Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health
Abstract
:Simple Summary
Abstract
1. Introduction
2. Maternal Production and Health
2.1. Overall Mineral Nutrition
2.1.1. Reproduction
2.1.2. Health
2.2. Cobalt
2.2.1. Reproduction
2.2.2. Health
2.3. Copper
2.3.1. Reproduction
2.3.2. Health
2.4. Iron
2.4.1. Reproduction
2.4.2. Health
2.5. Manganese
2.5.1. Reproduction
2.5.2. Health
2.6. Selenium
2.6.1. Reproduction
2.6.2. Health
2.7. Zinc
2.7.1. Reproduction
2.7.2. Health
3. Colostrum and Milk Quality
3.1. Overall Mineral Nutrition
3.2. Copper
3.3. Selenium
3.4. Zinc
4. Offspring Health and Production
4.1. Overall Mineral Nutrition
4.2. Copper
4.3. Selenium
4.4. Zinc
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tait, R.; Fisher, L. Variability in individual animal’s intake of minerals offered free-choice to grazing ruminants. Anim. Feed Sci. Tech. 1996, 62, 69–76. [Google Scholar] [CrossRef]
- Olson, P.A.; Brink, D.R.; Hickok, D.T.; Carlson, M.P.; Schneider, N.R.; Deutscher, G.H.; Adams, D.C.; Colburn, D.J.; Johnson, A.B. Effects of supplementation of organic and inorganic combinations of copper, cobalt, manganese, and zinc above nutrient requirement levels on postpartum two-year-old cows. J. Anim. Sci. 1999, 77, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Stokes, R.S.; Volk, M.J.; Ireland, F.A.; Gunn, P.J.; Shike, D.W. Effect of repeated trace mineral injections on beef heifer development and reproductive performance. J. Anim. Sci. 2018, 96, 3943–3954. [Google Scholar] [CrossRef]
- Vanegas, J.A.; Reynolds, J.; Atwill, E.R. Effects of an injectable trace mineral supplement on first-service conception rate of dairy cows. J. Dairy Sci. 2004, 87, 3665–3671. [Google Scholar] [CrossRef] [Green Version]
- Short, R.E.; Bellows, R.A.; Staigmiller, R.B.; Berardinelli, J.G.; Custer, E.E. Physiological mechanisms controlling anestrus and infertility in postpartum beef cattle2. J. Anim. Sci. 1990, 68, 799–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahola, J.K.; Baker, D.S.; Burns, P.D.; Mortimer, R.G.; Enns, R.M.; Whittier, J.C.; Geary, T.W.; Engle, T.E. Effect of copper, zinc, and manganese supplementation and source on reproduction, mineral status, and performance in grazing beef cattle over a two-year period. J. Anim. Sci. 2004, 82, 2375–2383. [Google Scholar] [CrossRef] [PubMed]
- Batistel, F.; Osorio, J.S.; Tariq, M.R.; Li, C.; Caputo, J.; Socha, M.T.; Loor, J.J. Peripheral leukocyte and endometrium molecular biomarkers of inflammation and oxidative stress are altered in peripartal dairy cows supplemented with Zn, Mn, and Cu from amino acid complexes and Co from Co glucoheptonate. J. Anim. Sci. Biotechnol. 2017, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Lamb, G.C.; Brown, D.R.; Larson, J.E.; Dahlen, C.R.; Dilorenzo, N.; Arthington, J.D.; Dicostanzo, A. Effect of organic or inorganic trace mineral supplementation on follicular response, ovulation, and embryo production in superovulated angus heifers. Anim. Reprod. Sci. 2008, 106, 221–231. [Google Scholar] [CrossRef]
- Dantas, F.G.; Reese, S.T.; Filho, R.V.O.; Carvalho, R.S.; Franco, G.A.; Abbott, C.R.; Payton, R.R.; Edwards, J.L.; Russell, J.R.; Smith, J.K.; et al. Effect of complexed trace minerals on cumulus-oocyte complex recovery and in vitro embryo production in beef cattle. J. Anim. Sci. 2019, 97, 1478–1490. [Google Scholar] [CrossRef]
