanishi, N.; Ushida, K. Development of the intestinal microbiota in the piglet. J. Gen. Appl. Microbiol. 2005, 51, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Knecht, D.; Srodon, S.A.; Duziński, K. The impact of season, parity and breed on selected reproductive performance parameters of sows. Arch. Anim. Breed. 2015, 58, 49–56. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Y.; Chen, X.; Fang, C.; Zhao, L.; Chen, F. The Maturing Development of Gut Microbiota in Commercial Piglets during the Weaning Transition. Front. Microbiol. 2017, 8, 1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Niu, Q.; Wei, Q.; Zhang, Y.; Ma, X.; Kim, S.W.; Huang, R. Microbial shifts in the porcine distal gut in response to diets supplemented with Enterococcus faecalis as alternatives to antibiotics. Sci. Rep. 2017, 7, 41395. [Google Scholar] [CrossRef]
- Mesonero-Escuredo, S.; Strutzberg-Minder, K.; Casanovas, C.; Segalés, J. Viral and bacterial investigations on the aetiology of recurrent pig neonatal diarrhoea cases in Spain. Porc. Health Manag. 2018, 4, 5. [Google Scholar] [CrossRef]
- Shin, D.; Chang, S.Y.; Bogere, P.; Won, K.; Choi, J.Y.; Choi, Y.J.; Lee, H.K.; Hur, J.; Park, B.Y.; Kim, Y.; et al. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS ONE 2019, 14, e0220843. [Google Scholar] [CrossRef] [Green Version]
- Lo Verso, L.; Lessard, M.; Talbot, G.; Fernandez, B.; Fliss, I. Isolation and Selection of Potential Probiotic Bacteria from the Pig Gastrointestinal Tract. Probiotics Antimicrob. Proteins 2018, 10, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Suda, Y.; Sasaki, N.; Kagawa, K.; Elean, M.; Zhou, B.; Tomokiyo, M.; Islam, M.A.; Rajoka, M.; Kober, A.; Shimazu, T.; et al. Immunobiotic Feed Developed with Lactobacillus delbrueckii subsp. delbrueckii TUA4408L and the Soymilk By-Product Okara Improves Health and Growth Performance in Pigs. Microorganism 2021, 9, 921. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Chen, J.; Chen, Q.; Yang, L.; Yin, J.; Li, Y.; Huang, X. Lactobacillus delbrueckii Protected Intestinal Integrity, Alleviated Intestinal Oxidative Damage, and Activated Toll-Like Receptor-Bruton’s Tyrosine Kinase-Nuclear Factor Erythroid 2-Related Factor 2 Pathway in Weaned Piglets Challenged with Lipopolysacch. Antioxidants (Basel Switzerland) 2021, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wang, T.; Xiao, X.; Cheng, Y.; Wang, F.; Jin, M.; Wang, Y.; Zong, X. Clostridium Butyricum ZJU-F1 Benefits the Intestinal Barrier Function and Immune Response Associated with Its Modulation of Gut Microbiota in Weaned Piglets. Cells 2021, 10, 527. [Google Scholar] [CrossRef]
- Sobrino, O.J.; Alba, C.; Arroyo, R.; Pérez, I.; Sariego, L.; Delgado, S.; Fernández, L.; de María, J.; Fumanal, P.; Fumanal, A.; et al. Replacement of Metaphylactic Antimicrobial Therapy by Oral Administration of Ligilactobacillus salivarius MP100 in a Pig Farm. Front. Vet. Sci. 2021, 8, 666887. [Google Scholar] [CrossRef]
- Hu, J.; Ma, L.; Nie, Y.; Chen, J.; Zheng, W.; Wang, X.; Xie, C.; Zheng, Z.; Wang, Z.; Yang, T.; et al. A Microbiota-Derived Bacteriocin Targets the Host to Confer Diarrhea Resistance in Early-Weaned Piglets. Cell Host Microbe 2018, 24, 817–832.e8. [Google Scholar] [CrossRef] [Green Version]
