Application of the “SCOBY” and Kombucha Tea for the Production of Fermented Milk Drinks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Kombucha Tea
2.1.2. Milk Inoculum (Lactose and Lactose-Free)
2.1.3. Fermented Milk Beverage (Lactose and Lactose-Free)
2.2. Methods
2.2.1. Sensory Analysis
2.2.2. Microbiological Analysis
2.2.3. pH Analysis
2.2.4. Chemicals
- HPLC analysis of sugars
- HPLC analysis of organic acids
- Vitamin C determination
2.2.5. Statistical Analysis
3. Results
3.1. Inoculum and Fermented Milk Drinks’ Microbial Characteristics and pH Value
3.2. Determination of Organic Acids and Carbohydrate
3.3. Sensory Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Griffiths, J.C.; Abernethy, D.R.; Schuber, S.; Williams, R.L. Functional food ingredient quality: Opportunities to improve public health by compendial standardization. J. Funct. Foods 2009, 1, 128–130. [Google Scholar] [CrossRef]
- Diplock, A.T.D.; Agget, P.J.; Ashwell, M.; Bornet, F.; Fern, E.B.; Roberfroid, M.B. Scientific Concepts of Functional Foods in Europe Consensus Document. Br. J. Nutr. 1999, 81, S1–S27. [Google Scholar] [CrossRef] [Green Version]
- Santeramo, F.G.; Carlucci, D.; De Devitiis, B.; Seccia, A.; Stasi, A.; Viscecchia, R.; Nardone, G. Emerging trends in European food, diets and food industry. Food Res. Int. Ott. Ont 2018, 104, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Urala, N.; Lähteenmäki, L. Attitudes behind consumers’ willingness to use functional foods. Food Qual. Prefer. 2004, 15, 793–803. [Google Scholar] [CrossRef]
- Shiby, V.K.; Mishra, H.N. Fermented Milks and Milk Products as Functional Foods—A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 482–496. [Google Scholar] [CrossRef]
- Antolak, H.; Kręgiel, D. Acetic acid bacteria—Taxonomy, ecology, and industrial application. Zywnosc Nauka Technol. Jakosc 2015. [Google Scholar] [CrossRef]
- Chandan, R.C.; Kilara, A. (Eds.) Manufacturing Yogurt and Fermented Milks; John Wiley & Sons: Oxford, UK, 2013; ISBN 978-1-119-96708-8. [Google Scholar]
- Farnworth, E.R. Kefir—A complex probiotic. Food Sci. Technol. Bull. Funct. Foods 2005, 2, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Zoumpopoulou, G.; Kazou, M.; Alexandraki, V.; Angelopoulou, A.; Papadimitriou, K.; Pot, B.; Tsakalidou, E. Probiotics and Prebiotics: An Overview on Recent Trends. Probiotics Prebiotics Anim. Health Food Saf. 2018, 1–34. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; World Health Organization. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation; FAO food and nutrition paper; Food and Agriculture Organization of the United Nations: Rome, Italy; World Health Organization: Rome, Italy, 2006; ISBN 978-92-5-105513-7. [Google Scholar]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Kamada, N.; Maeda, K.; Inoue, N.; Hisamatsu, T.; Okamoto, S.; Hong, K.S.; Yamada, T.; Watanabe, N.; Tsuchimoto, K.; Ogata, H.; et al. Nonpathogenic Escherichia coli strain Nissle 1917 inhibits signal transduction in intestinal epithelial cells. Infect. Immun. 2008, 76, 214–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maqueda, M.; Sánchez-Hidalgo, M.; Fernández, M.; Montalbán-López, M.; Valdivia, E.; Martínez-Bueno, M. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol. Rev. 2008, 32, 2–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, F.A.C.; Balciunas, E.M.; Converti, A.; Cotter, P.D.; de Souza Oliveira, R.P. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol. Adv. 2013, 31, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Meriluoto, J.; Salminen, S. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett. Appl. Microbiol. 2007, 45, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C.; Wu, Q.K.; Piekkola, S.; Gratz, S.; Mykkänen, H.; El-Nezami, H. Lactobacillus rhamnosus strain GG restores alkaline phosphatase activity in differentiating Caco-2 cells dosed with the potent mycotoxin deoxynivalenol. Food Chem. Toxicol. 2008, 46, 2118–2123. [Google Scholar] [CrossRef] [PubMed]
