Development and Validation of an In-House Library for Filamentous Fungi Identification by MALDI-TOF MS in a Clinical Laboratory in Medellin (Colombia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Strains and Clinical Isolates
2.2. Molecular Identification
2.2.1. Preparation of Mycelium for the Extraction of DNA
2.2.2. DNA Extraction
2.2.3. PCR Amplification and DNA Sequencing
2.2.4. DNA Sequence Processing and Molecular Identification
2.3. Protein Extraction and Development In-House Spectra Library
2.4. Validation of In-House Library and Identification of Clinical Isolates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peman, J.; Salavert, M. General epidemiology of invasive fungal disease. Enferm. Infecc. Microbiol. Clin. 2012, 30, 90–98. [Google Scholar] [CrossRef]
- Enoch, D.A.; Yang, H.; Aliyu, S.H.; Micallef, C. The changing epidemiology of invasive fungal infections. Methods Mol. Biol. 2017, 1508, 17–65. [Google Scholar] [CrossRef] [PubMed]
- Monod, M.; Lurati, M.; Baudraz, R.F. Diagnosis of non dermatophyte onychomycosis ant its relevance for treatment. Rev. Med. Suisse 2013, 9, 730–733. [Google Scholar] [PubMed]
- Iatta, R.; Nuccio, F.; Immediato, D.; Mosca, A.; De Carlo, C.; Miragliotta, G. Species distribution and in vitro azole susceptibility of Aspergillus section Nigri isolates from clinical and environmental settings. J. Clin. Microbiol. 2016, 54, 2365–2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozel, T.R.; Wickes, B. Fungal diagnostics. Cold Spring Harb. Perspect Med. 2014, 4, 1–9. [Google Scholar] [CrossRef]
- Tangarife-Castaño, V.J.; Florez-Muñoz, S.V.; Mesa-Arango, A.C. Diagnóstico micológico: De los métodos convencionales a los moleculares. Med. Lab. 2015, 21, 211–242. [Google Scholar] [CrossRef] [Green Version]
- Tille, P. Overview of fungal identification methods and strategies. In Bailey & Scott Diagnostic Microbiology, 13th ed.; Elsevier Health Sciences Division: St. Louis, MP, USA, 2014; pp. 705–731. [Google Scholar]
- Torres-Rodríguez, J.M. Diagnóstico microbiológico de las micosis cutáneas superficiales. Med. Clin. 2006, 126, 25–29. [Google Scholar] [CrossRef]
- Robert, R.; Pihet, M. Conventional methods for the diagnosis of dermatophytosis. Mycopathologia 2008, 166, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Lass-Flörl, C.; Cuenca-Estrella, M. Changes in the epidemiological landscape of invasive mould infections and disease. J. Antimicrob Chemother 2017, 72 (Suppl. 1), i5–i11. [Google Scholar] [CrossRef]
- Nenoff, P.; Krüger, C.; Ginter-Hanselmayer, G.; Tietz, H.J. Mycology—an update. Part 1: Dermatomycoses: Causative agents, epidemiology and pathogenesis. J. Dtsch. Dermatol. Ges. 2014, 12, 188–212. [Google Scholar] [CrossRef]
- De Hoog, G.S.; Guarro, J.; Gené, J.; Ahmed, S.; Al-Hatmi, A.M.S.; Figueras, M.J.; Vitale, R.G. Atlas of Clinical Fungi, 3rd ed.; Reus: Utrecht, The Netherlands, 2019. [Google Scholar]
- Chakrabarti, A.; Bonifaz, A.; Gutierrez-Galhardo, M.C.; Mochizuki, T.; Li, S. Global epidemiology of sporotrichosis. Med. Mycol. 2015, 53, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossen, J.W.A.; Friedrich, A.W.; Moran-Gilad, J. Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin. Microbiol Infect. 2018, 24, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, R.; Amorim, A.; Gusmão, L. Diversity and specificity of microsatellites within Aspergillus section Fumigati. BMC Microbiol. 2012, 12, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcaide, F.; Amlerova, J.; Bou, G.; Ceyssens, P.J.; Coll, P.; Corcoran, D. How to identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin. Microbiol. Infect. 2018, 24, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.E.; Ellis, B.C.; Lee, R.; Stamper, P.D.; Zhang, S.X.; Carroll, K.C. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: A bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J. Clin. Microbiol. 2012, 50, 3301–3308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welham, K.J.; Domin, M.A.; Johnson, K.; Jones, L.; Ashton, D.S. Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 307–310. [Google Scholar] [CrossRef]