- Moturi, J.; Kim, K.Y.; Hosseindoust, A.; Lee, J.H.; Xuan, B.; Park, J.; Kim, E.B.; Kim, J.S.; Chae, B.J. Effects of Lactobacillus salivarius isolated from feces of fast-growing pigs on intestinal microbiota and morphology of suckling piglets. Sci. Rep. 2021, 11, 6757. [Google Scholar] [CrossRef]
- Le, N.; Bach, L.G.; Nguyen, D.C.; Le, T.; Pham, K.H.; Nguyen, D.H.; Hoang Thi, T.T. Evaluation of Factors Affecting Antimicrobial Activity of Bacteriocin from Lactobacillus plantarum Microencapsulated in Alginate-Gelatin Capsules and Its Application on Pork Meat as a Bio-Preservative. Int. J. Environ. Res. Public Health 2019, 16, 1017. [Google Scholar] [CrossRef] [Green Version]
- Pupa, P.; Apiwatsiri, P.; Sirichokchatchawan, W.; Pirarat, N.; Maison, T.; Koontanatechanon, A.; Prapasarakul, N. Use of Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) as replacements for antibiotic-growth promotants in pigs. Sci. Rep. 2021, 11, 12028. [Google Scholar] [CrossRef]
- Wang, J.; Ji, H.F.; Hou, C.L.; Wang, S.X.; Zhang, D.Y.; Liu, H.; Shan, D.C.; Wang, Y.M. Effects of Lactobacillus johnsonii XS4 supplementation on reproductive performance, gut environment, and blood biochemical and immunological index in lactating sows. Livest. Sci. 2014, 164, 96–101. [Google Scholar] [CrossRef]
- Wang, W.; Ma, H.; Zhu, Y.; Ni, K.; Qin, G.; Tan, Z.; Wang, Y.; Wang, L.; Pang, H. Screening of Lactic Acid Bacteria with Inhibitory Activity against ETEC K88 as Feed Additive and the Effects on Sows and Piglets. Animals 2021, 11, 1719. [Google Scholar] [CrossRef] [PubMed]
- Lan, R.; Kim, I. Enterococcus faecium supplementation in sows during gestation and lactation improves the performance of sucking piglets. Vet. Med. Sci. 2020, 6, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Ito, T.; Miyamoto, H.; Ozawa, M.; Wada, S.; Kumagai, Y.; Matsumoto, J.; Naito, R.; Nakamura, S.; Kodama, H.; et al. Oral administration of multispecies microbial supplements to sows influences the composition of gut microbiota and fecal organic acids in their post-weaned piglets. J. Biosci. Bioeng. 2011, 112, 145–150. [Google Scholar] [CrossRef]
- Betancur, C.; Martínez, Y.; Tellez-Isaias, G.; Castillo, R.; Ding, X. Effect of Oral Administration with Lactobacillus plantarum CAM6 Strain on Sows during Gestation-Lactation and the Derived Impact on Their Progeny Performance. Mediat. Inflamm. 2021, 2021, 6615960. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Su, S.; Sun, K.; Zhao, L.; Zhao, Y.; Bao, N.; Pan, L.; Sun, H. Effects of feeding a Lactobacillus plantarum JL01 diet on caecal bacteria and metabolites of weaned piglets. Lett. Appl. Microbiol. 2021, 72, 24–35. [Google Scholar] [CrossRef]
- Geng, T.; He, F.; Su, S.; Sun, K.; Zhao, L.; Zhao, Y.; Bao, N.; Pan, L.; Sun, H. Probiotics Lactobacillus rhamnosus GG ATCC53103 and Lactobacillus plantarum JL01 induce cytokine alterations by the production of TCDA, DHA, and succinic and palmitic acids, and enhance immunity of weaned piglets. Res. Vet. Sci. 2021, 137, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Chen, M.; Gao, M.; Qiu, T.; Tian, S.; Li, S.; Wang, X. Effects of Enterococcus faecalis administration on the community structure of airborne bacteria in weanling piglet and layer hen houses. J. Gen. Appl. Microbiol. 2021, 67, 162–169. [Google Scholar] [CrossRef]
- Wang, C.; Wei, S.; Xu, B.; Hao, L.; Su, W.; Jin, M.; Wang, Y. Bacillus subtilis and Enterococcus faecium co-fermented feed regulates lactating sow’s performance, immune status and gut microbiota. Microb. Biotechnol. 2021, 14, 614–627. [Google Scholar] [CrossRef]