- Vedovatto, M.; Moriel, P.; Cooke, R.F.; Costa, D.S.; Faria, F.J.C.; Cortada Neto, I.M.; Bento, A.L.L.; Rocha, R.; Ferreira, L.C.L.; Almeida, R.G.; et al. Effects of a single trace mineral injection at beginning of fixed-time ai treatment regimen on reproductive function and antioxidant response of grazing Nellore cows. Anim. Reprod. Sci. 2019, 211, 106234. [Google Scholar] [CrossRef]
- Fujii, J.; Iuchi, Y.; Okada, F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod. Biol. Endocrinol. 2005, 3, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, R.S.; Cooke, R.F.; Rodrigues, M.C.; Cappellozza, B.I.; Mills, R.R.; Larson, C.K.; Moriel, P.; Bohnert, D.W. Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. J. Anim. Sci. 2016, 94, 1215–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanton, T.L.; Whittier, J.C.; Geary, T.W.; Kimberling, C.V.; Johnson, A.B. Effects of trace mineral supplementation on cow-calf performance, reproduction, and immune function. Prof. Anim. Sci. 2000, 16, 121–127. [Google Scholar] [CrossRef]
- Roshanzamir, H.; Rezaei, J.; Fazaeli, H. Colostrum and milk performance, and blood immunity indices and minerals of Holstein cows receiving organic Mn, Zn and Cu sources. Anim. Nutr. 2020, 6, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Girard, C.; Matte, J. Changes in serum concentrations of folates, pyridoxal, pyridoxal-5-phosphate and vitamin b12 during lactation of dairy cows fed dietary supplements of folic acid. Can. J. Anim. Sci. 1999, 79, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Duplessis, M.; Girard, C.; Santschi, D.; Laforest, J.-P.; Durocher, J.; Pellerin, D. Effects of folic acid and vitamin b12 supplementation on culling rate, diseases, and reproduction in commercial dairy herds. J. Dairy Sci. 2014, 97, 2346–2354. [Google Scholar] [CrossRef]
- Duplessis, M.; Girard, C.; Santschi, D.; Lefebvre, D.; Pellerin, D. Folic acid and vitamin B12 supplement enhances energy metabolism of dairy cows in early lactation. J. Dairy Sci. 2012, 95, 118. [Google Scholar]
- Michael, J.; Baruselli, P.S.; Campanile, G. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 2019, 125, 277–284. [Google Scholar] [CrossRef]
- Suttle, N.F. Mineral Nutrition of Livestock, 4th ed.; CABI: Oxfordshire, UK, 2010. [Google Scholar]
- Schwarz, F.; Kirchgessner, M.; Stangl, G. Cobalt requirement of beef cattle—feed intake and growth at different levels of cobalt supply. J. Anim. Physiol. Anim. Nutr. 2000, 83, 121–131. [Google Scholar] [CrossRef]
- Stangl, G.; Schwarz, F.; Müller, H.; Kirchgessner, M. Evaluation of the cobalt requirement of beef cattle based on vitamin b 12, folate, homocysteine and methylmalonic acid. Br. J. Nutr. 2000, 84, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Nazari, A.; Dirandeh, E.; Ansari-Pirsaraei, Z.; Deldar, H. Antioxidant levels, copper and zinc concentrations were associated with postpartum luteal activity, pregnancy loss and pregnancy status in Holstein dairy cows. Theriogenology 2019, 133, 97–103. [Google Scholar] [CrossRef]
- Mitchell, L.L.; Allen, K.G.; Mathias, M.M. Copper deficiency depresses rat aortae superoxide dismutase activity and prostacyclin synthesis. Prostaglandins 1988, 35, 977–986. [Google Scholar] [CrossRef]