- Li, T.Y.; Liu, B.H.; Chen, Y.C. Characterization of Aspergillus spores by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 2393–2400. [Google Scholar] [CrossRef]
- Schmidt, O.; Kallow, W. Differentiation of indoor wood decay fungi with MALDI-TOF mass spectrometry. Holzforschung 2005, 59, 374–377. [Google Scholar] [CrossRef]
- Kallow, W.; Santos, I.M.; Erhard, M.; Serra, R.; Venâncio, A.; Lima, N. Aspergillus ibericus: A new species of section Nigri characterised by MALDI-TOF MS. In Proceedings of the 8th International Mycological Congress; Meyer, W., Pearce, C., Eds.; Monduzzi Editore—International Proceedings Divisio: Bologna, Italy, 2006; pp. 189–193. [Google Scholar]
- Santos, C.; Paterson, R.R.; Venâncio, A.; Lima, N. Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Appl. Microbiol. 2010, 108, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.; Dias, N.; Santos, C.; Lima, N. The use of MALDI-TOF ICMS as an alternative tool for Trichophyton rubrum identification and typing. Enferm. Infecc. Microbiol. Clin. 2014, 32, 11–17. [Google Scholar] [CrossRef]
- Santos, C.R.; Francisco, E.; Mazza, M.; Padovan, A.C.B.; Colombo, A.; Lima, N. Impact of MALDI-TOF MS in clinical mycology; Progress and barriers in diagnostics. In MALDI-TOF and Tandem MS for Clinical Microbiology, 1st ed.; Shah, H.N., Gharbia, S.E., Eds.; John Wiley & Sons Ltd.: London, UK, 2017; pp. 211–230. [Google Scholar]
- Sanguinetti, M.; Posteraro, B. Identification of molds by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2017, 55, 369–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanitá Lima, M.; Coutinho de Lucas, R.; Lima, N.; Polizeli, M.; Santos, C. Fungal community ecology using MALDI-TOF MS demands curated mass spectral databases. Front. Microbiol. 2019, 10, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyfarth, F.; Ziemer, M.; Sayer, H.G.; Burmester, A.; Erhard, M.; Welker, M.; Schliemann, S.; Straube, E.; Hipler, U.C. The use of ITS DNA sequence analysis and MALDI-TOF mass spectrometry in diagnosing an infection with Fusarium proliferatum. Exp. Dermatol. 2008, 17, 965–971. [Google Scholar] [CrossRef]
- Erhard, M.; Hipler, U.C.; Burmester, A.; Brakhage, A.A.; Wöstemeyer, J. Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI-TOF mass spectrometry. Exp. Dermatol. 2008, 17, 356–361. [Google Scholar] [CrossRef]
- Rodrigues, P.; Venâncio, A.; Kozakiewicz, Z.; Lima, N. A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of Aspergillus section Flavi isolated from Portuguese almonds. Int. J. Food Microbiol. 2009, 129, 187–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flórez-Muñoz, S.V.; Gomez-Velasquez, J.C.; Loaiza-Diaz, N.; Soares, C.; Santos, C.; Lima, N.; Mesa-Arango, A.C. ITS rDNA gene analysis versus MALDI-TOF MS for identification of Neoscytalidium dimidiatum isolated from onychomycosis and dermatomycosis cases in Medellin (Colombia). Microorganisms 2019, 7, 306. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Packeu, A.; Hendrickx, M.; Beguin, H.; Martiny, D.; Vandenberg, O.; Detandt, M.A. Identification of the Trichophyton mentagrophytes complex species using MALDI-TOF mass spectrometry. Med. Mycol. 2013, 51, 580–585. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Bizzini, A.; Jaton, K.; Romo, D.; Bille, J.; Prod’hom, G.; Greub, G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. J. Clin. Microbiol. 2011, 49, 693–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.E.; Rolain, J.M. Ongoing revolution in bacteriology: Routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Cherkaoui, A.; Hibbs, J.; Emonet, S.; Tangomo, M.; Girard, M.; Francois, P. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J. Clin. Microbiol. 2010, 48, 1169–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassagne, C.; Ranque, S.; Normand, A.C.; Fourquet, P.; Thiebault, S.; Planard, C. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS ONE 2011, 6, e28425. [Google Scholar] [CrossRef]