- Pu, J.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Luo, J.; Luo, Y.; et al. Effects of benzoic acid, Bacillus coagulans and oregano oil combined supplementation on growth performance, immune status and intestinal barrier integrity of weaned piglets. Anim. Nutr. 2020, 6, 152–159. [Google Scholar] [CrossRef]
- Fu, R.; Liang, C.; Chen, D.; Yan, H.; Tian, G.; Zheng, P.; He, J.; Yu, J.; Mao, X.; Huang, Z.; et al. Effects of dietary Bacillus coagulans and yeast hydrolysate supplementation on growth performance, immune response and intestinal barrier function in weaned piglets. J. Anim. Physiol. Anim. Nutr. 2021, 105, 898–907. [Google Scholar] [CrossRef]
- Hrala, M.; Bosák, J.; Micenková, L.; Křenová, J.; Lexa, M.; Pirková, V.; Tomáštíková, Z.; Koláčková, I.; Šmajs, D. Escherichia coli Strains Producing Selected Bacteriocins Inhibit Porcine Enterotoxigenic Escherichia coli (ETEC) under both In Vitro and In Vivo Conditions. Appl. Environ. Microbiol. 2021, 87, e0312120. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Cui, Y.; Lu, H.; Wang, G.; Ma, X. Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality, muscular amino acids and fatty acids in pigs. Meat Sci. 2021, 171, 108234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Huang, L.; Zhang, E.; Yuan, C.; Yang, Q. Oral administration of Bacillus subtilis promotes homing of CD3+ T cells and IgA-secreting cells to the respiratory tract in piglets. Res. Vet. Sci. 2021, 136, 310–317. [Google Scholar] [CrossRef] [PubMed]
- De Vliegher, S.; Fox, L.K.K.; Piepers, S.; McDougall, S.; Barkema, H.W. Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control. J. Dairy Sci. 2012, 95, 1025–1040. [Google Scholar] [CrossRef]
- Bian, Y.; Lv, Y.; Li, Q. Identification of diagnostic protein markers of subclinical mastitis in bovine whey using comparative proteomics. Bull. Vet. Inst. Pulawy 2014, 58, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, M.; Tantary, H.; Nabi, S. A treatise on bovine mastitis: Disease and disease economics, etiological basis, risk factors, impact on human health, therapeutic management, prevention and control strategy. J. Adv. Dairy Res. 2016, 4, 1–10. [Google Scholar] [CrossRef]
- Dalanezi, F.M.; Joaquim, S.F.; Guimarães, F.F.; Guerra, S.T.; Lopes, B.C.; Schmidt, E.; Cerri, R.; Langoni, H. Influence of pathogens causing clinical mastitis on reproductive variables of dairy cows. J. Dairy Sci. 2020, 103, 3648–3655. [Google Scholar] [CrossRef]
- Gryaznova, M.V.; Syromyatnikov, M.Y.; Dvoretskaya, Y.D.; Solodskikh, S.A.; Klimov, N.T.; Mikhalev, V.I.; Zimnikov, V.I.; Mikhaylov, E.V.; Popov, V.N. Microbiota of Cow’s Milk with Udder Pathologies. Microorganisms 2021, 9, 1974. [Google Scholar] [CrossRef]
- Crispie, F.; Alonso-Gómez, M.; O’Loughlin, C.; Klostermann, K.; Flynn, J.; Arkins, S.; Meaney, W.; Paul Ross, R.; Hill, C. Intramammary infusion of a live culture for treatment of bovine mastitis: Effect of live lactococci on the mammary immune response. J. Dairy Res. 2008, 75, 374–384. [Google Scholar] [CrossRef]
- Abebe, R.; Hatiya, H.; Abera, M.; Megersa, B.; Asmare, K. Bovine mastitis: Prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at hawassa milk shed, South Ethiopia. BMC Vet. Res. 2016, 12, 270. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Wang, Y.J.; Qin, Y.; Vallverdú, R.G.; García, J.M.; Sun, W.; Li, S.; Cao, Z. Prevalence of Bovine Mastitis Pathogens in Bulk Tank Milk in China. PLoS ONE 2016, 11, e0155621. [Google Scholar] [CrossRef] [PubMed]