- Neffe-Skocińska, K.; Dybka-St, K.; Antolak, H. Isolation and identification of acetic acid bacteria with potential prohealth properties. Żywność Nauka Technol. Jakość 2019, 26, 183–195. [Google Scholar] [CrossRef]
- Haghshenas, B.; Nami, Y.; Abdullah, N.; Radiah, D.; Rosli, R.; Barzegari, A.; Khosroushahi, A.Y. Potentially probiotic acetic acid bacteria isolation and identification from traditional dairies microbiota. Int. J. Food Sci. Technol. 2015, 50, 1056–1064. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Milk and Milk Products; Codex alimentarius; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007; ISBN 978-92-5-105837-4. [Google Scholar]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A Review on Kombucha Tea—Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Leal, J.M.; Suárez, L.V.; Jayabalan, R.; Oros, J.H.; Escalante-Aburto, A. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA J. Food 2018, 16, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.-P.; Taillandier, P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef]
- Nurikasari, M.; Puspitasari, Y.; Siwi, R.P.Y. Characterization and Analysis Kombucha Tea Antioxidant Activity Based On Long Fermentation as a Beverage Functional. J. Glob. Res. Public Health 2017, 2, 90–96. [Google Scholar]
- Chakravorty, S.; Bhattacharya, S.; Chatzinotas, A.; Chakraborty, W.; Bhattacharya, D.; Gachhui, R. Kombucha tea fermentation: Microbial and biochemical dynamics. Int. J. Food Microbiol. 2016, 220, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Kapp, J.M.; Sumner, W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Jayabalan, R.; Malini, K.; Sathishkumar, M.; Swaminathan, K.; Yun, S.-E. Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Sci. Biotechnol. 2010, 19, 843–847. [Google Scholar] [CrossRef]
- Bogdan, M.; Justine, S.; Filofteia, D.C.; Petruța, C.C.; Gabriela, L.; Roxana, U.E.; Florentina, M. Lactic acid bacteria strains isolated from Kombucha with potential probiotic effect. Rom. Biotechnol. Lett. 2018, 23, 7. [Google Scholar]
- Ayed, L.; Ben Abid, S.; Hamdi, M. Development of a beverage from red grape juice fermented with the Kombucha consortium. Ann. Microbiol. 2017, 67, 111–121. [Google Scholar] [CrossRef]
- Watawana, M.I.; Jayawardena, N.; Gunawardhana, C.B.; Waisundara, V.Y. Enhancement of the antioxidant and starch hydrolase inhibitory activities of king coconut water (Cocos nucifera var. aurantiaca) by fermentation with kombucha ‘tea fungus’. Int. J. Food Sci. Technol. 2016, 51, 490–498. [Google Scholar] [CrossRef]
- Watawana, M.I.; Jayawardena, N.; Waisundara, V.Y. Enhancement of the Functional Properties of Coffee through Fermentation by “Tea Fungus” (Kombucha). J. Food Process. Preserv. 2015, 39, 2596–2603. [Google Scholar] [CrossRef]
- Kruk, M.; Wójcik, T.; Trząskowska, M. Application of Kombucha tea brew and SCOBY symbiotic culture to produce fermented milk beverage. Żywność Nauka Technol. Jakość 2019, 97–108. [Google Scholar] [CrossRef]
- Malbaša, R.; Vitas, J.; Lončar, E.; Grahovac, J.; Milanović, S. Optimisation of the antioxidant activity of kombucha fermented milk products. Czech. J. Food Sci. 2014, 32, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Malbaša, R.V.; Milanović, S.D.; Lončar, E.S.; Djurić, M.S.; Carić, M.Đ.; Iličić, M.D.; Kolarov, L. Milk-based beverages obtained by Kombucha application. Food Chem. 2009, 112, 178–184. [Google Scholar] [CrossRef]
- ISO 13299:2016 Sensory Analysis-Methodology-General Guidance for Establishing a Sensory Profile; ISO: Geneva, Switzerland, 2016.