- Gao, G.; Yi, J.; Zhang, M.; Xiong, J.; Geng, L.; Mu, C.; Yang, L. Effects of iron and copper in culture medium on bovine oocyte maturation, preimplantation embryo development, and apoptosis of blastocysts in vitro. J. Reprod. Dev. 2007, 53, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, D.E.; Anchordoquy, J.M.; Anchordoquy, J.P.; Sirini, M.A.; Testa, J.A.; Mattioli, G.A.; Furnus, C.C. Analyses of apoptosis and DNA damage in bovine cumulus cells after in vitro maturation with different copper concentrations: Consequences on early embryo development. Zygote 2016, 24, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Picco, S.J.; Rosa, D.E.; Anchordoquy, J.P.; Anchordoquy, J.M.; Seoane, A.; Mattioli, G.A.; Furnus, C.C. Effects of copper sulphate concentrations during in vitro maturation of bovine oocytes. Theriogenology 2012, 77, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Anchordoquy, J.M.; Anchordoquy, J.P.; Nikoloff, N.; Pascua, A.M.; Furnus, C.C. High copper concentrations produce genotoxicity and cytotoxicity in bovine cumulus cells. Environ. Sci. Pollut. Res. Int. 2017, 24, 20041–20049. [Google Scholar] [CrossRef] [PubMed]
- Tatemoto, H.; Sakurai, N.; Muto, N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: Role of cumulus cells. Biol. Reprod. 2000, 63, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Fatehi, A.N.; Zeinstra, E.C.; Kooij, R.V.; Colenbrander, B.; Bevers, M.M. Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate. Theriogenology 2002, 57, 1347–1355. [Google Scholar] [CrossRef]
- Ward, J.D.; Spears, J.W.; Gengelbach, G.P. Differences in copper status and copper metabolism among angus, Simmental, and Charolais cattle. J. Anim. Sci. 1995, 73, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Mullis, L.A.; Spears, J.W.; McCraw, R.L. Estimated copper requirements of Angus and Simmental heifers. J. Anim. Sci. 2003, 81, 865–873. [Google Scholar] [CrossRef]
- Fry, R.S.; Spears, J.W.; Lloyd, K.E.; O’Nan, A.T.; Ashwell, M.S. Effect of dietary copper and breed on gene products involved in copper acquisition, distribution, and use in Angus and Simmental cows and fetuses1,2. J. Anim. Sci. 2013, 91, 861–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vierboom, M.M.; Engle, T.E.; Kimberling, C.V. Effects of gestational status on apparent absorption and retention of copper and zinc in mature Angus cows and Suffolk ewes. Asian Aust. J. Anim. Sci. 2003, 16, 515–518. [Google Scholar] [CrossRef]
- Boyne, R.; Arthur, J. Effects of selenium and copper deficiency on neutrophil function in cattle. J. Comp. Pathol. 1981, 91, 271–276. [Google Scholar] [CrossRef]
- Enjalbert, F.; Salat, O.; Schelcher, F.; Lebreton, P.; Meschy, F. Effects of copper supplementation on the copper status of peripartum beef cows and their calves. Vet. Rec. 2002, 151, 50–53. [Google Scholar] [CrossRef]
- Wysocka, D.; Snarska, A.; Sobiech, P. Iron in cattle health. J. Elementology 2020, 25, 1175–1185. [Google Scholar] [CrossRef]
- Ceciliani, F.; Ceron, J.; Eckersall, P.; Sauerwein, H. Acute phase proteins in ruminants. J. Proteomics 2012, 75, 4207–4231. [Google Scholar] [CrossRef]
- Borges, A.S.; Divers, T.J.; Stokol, T.; Mohammed, O.H. Serum iron and plasma fibrinogen concentrations as indicators of systemic inflammatory diseases in horses. J. Vet. Int. Med. 2007, 21, 489–494. [Google Scholar] [CrossRef]
- Idoate, I.; Vander Ley, B.; Schultz, L.; Heller, M. Acute phase proteins in naturally occurring respiratory disease of feedlot cattle. Vet. Immunol. Immunopathol. 2015, 163, 221–226. [Google Scholar] [CrossRef]
- Milatovic, D.; Gupta, R.C. Manganese. In Veterinary Toxicology: Basic and Clinical Principles, 3rd ed.; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 445–454. [Google Scholar]
- Wilson, J.G. Bovine functional infertility in Devon and Cornwall–response to manganese therapy. Vet. Rec. 1966, 79, 562–566. [Google Scholar]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes: Vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Al-Gubory, K.H.; Bolifraud, P.; Germain, G.; Nicole, A.; Ceballos-Picot, I. Antioxidant enzymatic defence systems in sheep corpus luteum throughout pregnancy. Reproduction 2004, 128, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Spencer, T.E.; Forde, N.; Lonergan, P. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J. Dairy Sci. 2016, 99, 5941–5950. [Google Scholar] [CrossRef] [PubMed]
- Anchordoquy, J.P.; Anchordoquy, J.M.; Sirini, M.A.; Mattioli, G.; Picco, S.J.; Furnus, C.C. Effect of different manganese concentrations during in vitro maturation of bovine oocytes on DNA integrity of cumulus cells and subsequent embryo development. Reprod. Domest. Anim. 2013, 48, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Anchordoquy, J.P.; Anchordoquy, J.M.; Sirini, M.A.; Testa, J.A.; Peral-Garcia, P.; Furnus, C.C. The importance of manganese in the cytoplasmic maturation of cattle oocytes: Blastocyst production improvement regardless of cumulus cells presence during in vitro maturation. Zygote 2016, 24, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Hawkins Jr, G.; Wise, G.; Matrone, G.; Waugh, R.; Lott, W. Manganese in the nutrition of young dairy cattle fed different levels of calcium and phosphorus. J. Dairy Sci. 1955, 38, 536–547. [Google Scholar] [CrossRef]
- McClure, T. Malnutrition and infertility of cattle in Australia and New Zealand. Aust. Vet. J. 1968, 44, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Hidiroglou, M. Manganese in ruminant nutrition. Can. J. Anim. Sci. 1979, 59, 217–236. [Google Scholar] [CrossRef]
- Rojas, M.A.; Dyer, I.A.; Cassatt, W.A. Manganese deficiency in the bovine. J. Anim. Sci. 1965, 24, 664–667. [Google Scholar] [CrossRef]
- Rao, R. Manganese Deficiency and Reproductive Phenomena in Beef Cattle and Rats. Master’s Thesis, Washington State University, Pullman, WA, USA, 1963. [Google Scholar]
- Nockels, C.F. Antioxidants improve cattle immunity following stress. Anim. Feed Sci. Tech. 1996, 62, 59–68. [Google Scholar] [CrossRef]
- Genther, O.; Hansen, S. A multielement trace mineral injection improves liver copper and selenium concentrations and manganese superoxide dismutase activity in beef steers. J. Anim. Sci. 2014, 92, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Smialowicz, R.J.; Luebke, R.W.; Rogers, R.R.; Riddle, M.M.; Rowe, D.G. Manganese chloride enhances natural cell-mediated immune effector cell function: Effects on macrophages. Immunopharmacology 1985, 9, 1–11. [Google Scholar] [CrossRef]
- Spears, J.W.; Weiss, W.P. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet. J. 2008, 176, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ceko, M.; Hummitzsch, K.; Hatzirodos, N.; Bonner, W.; Aitken, J.; Russell, D.; Lane, M.; Rodgers, R.; Harris, H. Correction: X-ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics 2015, 7, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basini, G.; Tamanini, C. Selenium stimulates estradiol production in bovine granulosa cells: Possible involvement of nitric oxide. Domest. Anim. Endocrinol. 2000, 18, 1–17. [Google Scholar] [CrossRef]