- Taponen, S.; Liski, E.; Heikkilä, A.-M.; Pyörälä, S. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J. Dairy Sci. 2017, 100, 493–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDougall, S.; Clausen, L.; Hintukainen, J.; Hunnam, J. Randomized, controlled, superiority study of extended duration of therapy with an intramammary antibiotic for treatment of clinical mastitis. J. Dairy Sci. 2019, 102, 4376–4386. [Google Scholar] [CrossRef]
- Wichmann, F.; Udikovic-kolic, N.; Andrew, S. Diverse antibiotic resistance genes in dairy cow manure. MBio 2014, 5, e01017. [Google Scholar] [CrossRef] [Green Version]
- Field, D.; Considine, K.; O’Connor, P.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Bio-Engineered Nisin with Increased Anti-Staphylococcus and Selectively Reduced Anti-Lactococcus Activity for Treatment of Bovine Mastitis. Int. J. Mol. Sci. 2021, 22, 3480. [Google Scholar] [CrossRef]
- Godoy-Santos, F.; Pinto, M.S.; Barbosa, A.A.T.; Brito, M.A.V.P.; Mantovani, H.C. Efficacy of a Ruminal Bacteriocin Against Pure and Mixed Cultures of Bovine Mastitis Pathogens. Indian J. Microbiol. 2019, 59, 304–312. [Google Scholar] [CrossRef]
- Pimentel-Filho, N.J.; Mantovani, H.C.; Diez- Gonzalez, F.; Vanetti, M.C.D. Inhibition of Listeria and Staphylococcus aureus by bovicin HC5 and nisin combination in milk. J. Agric. Sci. 2013, 5, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Prudencio, C.V.; Mantovani, H.C.; Cecon, P.R.; Vanetti, M.C. Differences in the antibacterial activity of nisin and bovicin HC5 against Salmonella Typhimurium under different temperatures and pH conditions. J. Appl. Microbiol. 2015, 118, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Kitching, M.; Mathur, H.; Flynn, J.; Byrne, N.; Dillon, P.; Sayers, R.; Rea, M.C.; Hill, C.; Ross, R.P. A Live Bio-Therapeutic for Mastitis, Containing Lactococcus lactis DPC3147 With Comparable Efficacy to Antibiotic Treatment. Front. Microbiol. 2019, 10, 2220. [Google Scholar] [CrossRef] [Green Version]
- Malvisi, M.; Stuknytė, M.; Magro, G.; Minozzi, G.; Giardini, A.; De Noni, I.; Piccinini, R. Antibacterial activity and immunomodulatory effects on a bovine mammary epithelial cell line exerted by nisin A-producing Lactococcus lactis strains. J. Dairy Sci. 2016, 99, 2288–2296. [Google Scholar] [CrossRef] [Green Version]
- Piccart, K.; Vásquez, A.; Piepers, S.; De Vliegher, S.; Olofsson, T.C. Short communication: Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens. J. Dairy Sci. 2016, 99, 2940–2944. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Lee, Y.D.; Park, J.H.; Moon, G.S. Synergistic Inhibition by Bacteriocin and Bacteriophage against Staphylococcus aureus. Food Sci. Anim. Resour. 2019, 39, 1015–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pholsen, S.; Khota, W.; Pang, H.; Higgs, D.; Cai, Y. Characterization and application of lactic acid bacteria for tropical silage preparation. Anim. Sci. J. 2016, 87, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Chotigarpa, R.; Lampang, K.N.; Pikulkaew, S.; Okonogi, S.; Silman, P.; Mektrirat, R. Antiseptic effect of natural teat dip containing lactic acid against mastitis-causing Escherichia coli. Vet. World 2019, 12, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Chotigarpa, R.; Na Lampang, K.; Pikulkaew, S.; Okonogi, S.; Ajariyakhajorn, K.; Mektrirat, R. Inhibitory Effects and Killing Kinetics of Lactic Acid Rice Gel Against Pathogenic Bacteria Causing Bovine Mastitis. Sci. Pharm. 