- Zhang, Y.; Vadlani, P.V. d-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioprocess. Biosyst. Eng. 2013, 36, 1897–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usenik, V.; Fabčič, J.; Štampar, F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chem. 2008, 107, 185–192. [Google Scholar] [CrossRef]
- Fernandez-Garcia, E.; McGregor, J.U. Determination of Organic Acids During the Fermentation and Cold Storage of Yogurt1. J. Dairy Sci. 1994, 77, 2934–2939. [Google Scholar] [CrossRef]
- Ścibisz, I.; Ziarno, M.; Mitek, M. Color stability of fruit yogurt during storage. J. Food Sci. Technol. 2019, 56, 1997–2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chebrolu, K.K.; Jayaprakasha, G.K.; Yoo, K.S.; Jifon, J.L.; Patil, B.S. An improved sample preparation method for quantification of ascorbic acid and dehydroascorbic acid by HPLC. LWT 2012, 47, 443–449. [Google Scholar] [CrossRef]
- Chotyakul, N.; Chotyakul, N.; Pateiro-Moure, M.; Martínez-Carballo, E.; Saraiva, J.; Torres, J.A.; Pérez-Lamela, C. Development of an improved extraction and HPLC method for the measurement of ascorbic acid in cows’ milk from processing plants and retail outlets. Int. J. Food Sci. Technol. 2014, 49, 679–688. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Q.; Wan, H.; Guowei, S.; Li, H. Effect of Total Inoculum Size Containing Lactobacillus acidophilus or Lactobacillus casei on Fermentation of Goat Milk. Adv. J. Food Sci. Technol. 2015, 7, 183–186. [Google Scholar] [CrossRef]
- Chen, T.-H.; Wang, S.-Y.; Chen, K.-N.; Liu, J.-R.; Chen, M.-J. Microbiological and chemical properties of kefir manufactured by entrapped microorganisms isolated from kefir grains. J. Dairy Sci. 2009, 92, 3002–3013. [Google Scholar] [CrossRef] [Green Version]
- Garrote, G.L.; Abraham, A.G.; De Antoni, G.L. Chemical and microbiological characterisation of kefir grains. J. Dairy Res. 2001, 68, 639–652. [Google Scholar] [CrossRef]
- Kanurić, K.G.; Milanović, S.D.; Ikonić, B.B.; Lončar, E.S.; Iličić, M.D.; Vukić, V.R.; Vukić, D.V. Kinetics of lactose fermentation in milk with kombucha starter. J. Food Drug Anal. 2018, 26, 1229–1234. [Google Scholar] [CrossRef] [Green Version]
- Marsh, A.; O’Sullivan, O.; Hill, C.; Ross, R.; Cotter, P. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol. 2014, 38, 171–178. [Google Scholar] [CrossRef]
- Iličić, M.; Kanuric, K.; Milanović, S.; Lončar, E.; Djurić, M.; Malbaša, R. Lactose fermentation by Kombucha—A process to obtain new milk–based beverages. Romanian Biotechnol. Lett. 2012, 17, 7013–7021. [Google Scholar]
- Akuzawa, R.; Miura, T.; Surono, I.S. Fermented Milks | Asian Fermented Milks. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 507–511. ISBN 978-0-12-374407-4. [Google Scholar]