- Zvezdanova, M.E.; Escribano, P.; Ruiz, A.; Martinez-Jimenez, M.C.; Pelaez, T.; Collazos, A. Increased species-assignment of filamentous fungi using MALDI-TOF MS coupled with a simplified sample processing and an in-house library. Med. Mycol. 2019, 57, 63–70. [Google Scholar] [CrossRef]
- Lau, A.F.; Drake, S.K.; Calhoun, L.B.; Henderson, C.M.; Zelazny, A.M. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2013, 51, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Schulthess, B.; Ledermann, R.; Mouttet, F.; Zbinden, A.; Bloemberg, G.V.; Bottger, E.C. Use of the Bruker MALDI Biotyper for identification of molds in the clinical mycology laboratory. J. Clin. Microbiol. 2014, 52, 2797–2803. [Google Scholar] [CrossRef] [Green Version]
- Becker, P.T.; de Bel, A.; Martiny, D.; Ranque, S.; Piarroux, R.; Cassagne, C. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: Clinical evaluation of an extended reference spectra library. Med. Mycol. 2014, 52, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Karabicak, N.; Karatuna, O.; Ilkit, M.; Akyar, I. Evaluation of the Bruker matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) system for the identification of clinically important dermatophyte species. Mycopathologia 2015, 180, 165–171. [Google Scholar] [CrossRef]
- Buskirk, A.D.; Hettick, J.M.; Chipinda, I.; Law, B.F.; Siegel, P.D.; Slaven, J.E. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal. Biochem. 2011, 411, 122–128. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Santos, C.; Sampaio, P.; Romeo, O.; Almeida-Paes, R.; Pais, C.; Lima, N.; Zancopé-Oliveira, R.M. Development and optimization of a new MALDI-TOF protocol for identification of the Sporothrix species complex. Res. Microbiol. 2015, 166, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Cardona, C.A.; Valbuena-Mesa, M.C.; Alvarado, Z.; Solorzano-Amador, A. Non-dermatophyte mould onychomycosis: A clinical and epidemiological study at a dermatology referral centre in Bogota, Colombia. Mycoses 2014, 57, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Alshawa, K.; Beretti, J.L.; Lacroix, C.; Feuilhade, M.; Dauphin, B.; Quesne, G. Successful identification of clinical dermatophyte and Neoscytalidium species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2012, 50, 2277–2281. [Google Scholar] [CrossRef] [Green Version]
- De Carolis, E.; Posteraro, B.; Lass-Florl, C.; Vella, A.; Florio, A.R.; Torelli, R. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 2012, 18, 475–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normand, A.C.; Cassagne, C.; Gautier, M.; Becker, P.; Ranque, S.; Hendrickx, M. Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases. BMC Microbiol. 2017, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Normand, A.C.; Cassagne, C.; Ranque, S.; L’Ollivier, C.; Fourquet, P.; Roesems, S. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi. BMC Microbiol. 2013, 13, 76. [Google Scholar] [CrossRef] [Green Version]
- Lamoth, F. Aspergillus fumigatus-Related species in clinical practice. Front. Microbiol. 2016, 7, 683. [Google Scholar] [CrossRef] [Green Version]
- Navalkele, B.D.; Revankar, S.; Chandrasekar, P. Candida auris: A worrisome, globally emerging pathogen. Expert Rev. Anti. Infect. Ther. 2017, 15, 819–827. [Google Scholar] [CrossRef]
- Kano, R.; Hasegawa, A. Historic topics on classification of Trichophyton mentagrophytes complex. Med. Mycol. J. 2014, 55, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Gautier, M.; Normand, A.C.; Ranque, S. Previously unknown species of Aspergillus. Clin. Microbiol. Infect. 2016, 22, 662–669. [Google Scholar] [CrossRef] [Green Version]