2018, 86, E29. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.C.; Ptak, C.P.; Chang, C.Y.; Ian, M.K.; Chia, M.Y.; Chen, T.H.; Kuo, C.J. Autochthonous Lactic Acid Bacteria Isolated From Dairy Cow Feces Exhibiting Promising Probiotic Properties and in vitro Antibacterial Activity Against Foodborne Pathogens in Cattle. Front. Vet. Sci. 2020, 7, 239. [Google Scholar] [CrossRef]
- Blanchet, F.; Rault, L.; Peton, V.; Le Loir, Y.; Blondeau, C.; Lenoir, L.; Dubourdeaux, M.; Even, S. Heat inactivation partially preserved barrier and immunomodulatory effects of Lactobacillus gasseri LA806 in an in vitro model of bovine mastitis. Benef. Microbes 2021, 12, 95–106. [Google Scholar] [CrossRef]
- Antymicrobial Resistance in G7 Countries and Beyond: Economic Issues, Policies and Options for Action. Available online: https://www.oecd.org/els/health-systems/Antimicrobial-Resistance-in-G7-Countries-and-Beyond.pdf (accessed on 16 October 2021).
- Raport NIK z Dnia 31 Października 2017 r. pt. Wykorzystywanie Antybiotyków w Produkcji Zwierzęcej w Województwie Lubuskim. Available online: https://www.nik.gov.pl/plik/id,16219,vp,18743.pdf (accessed on 16 October 2021).
- Regulation (EU) 2019/6 of The European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&from=EN (accessed on 26 August 2021).
- Sandvang, D.; Skjoet-Rasmussen, L.; Cantor, M.D.; Mathis, G.F.; Lumpkins, B.S.; Blanch, A. Effects of feed supplementation with 3 different probiotic Bacillus strains and their combination on the performance of broiler chickens challenged with Clostridium perfringens. Poult. Sci. 2021, 100, 100982. [Google Scholar] [CrossRef] [PubMed]
Probiotic/Postbiotic/Synbiotic | Form/Way of Administration | Effect | References |
---|---|---|---|
Lactiplantibacillus plantarum LTC-113 | vaccination | Protection against Salmonella Typhimurium; stabilizing intestinal epithelial barrier | [28] |
Lactobacillus johnsonii | per os in feed | Reduction of Salmonella sofia and Clostridium perfringens | [29] |
Ligilactobacillus salivarius 59 and Enterococcus faecium PXN33/probiotic | per os in feed | Decreased colonization by Salmonella Enteritidis S1400 | [30] |
E. faecium/probiotic | per os in feed | Increased egg weight, serum FSH * levels, decreased Bacteroidetes | [31] |
Bacillus subtilis C-3102/probiotic | per os in feed | Reduction of Salmonella eteric serovar enteritidis LM-7 | [34] |
Pediococcus acidilactici | per os in feed | Reduction of Salmonella enterica serovar Gallinarum | [35] |
Lactobacillus acidophilus NCFM, Lactobacillus crispatus JCM 5810, Lactobacillus gallinarum ATCC 33199, and Lactobacillus helveticus CNRZ32 | per os in feed | Inhibition of the growth of Campylobacter jejuni | [38] |
B. subtilis MORI 91, Clostridium butyricum M7 and L. plantarum K34/commercial probiotic mix | per os in feed | Lowered rate of E. coli; positive modulation of the intestinal microbiota | [41] |
Nisin/postbiotic | per os in feed | Natural growth promotor; positive influence on the modulation of the intestinal microbiota; limitation of pathogens in the gut | [42,46] |
Chinese medicinal plants and B. subtilis, L. acidophilus (probiotic) | per os in water | Inhibition of E. coli; reduction of mortality; improvement BWG* | [48] |
L. plantarum ŁOCK 0860, L. reuteri ŁOCK 1092, L. pentosus ŁOCK 1094, Saccharomyces cerevisiae ŁOCK 0119, L. rhamnosus ŁOCK 1087, L. paracasei ŁOCK 1091 and 2% inulin (synbiotic) | per os in feed | Increase of Bifidobacterium sp. and Lactobacillus sp.; decrease in the level of Clostridium sp. and E. coli | [27] |
L. plantarum CCTCC M2016259, Paenibacillus polymyxa CGMCC1.1711 | per os in feed | The positive effect of intestinal health and intestinal microbiota, improved body weight and feed conversion in C. perfringens-infected; increased intestinal SCFAs * levels | [52,53] |
L. acidophilus | per os in feed | Increased body weight; reduced mortality; improvement of the immune response in E. coli O157-challenged chickens | [54] |
B. subtilis | per os in feed | Increased FCR*, villus height to crypt depth ratio, and number of Blautia, Faecalibacterium, Flavonifractor, Hydrogenoanaerobacterium, and Romboutsia; decreased Odoribacter; improvement intestinal microbial composition | [55] |
B. subtilis PB6 | per os in feed | Increased calcium and phosphorus in plasma; increased bone mass and meat quality; improvement production and welfare | [56] |
B. subtilis QST713 | per os in feed | Increased level of Lactobacillus spp.; decreased level of E. coli and Enterococcus spp.; elongated villi; fewer deep crypts | [57] |
B. subtilis DSM 29784 | per os in feed | Increased FCR*, numbers of goblet cells, and superoxide dismutase activities in the jejunal mucosa; elongated villi | [58] |
Improved health, weight, the tight junction complex in necrotic enteritis-challenged broilers; increased numbers of Butyricicoccus and Faecalibacterium in the intestine; raised expression of INF-γ and IL-12 | [59] | ||
E. faecium PNC01 | per os in feed | Inhibition of the growth of Salmonella typhimurium; elongated villi; reduced the length of jejunum and ileum; increased number of Firmicutes and Lactobacillus; reduced the number of Bacteroides | [60] |
Strains | Form/Way of Administration | Effect | References |
---|---|---|---|
Okara fermented soy milk with L. delbrueckii subsp. delbrueckii TUA4408L/probiotic | per os 1 | Better meat quality and growth performance; increased level of lactobacilli and Lactococcus | [68] |
L. delebureckii CCTCC M 207040/probiotic | per os in feed 1 | Reduced crypt depth in the jejunum and ileum; increased gut integrity | [69] |
C. butyricum ZJU-F1 and B. licheniformis/probiotic | [70] | ||
L. salivarius MP100/probiotic | per os 1,3 | Antagonistic activity against C. perfringens MP34, E. faecalis MP42, S. aureus MP83, Streptococcus suis MP205, Trueperella pyogenes MP214, E. coli MP73 (F4) and MP77 (F18), S. Typhimurium MP55, and Klebsiella pneumoniae MP87 | [71] |
Lactobacillus gasseri LA39 and Limosilactobacillus frumenti/probiotic | feces and saline solutions/per os 2 | Prevent diarrhea after weaning | [72] |
L. salivarius 144 and 160/probiotic | per os 1 | Increased level of lactobacilli and reduction level of Bacteroides and Fibrobacter in the gastrointestinal tract; reduced diarrhea | [73] |
L. plantarum SC01/probiotic | Microcapsulation/per os 2 | Antagonistic activity against E. coli, S. aureus, B. subtilis, Salmonella sp., and L. monocytogenes | [74] |