- Rattray, F.P.; O’Connell, M.J. Fermented Milks | Kefir. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 518–524. ISBN 978-0-12-374407-4. [Google Scholar]
- Irigoyen, A. Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chem. 2005, 90, 613–620. [Google Scholar] [CrossRef]
- De Filippis, F.; Troise, A.D.; Vitaglione, P.; Ercolini, D. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiol. 2018, 73, 11–16. [Google Scholar] [CrossRef]
- Neffe-Skocińska, K.; Sionek, B.; Ścibisz, I.; Kołożyn-Krajewska, D. Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA J. Food 2017, 15, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Arslan, S. A review: Chemical, microbiological and nutritional characteristics of kefir. CyTA J. Food 2015, 13, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Vukic, V.R.; Hrnjez, D.V.; Kanuric, K.G.; Milanovic, S.D.; Iličic, M.D.; Torbica, A.M.; Tomic, J.M. The Effect of Kombucha Starter Culture on the Gelation Process, Microstructure and Rheological Properties during Milk Fermentation. J. Texture Stud. 2014, 45, 261–273. [Google Scholar] [CrossRef]
- Spasenija, M.; Katarina, K.; Vladimir, V.; Dajana, H.; Mirela, I.; Marjan, R.; Maja, M. Physicochemical and textural properties of kombucha fermented dairy products. Afr. J. Biotechnol. 2012, 11, 2320–2327. [Google Scholar] [CrossRef]
- Karagül-Yüceer, Y.; Drake, M. Sensory analysis of yogurt. In Manufacturing Yogurt and Fermented Milks, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2013; pp. 353–367. ISBN 978-1-118-48130-1. [Google Scholar]
- Roginski, H. Fermented Milks. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 496–502. ISBN 978-0-12-374407-4. [Google Scholar]
- Robinson, R.K. Fermented Milks | Yogurt: Types and Manufacture. In Encyclopedia of Dairy Sciences; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2002; pp. 525–528. ISBN 978-0-12-374407-4. [Google Scholar]
- Özer, B.H.; Kirmaci, H.A. Functional milks and dairy beverages. Int. J. Dairy Technol. 2010, 63, 1–15. [Google Scholar] [CrossRef]
- Vedamuthu, E.R. Starter cultures for yogurt and fermented milks. In Manufacturing Yogurt and Fermented Milks, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2013; pp. 115–148. ISBN 978-1-118-48130-1. [Google Scholar]
- Ohlsson, J.A.; Johansson, M.; Hansson, H.; Abrahamson, A.; Byberg, L.; Smedman, A.; Lindmark-Månsson, H.; Lundh, Å. Lactose, glucose and galactose content in milk, fermented milk and lactose-free milk products. Int. Dairy J. 2017, 73, 151–154. [Google Scholar] [CrossRef]