- Grazul-Bilska, A.T.; Caton, J.S.; Arndt, W.; Burchill, K.; Thorson, C.; Borowczyk, E.; Bilski, J.J.; Redmer, D.A.; Reynolds, L.P.; Vonnahme, K.A. Cellular proliferation and vascularization in ovine fetal ovaries: Effects of undernutrition and selenium in maternal diet. Reproduction 2009, 137, 699–707. [Google Scholar] [CrossRef] [Green Version]
- Lizarraga, R.M.; Anchordoquy, J.M.; Galarza, E.M.; Farnetano, N.A.; Carranza-Martin, A.; Furnus, C.C.; Mattioli, G.A.; Anchordoquy, J.P. Sodium selenite improves in vitro maturation of bos primigenius taurus oocytes. Biol. Trace Elem. Res. 2019, 197, 149–158. [Google Scholar] [CrossRef]
- Brzezinska-Slebodzinska, E.; Miller, J.; Quigley III, J.; Moore, J.; Madsen, F. Antioxidant status of dairy cows supplemented prepartum with vitamin E and selenium. J. Dairy Sci. 1994, 77, 3087–3095. [Google Scholar] [CrossRef]
- D’Aleo, L.; Shelford, J.; Fisher, L. Selenium-sulphur interactions and their influence on fertility in dairy-cattle. Can. J. Anim. Sci. 1983, 63, 999. [Google Scholar]
- Ranches, J.; Vendramini, J.M.B.; Arthington, J.D. Effects of selenium biofortification of hayfields on measures of selenium status in cows and calves consuming these forages. J. Anim. Sci. 2017, 95, 120–128. [Google Scholar] [CrossRef]
- Hall, J.; Harwell, A.; Van Saun, R.J.; Vorachek, W.; Stewart, W.; Galbraith, M.; Hooper, K.; Hunter, J.; Mosher, W.; Pirelli, G. Agronomic biofortification with selenium: Effects on whole blood selenium and humoral immunity in beef cattle. Anim. Feed Sci. Tech. 2011, 164, 184–190. [Google Scholar] [CrossRef]
- Jaaf, S.; Batty, B.; Krueger, A.; Estill, C.T.; Bionaz, M. Selenium biofortified alfalfa hay fed in low quantities improves selenium status and glutathione peroxidase activity in transition dairy cows and their calves. J. Dairy Res. 2020, 87, 184–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Ghany, H.; López-Arellano, R.; Revilla-Vázquez, A.; Ramírez-Bribiesca, E.; Tórtora-Pérez, J. The relationship between fetal and maternal selenium concentrations in sheep and goats. Small Rumin. Res. 2007, 73, 174–180. [Google Scholar] [CrossRef]
- Rock, M.; Kincaid, R.; Carstens, G. Effects of prenatal source and level of dietary selenium on passive immunity and thermometabolism of newborn lambs. Small Rumin. Res. 2001, 40, 129–138. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Enjalbert, F.; Lebreton, P.; Salat, O.; Schelcher, F. Effects of pre-or postpartum selenium supplementation on selenium status in beef cows and their calves. J. Anim. Sci. 1999, 77, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Spears, J.W. Micronutrients and immune function in cattle. Proc. Nutr. Soc. 2000, 59, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Arthur, J.R.; Boyne, R. Superoxide dismutase and glutathione peroxidase activities in neutrophils from selenium deficient and copper deficient cattle. Life Sci. 1985, 36, 1569–1575. [Google Scholar] [CrossRef]
- Anchordoquy, J.M.; Picco, S.J.; Seoane, A.; Anchordoquy, J.P.; Ponzinibbio, M.V.; Mattioli, G.A.; Peral Garcia, P.; Furnus, C.C. Analysis of apoptosis and DNA damage in bovine cumulus cells after exposure in vitro to different zinc concentrations. Cell Biol. Int. 2011, 35, 593–597. [Google Scholar] [CrossRef] [Green Version]