L. plantarum 22F and 25F, and P. acidilactici 72N/probiotic | Spray drying microencapsulation/per os 2 | Improvement of intestinal integrity, elongation of intestinal villi in the jejunum, the appearance of microorganisms positively influencing the intestinal microbiome, and improved growth of individuals in the rearing cycle | [75] |
L. johnsonii XS4/probiotic | Freeze-dried/per os 3 | Increased number of weaned piglets increased litter weight | [76] |
Limosilactobacillus reuteri P7, Lactobacillus amylovorus P8, and L. johnsonii P15/probiotic | per os 3 | Positive effect on the reproductive performance of sows and the growth of weaned piglets and reduced the occurrence of diarrhea | [77] |
E. faecium DSM 7134 | per os 3 | Reduced level of E. coli in feces after weaning the piglets | [78] |
L. delbrueckii subsp. bulgaricus, L. rhamnosus, L. acidophilus, L. plantarum, Streptococcus salivarius subsp. thermophilus, Bifidobacterium bifidum, E. faecium, Candida pintolopesii, and Aspergillus oryzae/probiotic | per os 1,3 | Increased concentration of acetic, propionic, and butyric acids in the feces | [79] |
L. plantarum CAM6/probiotic | per os 3 | Improved nutritional value of milk | [80] |
B. subtilis CW4 and E. faecium CWEF/probiotic | per os 1,3 | Improvement in the quality of sows’ milk; better immunity at sows | [84] |
L. reuteri 1/probiotic | freeze-dried/per os 2 | Increased carcass yield; improved meat quality and flavor | [88] |
B. subtilis WB800 | per os 1 | Enhanced respiratory immunity | [89] |
Probiotic/Postbiotic | Form/Way of Administration | Effect | References |
---|---|---|---|
Nisin derivatives/postbiotic | Solution | Antibacterial activity against S. aureus | [101] |
Bovicin HC5/postbiotic | Solution | Bactericidal effect against L. monocytogenes, Salmonella Typhimurium, and some species of Clostridium and Bacillus | [103,104] |
L. lactis LL11 and SL153/postbiotic | Supernatant | Bactericidal effect against the most common occurring mastitis pathogen | [106] |
Bacteriocin from L. lactis CJNU 3001/postbiotic | Bacteriophage | Inhibition of the growth of S. aureus KCTC 3881 | [108] |
Lactobacillus gasseri, Limosilactobacillus reuteri, and Ligilactobacillus salivarius/postbiotic | Supernatant | Bactericidal activity against Escherichia coli O157:H7, Mycobacterium avium ssp. paratuberculosis, and Salmonella species | [112] |
L. gasseri LA806 | Live and heat-inactived | Inhibition of the growth of S. aureus; barrier and immunomodulatory | [113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamojska, D.; Nowak, A.; Nowak, I.; Macierzyńska-Piotrowska, E. Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review. Animals 2021, 11, 3431. https://doi.org/10.3390/ani11123431
Zamojska D, Nowak A, Nowak I, Macierzyńska-Piotrowska E. Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review. Animals. 2021; 11(12):3431. https://doi.org/10.3390/ani11123431
Chicago/Turabian StyleZamojska, Daria, Adriana Nowak, Ireneusz Nowak, and Ewa Macierzyńska-Piotrowska. 2021. "Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review" Animals 11, no. 12: 3431. https://doi.org/10.3390/ani11123431
APA StyleZamojska, D., Nowak, A., Nowak, I., & Macierzyńska-Piotrowska, E. (2021). Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review. Animals, 11(12), 3431. https://doi.org/10.3390/ani11123431