- Güzel-Seydim, Z.B.; Seydim, A.C.; Greene, A.K.; Bodine, A.B. Determination of Organic Acids and Volatile Flavor Substances in Kefir during Fermentation. J. Food Compos. Anal. 2000, 13, 35–43. [Google Scholar] [CrossRef]
- Dursun, A.; Güler, Z.; Şekerli, Y.E. Characterization of volatile compounds and organic acids in ultra-high-temperature milk packaged in tetra brik cartons. Int. J. Food Prop. 2017, 20, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Vénica, C.I.; Perotti, M.C.; Bergamini, C.V. Organic acids profiles in lactose-hydrolyzed yogurt with different matrix composition. Dairy Sci. Technol. 2014, 94, 561–580. [Google Scholar] [CrossRef] [Green Version]
- Prust, C.; Hoffmeister, M.; Liesegang, H.; Wiezer, A.; Fricke, W.F.; Ehrenreich, A.; Gottschalk, G.; Deppenmeier, U. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat. Biotechnol. 2005, 23, 195–200. [Google Scholar] [CrossRef]
- Yang, Z.; Ji, B.; Li, B.; Luo, Y.; Yang, L.; Li, T. Symbiosis between Microorganisms from Kombucha and Kefir: Potential Significance to the Enhancement of Kombucha Function. Appl. Biochem. Biotechnol. 2008, 160, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Sarkaya, P.; Akan, E.; Kinik, O. Use of kombucha culture in the production of fermented dairy beverages. LWT 2020, 110326. [Google Scholar] [CrossRef]
- Guillamón, J.M.; Mas, A. Chapter 9—Acetic Acid Bacteria. In Molecular Wine Microbiology; Carrascosa, A.V., Muñoz, R., González, R., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 227–255. ISBN 978-0-12-375021-1. [Google Scholar]
Inoculum Type | Microbial Species (log CFU mL−1) | pH Value | |||
---|---|---|---|---|---|
LAB | BB | AAB | Yeast | ||
LM-12 | 9.23 ± 0.67 a | 7.46 ± 0.31 a | 9.20 ± 0.45 a | 5.58 ± 0.04 a | 4.67 ± 0.02 ac |
LM-24 | 8.94 ± 1.01 a | 7.28 ± 0.23 a | 7.90 ± 0.60 b | 5.30 ± 0.08 b | 4.28 ± 0.04 b |
LFM-12 | 9.19 ± 0.11 a | 7.92 ± 0.37 a | 9.01 ± 0.07 a | 5.99 ± 0.43 abc | 4.67 ± 0.03 ac |
LFM-24 | 10.23 ± 0.13 a | 7.40 ± 0.29 a | 8.70 ± 0.95 a | 6.58 ± 0.48 c | 4.38 ± 0.03 d |
Product Type | Microbial Species (log CFU mL−1) | pH Value | |||
---|---|---|---|---|---|
LAB | BB | AAB | Yeast | ||
LM-12-2.5 | 9.67 ± 0.35 a | 7.01 ± 0.23 a | 9.32 ± 0.78 a | 6.37 ± 1.86 a | 4.66 ± 0.05 a |
LM-12-5 | 9.20 ± 0.15 a | 6.71 ± 0.38 a | 9.23 ± 0.24 a | 4.09 ± 0.08 a | 4.53 ± 0.05 b |
LM-24-2.5 | 9.32 ± 0.23 a | 7.08 ± 0.09 a | 8.34 ± 0.55 b | 4.26 ± 0.05 a | 4.70 ± 0.04 a |
LM-24-5 | 9.50 ± 0.52 a | 7.13 ± 0.10 a | 8.77 ± 0.11 ab | 5.31 ± 1.52 a | 4.68 ± 0.04 a |
LFM-12-2.5 | 9.32 ± 0.30 a | 8.22 ± 0.84 b | 8.76 ± 0.16 ab | 4.91 ± 1.36 a | 4.65 ± 0.06 a |
LFM-12-5 | 9.28 ± 0.04 a | 6.85 ± 0.15 a | 8.83 ± 0.05 ab | 5.12 ± 1.49 a | 4.56 ± 0.01 b |