- Picco, S.J.; Anchordoquy, J.M.; de Matos, D.G.; Anchordoquy, J.P.; Seoane, A.; Mattioli, G.A.; Errecalde, A.L.; Furnus, C.C. Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes. Theriogenology 2010, 74, 1141–1148. [Google Scholar] [CrossRef]
- Wooldridge, L.K.; Nardi, M.E.; Ealy, A.D. Zinc supplementation during in vitro embryo culture increases inner cell mass and total cell numbers in bovine blastocysts. J. Anim. Sci. 2019, 97, 4946–4950. [Google Scholar] [CrossRef]
- Wilson, R.L.; Leemaqz, S.Y.; Goh, Z.; McAninch, D.; Jankovic-Karasoulos, T.; Leghi, G.E.; Phillips, J.A.; Colafella, K.M.; Tran, C.; O’Leary, S. Zinc is a critical regulator of placental morphogenesis and maternal hemodynamics during pregnancy in mice. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, L.P.; Caton, J.S.; Redmer, D.A.; Grazul-Bilska, A.T.; Vonnahme, K.A.; Borowicz, P.P.; Luther, J.S.; Wallace, J.M.; Wu, G.; Spencer, T.E. Evidence for altered placental blood flow and vascularity in compromised pregnancies. J. Physiol. 2006, 572, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.H.; Miller, J.K. Effect of supplemental dietary vitamin e and zinc on reproductive performance of dairy cows and heifers fed excess iron. J. Dairy Sci. 1998, 81, 2693–2699. [Google Scholar] [CrossRef]
- Hansard, S.L.; Mohammed, A.S.; Turner, J.W. Gestation age effects upon maternal-fetal zinc utilization in the bovine. J. Anim. Sci. 1968, 27, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Nayeri, A.; Upah, N.; Sucu, E.; Sanz-Fernandez, M.; DeFrain, J.; Gorden, P.; Baumgard, L. Effect of the ratio of zinc amino acid complex to zinc sulfate on the performance of Holstein cows. J. Dairy Sci. 2014, 97, 4392–4404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan, E. The influence of husbandry on colostrum yield and immunoglobulin concentration in beef cows. Br. Vet. J. 1977, 133, 120–125. [Google Scholar] [CrossRef]
- Kume, S.-I.; Tanabe, S. Effect of parity on colostral mineral concentrations of Holstein cows and value of colostrum as a mineral source for newborn calves. J. Dairy Sci. 1993, 76, 1654–1660. [Google Scholar] [CrossRef]
- Salih, Y.; McDowell, L.; Hentges, J.; Mason Jr, R.; Wilcox, C. Mineral content of milk, colostrum, and serum as affected by physiological state and mineral supplementation. J. Dairy Sci. 1987, 70, 608–612. [Google Scholar] [CrossRef]
- Formigoni, A.; Fustini, M.; Archetti, L.; Emanuele, S.; Sniffen, C.; Biagi, G. Effects of an organic source of copper, manganese and zinc on dairy cattle productive performance, health status and fertility. Anim. Feed Sci. Tech. 2011, 164, 191–198. [Google Scholar] [CrossRef]
- Boland, T.; Brophy, P.; Callan, J.; Quinn, P.; Nowakowski, P.; Crosby, T. The effects of mineral supplementation to ewes in late pregnancy on colostrum yield and immunoglobulin g absorption in their lambs. Livestock Prod. Sci. 2005, 97, 141–150. [Google Scholar] [CrossRef]
- Muehlenbein, E.; Brink, D.; Deutscher, G.; Carlson, M.P.; Johnson, A. Effects of inorganic and organic copper supplemented to first-calf cows on cow reproduction and calf health and performance. J. Anim. Sci. 2001, 79, 1650–1659. [Google Scholar] [CrossRef]