- Flórez-Muñoz, S.V.; Alzate, J.F.; Mesa-Arango, A.C. Molecular identification and antifungal susceptibility of clinical isolates of Sporothrix schenckii complex in Medellin, Colombia. Mycopathologia 2019, 184, 53–63. [Google Scholar] [CrossRef]
- Gomez, O.M.; Alvarez, L.C.; Muñoz, J.F.; Misas, E.; Gallo, J.E.; Jimenez, M.D.P. Draft genome sequences of two Sporothrix schenckii clinical isolates associated with human sporotrichosis in Colombia. Genome Announc. 2018, 6, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, N.M.; Oliveira, M.M.E.; Portela, M.A.; Santos, C.; Zancopé-Oliveira, R.M.; Lima, N. Sporotrichosis saused by Sporothrix mexicana, Portugal. Emerg. Infect. Dis. 2011, 17, 1975–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, A.M.; Cruz Choappa, R.; Fernandes, G.F.; de Hoog, G.S.; de Camargo, Z.P. Sporothrix chilensis sp. nov. (Ascomycota: Ophiostomatales), a soil-borne agent of human sporotrichosis with mild-pathogenic potential to mammals. Fungal Biol. 2016, 120, 246–264. [Google Scholar] [CrossRef]
- Morrison, A.S.; Lockhart, S.R.; Bromley, J.G.; Kim, J.Y.; Burd, E.M. An environmental Sporothrix as a cause of corneal ulcer. Med. Mycol. Case Rep. 2013, 2, 88–90. [Google Scholar] [CrossRef] [PubMed]
- L’Ollivier, C.; Ranque, S. MALDI-TOF-based dermatophyte identification. Mycopathologia 2017, 182, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Calderaro, A.; Motta, F.; Montecchini, S.; Gorrini, C.; Piccolo, G.; Piergianni, M. Identification of dermatophyte species after implementation of the in-house MALDI-TOF MS database. Int. J. Mol. Sci. 2014, 15, 16012–16024. [Google Scholar] [CrossRef]
- Intra, J.; Sarto, C.; Tiberti, N.; Besana, S.; Savarino, C.; Brambilla, P. Genus-level identification of dermatophytes by MALDI-TOF MS after 2 days of colony growth. Lett. Appl. Microbiol. 2018, 67, 136–143. [Google Scholar] [CrossRef]
- da Cunha, K.C.; Riat, A.; Normand, A.C.; Bosshard, P.P.; de Almeida, M.T.G.; Piarroux, R.; Schrenzel, J.; Fontao, L. Fast identification of dermatophytes by MALDI-TOF/MS using direct transfer of fungal cells on ground steel target plates. Mycoses 2018, 61, 691–697. [Google Scholar] [CrossRef]
- Hedayati, M.T.; Ansari, S.; Ahmadi, B.; Armaki, M.T.; Shokohi, T.; Abastabar, M.; Er, H.; Özhak, B.; Öğünç, D.; Ilkit, M.; et al. Identification of clinical dermatophyte isolates obtained from Iran by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Curr. Med Mycol. 2019, 5, 22–26. [Google Scholar] [CrossRef]
- Packeu, A.; De Bel, A.; l’Ollivier, C.; Ranque, S.; Detandt, M.; Hendrickx, M. Fast and accurate identification of dermatophytes by matrix-assisted laser desorption ionization-time of flight mass spectrometry: Validation in the clinical laboratory. J. Clin. Microbiol. 2014, 52, 3440–3443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R. A Moldy application of MALDI: MALDI-ToF Mass Spectrometry for fungal identification. J. Fungi 2019, 5, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, S.O.; Grosso, K.M.; Carrion, M.E. Multilocus phylogeny of the Trichophyton mentagrophytes species complex and the application of matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry for the rapid identification of dermatophytes. Mycologia 2018, 110, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Verkley, G.; Perrone, G.; Piña, M.; Scholz, A.H.; Overmann, J.; Zuzuarregui, A.; Perugini, I.; Turchetti, B.; Hendrickx, M.; Stacey, G.; et al. New ECCO model documents for Material Deposit and Transfer Agreements in compliance with the Nagoya Protocol. FEMS Microbiol. Lett. 2020, 367, fnaa044. [Google Scholar] [CrossRef] [Green Version]
- Convention on Biological Diversity—Country Profiles. Available online: https://www.cbd.int/countries/?country=co (accessed on 28 August 2020).