LFM-24-2.5 | 9.08 ± 0.21 a | 7.86 ± 0.71 c | 9.14 ± 0.58 ab | 5.40 ± 2.00 a | 4.71 ± 0.04 a |
LFM-24-5 | 9.67 ± 0.69 a | 7.79 ± 0.88 c | 9.45 ± 0.66 a | 6.35 ± 1.87 a | 4.70 ± 0.03 a |
Product Type | Content (g/100 g) | Vitamin C Content (mg/100 g) | Organic Acid Content (g/100 g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Lactose | Glucose | Galactose | Lactic Acid | Citric Acid | Orotic Acid | Glucuronic Acid | Pyruvic Acid | Acetic Acid | ||
LM-C | 6.53 ± 0.04 a | nd | 0.09 ± 0.01 a | 0.33 ± 0.03 a | 0.01 ± 0.00 a | 0.15 ± 0.01 a | 0.08 ± 0.01 a | nd | 0.05 ± 0.00 a | nd |
LM-12-2.5 | 4.83 ± 0.07 b | nd | 0.79 ± 0.03 b | 0.30 ± 0.02 a | 0.70 ± 0.02 b | 0.15 ± 0.01 a | 0.07 ± 0.01 a | 0.04 ± 0.00 a | 0.02 ± 0.00 b | nd |
LM-12-5 | 4.76 ± 0.04 c | nd | 0.84 ± 0.04 c | 0.30 ± 0.02 a | 0.70 ± 0.02 b | 0.15 ± 0.01 a | 0.08 ± 0.01 a | 0.03 ± 0.00 b | 0.02 ± 0.00 b | nd |
LM-24-2.5 | 3.74 ± 0.04 d | nd | 1.25 ± 0.04 d | 0.32 ± 0.02 a | 0.77 ± 0.02 c | 0.14 ± 0.01 a | 0.08 ± 0.01 a | 0.04 ± 0.00 c | 0.02 ± 0.00 b | nd |
LM-24-5 | 3.69 ± 0.07 e | nd | 1.18 ± 0.02 e | 0.29 ± 0.01 a | 0.76 ± 0.02 c | 0.14 ± 0.01 a | 0.07 ± 0.01 a | 0.04 ± 0.00 d | 0.02 ± 0.00 b | nd |
LFM-C | nd | 3.27 ± 0.02 a | 4.28 ± 0.03 f | 0.38 ± 0.03 a | 0.01 ± 0.00 a | 0.18 ± 0.01 a | 0.10 ± 0.01 a | nd | 0.03 ± 0.00 a | nd |
LFM-12-2.5 | nd | 2.46 ± 0.05 b | 4.29 ± 0.02 f | 0.35 ± 0.02 a | 0.58 ± 0.01 b | 0.17 ± 0.01 a | 0.09 ± 0.01 a | 0.03 ± 0.00 e | 0.02 ± 0.00 b | nd |
LFM-12-5 | nd | 2.41 ± 0.04 c | 4.24 ± 0.05 f | 0.35 ± 0.03 a | 0.60 ± 0.01 b | 0.17 ± 0.01 a | 0.09 ± 0.01 a | 0.03 ± 0.00 f | 0.02 ± 0.00 b | nd |
LFM-24-2.5 | nd | 2.18 ± 0.03 d | 4.03 ± 0.07 g | 0.36 ± 0.02 a | 0.66 ± 0.01 c | 0.16 ± 0.01 a | 0.09 ± 0.01 a | 0.04 ± 0.00 g | 0.02 ± 0.00 b | nd |
LFM-24-5 | nd | 2.02 ± 0.04 e | 3.97 ± 0.07 h | 0.35 ± 0.02 a | 0.67 ± 0.01 c | 0.16 ± 0.01 a | 0.09 ± 0.00 a | 0.04 ± 0.00 h | 0.02 ± 0.00 b | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruk, M.; Trząskowska, M.; Ścibisz, I.; Pokorski, P. Application of the “SCOBY” and Kombucha Tea for the Production of Fermented Milk Drinks. Microorganisms 2021, 9, 123. https://doi.org/10.3390/microorganisms9010123
Kruk M, Trząskowska M, Ścibisz I, Pokorski P. Application of the “SCOBY” and Kombucha Tea for the Production of Fermented Milk Drinks. Microorganisms. 2021; 9(1):123. https://doi.org/10.3390/microorganisms9010123
Chicago/Turabian StyleKruk, Marcin, Monika Trząskowska, Iwona Ścibisz, and Patryk Pokorski. 2021. "Application of the “SCOBY” and Kombucha Tea for the Production of Fermented Milk Drinks" Microorganisms 9, no. 1: 123. https://doi.org/10.3390/microorganisms9010123