- Slavik, P.; Illek, J.; Brix, M.; Hlavicova, J.; Rajmon, R.; Jilek, F. Influence of organic versus inorganic dietary selenium supplementation on the concentration of selenium in colostrum, milk and blood of beef cows. Acta Vet. Scand. 2008, 50, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przybylska, J.; Albera, E.; Kankofer, M. Antioxidants in bovine colostrum. Reprod. Domest. Anim. 2007, 42, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Stewart, W.C.; Bobe, G.; Vorachek, W.R.; Pirelli, G.J.; Mosher, W.D.; Nichols, T.; Saun, R.J.V.; Forsberg, N.E.; Hall, J.A. Organic and inorganic selenium: Ii. Transfer efficiency from ewes to lambs. J. Anim. Sci. 2012, 90, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Awadeh, F.; Kincaid, R.; Johnson, K. Effect of level and source of dietary selenium on concentrations of thyroid hormones and immunoglobulins in beef cows and calves. J. Anim. Sci. 1998, 76, 1204–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archibald, J. Zinc in cows’ milk. J. Dairy Sci. 1944, 27, 257–261. [Google Scholar] [CrossRef]
- Miller, W.; Clifton, C.; Fowler, P.; Perkins, H. Influence of high levels of dietary zinc on zinc in milk, performance and biochemistry of lactating cows. J. Dairy Sci. 1965, 48, 450–453. [Google Scholar] [CrossRef]
- Pechová, A.; Pavlata, L.; Lokajová, E. Zinc supplementation and somatic cell count in milk of dairy cows. Acta Veterinaria Brno. 2006, 75, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Rocha, T.; Franciosi, C.; Nociti, R.; Silva, P.; Sampaio, A.; Fagliari, J. Influence of parity on concentrations of enzymes, proteins, and minerals in the milk of cows. Arq. Bras. Med. Vet. Zootec. 2014, 66, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Kincaid, R.L. Assessment of trace mineral status of ruminants: A review. Proc. Am. Soc. Anim. Sci. 1999, 77, 41284. [Google Scholar] [CrossRef]
- Gengelbach, G.P.; Ward, J.D.; Spears, J.W.; Brown, T.T. Effects of copper deficiency and copper deficiency coupled with high dietary iron or molybdenum on phagocytic cell function and response of calves to a respiratory disease challenge. J. Anim. Sci. 1997, 75, 1112–1118. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, R.; Naresh, R.; Patra, R.C.; Swarup, D. Erythrocyte lipid peroxides and blood zinc and copper concentrations in acute undifferentiated diarrhoea in calves. Vet. Res. Commun. 2006, 30, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.B.; Reynolds, L.P.; Redmer, D.A.; Caton, J.S. Maternal and fetal tissue selenium loads in nulliparous ewes fed supranutritional and excessive selenium during mid- to late pregnancy. J. Anim. Sci. 2009, 87, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.J. Zinc nutrition of cattle: A review. J. Dairy Sci. 1970, 53, 1123–1135. [Google Scholar] [CrossRef]
- Masters, D.G.; Moir, R.J. Effect of zinc deficiency on the pregnant ewe and developing foetus. Br. J. Nutr. 1983, 49, 365–372. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Emon, M.; Sanford, C.; McCoski, S. Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health. Animals 2020, 10, 2404. https://doi.org/10.3390/ani10122404
Van Emon M, Sanford C, McCoski S. Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health. Animals. 2020; 10(12):2404. https://doi.org/10.3390/ani10122404
Chicago/Turabian StyleVan Emon, Megan, Carla Sanford, and Sarah McCoski. 2020. "Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health" Animals 10, no. 12: 2404. https://doi.org/10.3390/ani10122404
APA StyleVan Emon, M., Sanford, C., & McCoski, S. (2020). Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health. Animals, 10(12), 2404. https://doi.org/10.3390/ani10122404