Strain | Strain |
---|---|
Aspergillus flavus MUM 10.200 (ITS/HQ340101) | Microsporum canis MUM 09.17 (ITS/JX122187) |
Aspergillusfumigatus MUM 16.03 (ITS/MT422118) | Nannizzia gypsea (formerly Microsporum gypsum) MUM 10.135 (ITS/JX101932) |
Aspergillus lentulus CM-1290 (TUB/EU310839) | Neoscytalidium dimidiatum MUM 17.21 (ITS/MN371274) |
Aspergillus niger MUM 92.13 (ITS/KU729033) | Sporothrixglobosa MUM 17.06 (ITS/KP017084) |
Aspergillus terreus MUM 9409 (ITS/KF278453) | Sporothrix schenckii s.s. MUM 17.25 (ITS/MT422119) |
Aspergillus tubingensis MM-141 (CAM/MT876622) | Trichophyton interdigitale MUM 09.21 (ITS/JX122255) |
Fusarium oxysporum MUM 14.05 (TEF/MT536776) | Trichophyton rubrum MUM 09.12 (ITS/JQ663981) |
Fungi | Growth Time (h) |
---|---|
Sporothrix spp. | 36 |
Aspergillus spp., F. oxysporum, N. gypsea and T. interdigitale | 48 |
N. dimidiatum | 72 |
M. canis and T. rubrum | 96 |
Fungi | Identification by MALDI-TOF | |||||
---|---|---|---|---|---|---|
Library | ||||||
In-House | Commercial | |||||
NRI ≤1.699 | Genus 1.700–1.990 | Species ≥2.000 | NRI ≤1.699 | Genus 1.700– 1.990 | Species 2.000≥ | |
A. flavus ATCC 204305 A. flavus Plab 01301266 | 4/4 4/4 | 1/4 2/4 | 3/4 2/4 | |||
A. fumigatus ATCC 204305 A. fumigatus CBS 144.89 | 4/4 4/4 | 3/4 | 4/4 1/4 | |||
A. lentulus MM-7152 A. lentulus MM-7140 | 4/4 4/4 | NA NA | ||||
A. niger MM-132 A. niger MM-129 | 4/4 4/4 | 4/4 4/4 | 1/4 | 3/4 | ||
A. terreus CDC 315 | 4/4 | 1/4 | 3/4 | |||
A. tubingensis MM-141 | 4/4 | NA | ||||
F. oxysporum ATCC48112 F. oxysporum CNSG | 4/4 4/4 | 4/4 | 4/4 | |||
M. canis Plab 04080969 M. canis Plab 8101402 | 4/4 4/4 | 2/4 | 1/4 | 4/4 1/4 | ||
N. gypsea Plab 10020410 | 4/4 | 4/4 | ||||
N. dimidiatum Plab 6232194 N dimidiatum Plab 1120471 | 4/4 4/4 | NA NA | ||||
S. schenckii s.s. UDEA 15565 S. schenckii s.s. UDEA 7027 | 4/4 4/4 | 4/4 4/4 | ||||
S. globosa UDEA 0004 S. globosa UDEA 14879 | 4/4 4/4 | NA NA | ||||
T. interdigitale ATCC 24198 T. interdigitale Plab 9050951 | 4/4 4/4 | 1/4 2/4 | 1/4 | 2/4 2/4 | ||
T. rubrum ATCC 28188 T. rubrum Plab 8191487 | 4/4 4/4 | 4/4 1/4 | 2/4 | 1/4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Velásquez, J.C.; Loaiza-Díaz, N.; Norela Hernández, G.; Lima, N.; Mesa-Arango, A.C. Development and Validation of an In-House Library for Filamentous Fungi Identification by MALDI-TOF MS in a Clinical Laboratory in Medellin (Colombia). Microorganisms 2020, 8, 1362. https://doi.org/10.3390/microorganisms8091362
Gómez-Velásquez JC, Loaiza-Díaz N, Norela Hernández G, Lima N, Mesa-Arango AC. Development and Validation of an In-House Library for Filamentous Fungi Identification by MALDI-TOF MS in a Clinical Laboratory in Medellin (Colombia). Microorganisms. 2020; 8(9):1362. https://doi.org/10.3390/microorganisms8091362
Chicago/Turabian StyleGómez-Velásquez, Juan C., Natalia Loaiza-Díaz, Gilma Norela Hernández, Nelson Lima, and Ana C. Mesa-Arango. 2020. "Development and Validation of an In-House Library for Filamentous Fungi Identification by MALDI-TOF MS in a Clinical Laboratory in Medellin (Colombia)" Microorganisms 8, no. 9: 1362. https://doi.org/10.3390/microorganisms8091362
APA StyleGómez-Velásquez, J. C., Loaiza-Díaz, N., Norela Hernández, G., Lima, N., & Mesa-Arango, A. C. (2020). Development and Validation of an In-House Library for Filamentous Fungi Identification by MALDI-TOF MS in a Clinical Laboratory in Medellin (Colombia). Microorganisms, 8(9), 1362. https://doi.org/10.3390/microorganisms8091362