Next Article in Journal
Host–Pathogen Interactions between Xanthomonas fragariae and Its Host Fragaria × ananassa Investigated with a Dual RNA-Seq Analysis
Next Article in Special Issue
Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research
Previous Article in Journal
First Cases of Natural Infections with Borrelia hispanica in Two Dogs and a Cat from Europe
Previous Article in Special Issue
Leishmania Immunity: Advancing Immunotherapy and Vaccine Development
Open AccessArticle

The Absence of C-5 DNA Methylation in Leishmania donovani Allows DNA Enrichment from Complex Samples

1
Molecular Parasitology, Institute of Tropical Medicine, 2000 Antwerp, Belgium
2
ADReM Data Lab, Department of Computer Science, University of Antwerp, 2000 Antwerp, Belgium
3
Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Present address: Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
Microorganisms 2020, 8(8), 1252; https://doi.org/10.3390/microorganisms8081252
Received: 11 July 2020 / Revised: 12 August 2020 / Accepted: 12 August 2020 / Published: 18 August 2020
(This article belongs to the Special Issue Leishmania and Leishmaniasis)
Cytosine C5 methylation is an important epigenetic control mechanism in a wide array of eukaryotic organisms and generally carried out by proteins of the C-5 DNA methyltransferase family (DNMTs). In several protozoans, the status of this mechanism remains elusive, such as in Leishmania, the causative agent of the disease leishmaniasis in humans and a wide array of vertebrate animals. In this work, we showed that the Leishmania donovani genome contains a C-5 DNA methyltransferase (DNMT) from the DNMT6 subfamily, whose function is still unclear, and verified its expression at the RNA level. We created viable overexpressor and knock-out lines of this enzyme and characterized their genome-wide methylation patterns using whole-genome bisulfite sequencing, together with promastigote and amastigote control lines. Interestingly, despite the DNMT6 presence, we found that methylation levels were equal to or lower than 0.0003% at CpG sites, 0.0005% at CHG sites, and 0.0126% at CHH sites at the genomic scale. As none of the methylated sites were retained after manual verification, we conclude that there is no evidence for DNA methylation in this species. We demonstrated that this difference in DNA methylation between the parasite (no detectable DNA methylation) and the vertebrate host (DNA methylation) allowed enrichment of parasite vs. host DNA using methyl-CpG-binding domain columns, readily available in commercial kits. As such, we depleted methylated DNA from mixes of Leishmania promastigote and amastigote DNA with human DNA, resulting in average Leishmania:human enrichments from 62× up to 263×. These results open a promising avenue for unmethylated DNA enrichment as a pre-enrichment step before sequencing Leishmania clinical samples. View Full-Text
Keywords: Leishmania; trypanosomatids; DNA-methylation; epigenomics; whole-genome bisulfite sequencing; DNA-enrichment Leishmania; trypanosomatids; DNA-methylation; epigenomics; whole-genome bisulfite sequencing; DNA-enrichment
Show Figures

Figure 1

MDPI and ACS Style

Cuypers, B.; Dumetz, F.; Meysman, P.; Laukens, K.; De Muylder, G.; Dujardin, J.-C.; Domagalska, M.A. The Absence of C-5 DNA Methylation in Leishmania donovani Allows DNA Enrichment from Complex Samples. Microorganisms 2020, 8, 1252.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop