Bacterial Biodiversity of Extra Virgin Olive Oils and Their Potential Biotechnological Exploitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Bacteria from Oil Samples
2.2. DNA Isolation, Cluster Analyses, and Molecular Characterization of Bacteria
2.3. Enzymatic Characterization of Bacteria
2.4. Biofilm Formation
2.5. Screening of Bacteria for Tolerance to Acidic pH and Bile
2.6. Antimicrobial Agent’s Susceptibility Test
3. Results and Discussion
3.1. Molecular Characterization of the Isolates
3.2. Enzymatic Tests and Biofilm Formation
3.3. Acid and Bile Salt Resistance of Bacterial Isolates
3.4. Antimicrobial Resistance of Bacteria
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zullo, B.A.; Ciafardini, G. Evaluation of physiological properties of yeast strains isolated from olive oil and their in vitro probiotic trait. Food Microbiol. 2019, 78, 179–187. [Google Scholar] [CrossRef]
- Porru, C.; Rodríguez-Gómez, F.; Benítez-Cabello, A.; Jiménez-Díaz, R.; Zara, G.; Budroni, M.; Mannazzu, I.; Arroyo-López, F.N. Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations. Food Microbiol. 2018, 69, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Ciafardini, G.; Zullo, B.A. Survival of microorganisms in extra virgin olive oil. Food. Microbiol. 2002, 19, 105–109. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A.; Cioccia, G.; Iride, A. Lypolitic activity of Williopsis californica, and Saccharomyces cerevisiae in extra virgin olive oil. Int. J. Food Microbiol. 2006, 107, 27–32. [Google Scholar] [CrossRef]
- Zullo, B.A.; Ciafardini, G. Lipolytic yeasts distribution in commercial extra virgin olive oil. Food Microbiol. 2008, 25, 970–977. [Google Scholar] [CrossRef]
- Romo-Sanchez, S.; Alves-Baffi, M.; Arevalo-Villena, M.; Ubeda-Iranzo, J.; Briones- Perez, A. Yeast biodiversity from oleic ecosystems: Study of their biotechnological properties. Food Microbiol. 2010, 27, 487–492. [Google Scholar] [CrossRef]
- Zullo, B.A.; Cioccia, G.; Ciafardini, G. Distribution of dimorphic yeast species in commercial extra virgin olive oil. Food Microbiol. 2010, 27, 1035–1042. [Google Scholar] [CrossRef]
- Ciafardini, G.; Cioccia, G.; Zullo, B.A. Taggiasca extra virgin olive oil colonization by yeasts during the extraction process. Food Microbiol. 2017, 62, 58–61. [Google Scholar] [CrossRef]
- Santona, M.; Sanna, M.L.; Multineddu, C.; Fancello, F.; de la Fuente, S.A.; Dettori, S.; Zara, S. Microbial biodiversity of Sardinian oleic ecosystems. Food Microbiol. 2018, 70, 65–75. [Google Scholar] [CrossRef]
- Pizzolante, G.; Durante, M.; Rizzo, D.; Di Salvo, M.; Tredici, S.M.; Tufariello, M.; De Benedetto, G.E. Characterization of two Pantoea strains isolated from extra-virgin olive oil. AMB Express 2018, 8, 113. [Google Scholar] [CrossRef]
- Koidis, A.; Triantafillou, E.; Boskou, D. Endogenous microflora in turbid virgin olive oils and the physicochemical characteristics of these oils. Eur. J. Lipid. Sci. Technol. 2008, 110, 164–171. [Google Scholar] [CrossRef]
- Zullo, B.A.; Maiuro, L.; Ciafardini, G. Survival of Coliform Bacteria in Virgin Olive Oil. BioMed Res. Int. 2018. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A. Virgin olive oil yeasts: A review. Food Microbiol. 2018, 70, 245–253. [Google Scholar] [CrossRef]
- Agersø, Y.; Stuer-Lauridsen, B.; Bjerre, K.; Jensen, M.G.; Johansen, E.; Bennedsen, M.; Brockmann, E.; Nielsen, B. Antimicrobial susceptibility testing and tentative epidemiological cutoff values for five Bacillus species relevant for use as animal feed additives or for plant protection. Appl. Environ. Microbiol. 2018, 84, e01108-18. [Google Scholar] [CrossRef] [Green Version]
- Deiana, P.; Santona, M.; Dettori, S.; Culeddu, N.; Dore, A.; Molinu, M.G. Multivariate approach to assess the chemical composition of Italian virgin olive oils as a function of variety and harvest period. Food Chem. 2019, 300, 125243. [Google Scholar] [CrossRef]
- Deiana, P.; Santona, M.; Dettori, S.; Molinu, M.G.; Dore, A.; Culeddu, N.; Azara, E.; Naziri, E.; Tsimidou, M.Z. Can all the Sardinian varieties support the PDO “Sardegna” virgin olive oil? Eur. J. Lipid Sci. Technol. 2019, 121, 1800135. [Google Scholar] [CrossRef]
- Fancello, F.; Petretto, G.L.; Sanna, M.L.; Pintore, G.; Lage, M.; Zara, S. Isolation and characterization of microorganisms and volatiles associated with Moroccan saffron during different processing treatments. Int. J. Food Microbiol. 2018, 273, 43–49. [Google Scholar] [CrossRef]
- Mangia, N.; Fancello, F.; Deiana, P. Microbiological characterization using combined culture dependent and independent approaches of Casizolu pasta filata cheese. J. Appl. Microbiol. 2016, 120, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Godon, J.J.; Zumstein, E.; Dabert, P.; Habouzit, F.; Moletta, R. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 1997, 63, 2802–2813. [Google Scholar] [CrossRef] [Green Version]
- Rosi, l.; Vinella, M.; Domizio, P. Characterization of beta-glucosidase activity in yeasts of oenological origin. J. Appl. Bacteriol. 1994, 77, 519–527. [Google Scholar] [CrossRef]
- Strauss, M.L.; Jolly, N.P.; Lambrechts, M.G.; van Rensburg, P. Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J. Appl. Microbiol. 2001, 91, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Gardini, F.; Tofalo, R.; Belletti, N.; Iucci, L.; Suzzi, G.; Torriani, S.; Guerzoni, M.E.; Lanciotti, R. Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese. Food Microbiol. 2006, 23, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Bou Zeidan, M.; Zara, G.; Viti, C.; Decorosi, F.; Mannazzu, I.; Budroni, M.; Giovannetti, L.; Zara, S. L-histidine inhibits biofilm formation and FLO11- associated phenotypes in Saccharomyces cerevisiae flor yeasts. PLoS ONE 2014, 9, e112141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Extremina, C.I.; Costa, L.; Aguiar, A.I.; Peixe, L.; Fonseca, A.P. Optimization of processing conditions for the quantification of enterococci biofilms using microtitre-plates. J. Microbiol. Methods 2011, 84, 167–173. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; 25th Informational Supplement. CLSI Document M100-S26; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the characterization of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, 5206. [Google Scholar]
- Brenes, M.; Medina, E.; Romero, C.; de Castro, A. Antimicrobial activity of olive oil. J. Food Prot. 2007, 18, 6–8. [Google Scholar]
- Hashem, A.; Tabassum, B.; Abd_Allah, E.F. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef]
- Cui, W.; He, P.; Munir, S.; He, P.; Li, X.; Li, Y.; Wu, J.; Wu, Y.; Yang, L.; He, P.; et al. Efficacy of plant growth promoting bacteria Bacillus amyloliquefaciens B9601-Y2 for biocontrol of southern corn leaf blight. Biol. Control 2019, 139, 104080. [Google Scholar] [CrossRef]
- Muccee, F.; Ejaz, S.; Riaz, N. Toluene degradation via a unique metabolic route in indigenous bacterial species. Arch. Microbiol. 2019, 201, 1369. [Google Scholar] [CrossRef]
- Chatterjee, S.; Shekhawat, K.; Gupta, N. Bioreduction of toxic hexavalent chromium by novel indigenous microbe Brevibacillus agri isolated from tannery wastewater. Int. J. Environ. Sci. Technol. 2019, 16, 3549. [Google Scholar] [CrossRef]
- Sanaa, M.F.; El-Rab, G.; Hifney, A.F.; Abdel-Basset, R. Costless and huge hydrogen yield by manipulation of iron concentrations in the new bacterial strain Brevibacillus invocatus SAR grown on algal biomass. Int. J. Hydrogen. Energ. 2018, 43, 18896–18907. [Google Scholar]
- Pramila, R.; Padmavathy, K.; Vijaya, R.K.; Mahalakshmi, K. Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis—Potential candidates for biodegradation of low-density polyethylene (LDPE). Microbiol. Res. 2012, 4, 9–14. [Google Scholar] [CrossRef]
- Walterson, A.M.; Stavrinides, J. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 2015, 39, 968–984. [Google Scholar] [CrossRef] [Green Version]
- Vuletin Selak, G.; Raboteg, M.; Dubost, A.; Abrouk, D.; Žanić, K.; Normand, P.; Pujić, P. Whole-Genome Sequence of a Pantoea sp. Strain Isolated from an Olive (Olea europaea L.) Knot. Microbiol. Resour. Announc. 2019, 8, e00978-19. [Google Scholar] [CrossRef] [Green Version]
- Hosni, T.; Moretti, C.; Devescovi, G.; Suarez-Moreno, Z.R.; Fatmi, M.B.; Guarnaccia, C.; Pongor, S.; Onofri, A.; Buonaurio, R.; Venturi, V. Sharing of quorumsensing signals and role of interspecies communities in a bacterial plant disease. ISME J. 2011, 5, 1857–1870. [Google Scholar] [CrossRef]
- Marchi, G.; Sisto, A.; Cimmino, A.; Andolfi, A.; Cipriani, M.G.; Evidente, A.; Surico, G. Interaction between Pseudomonas savastanoi and Pantoea agglomerans in the olive knots. Plant Pathol. 2006, 55, 614–624. [Google Scholar] [CrossRef]
- Buonaurio, R.; Moretti, C.; Passos da Silva, D.; Cortese, C.; Ramos, C.; Venturi, V. The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Front. Plant Sci. 2015, 6, 434. [Google Scholar] [CrossRef] [Green Version]
- Savini, V.C.; Catavitello, G.; Masciarelli, D.; Astolfi, A.; Balbinot, A.; Bianco, F.; Febbo, C.; D’Amario, D.; D’Antonio, C. Drug sensitivity and clinical impact of members of the genus Kocuria. J. Med. Microbiol. 2010, 59, 1395–1402. [Google Scholar] [CrossRef]
- Takarada, H.; Sekine, M.; Kosugi, H.; Matsuo, Y.; Fujisawa, T.; Omata, S.; Kishi, E.; Shimizu, A.; Tsukatani, N.; Tanikawa, S.; et al. Complete genome sequence of the soil actinomycete Kocuria rhizophila. J. Bacteriol. 2008, 190, 4139–4146. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Andrés, J.; Acevedo-Merino, A.; Nebot, E. Study of marine bacteria inactivation by photochemical processes: Disinfection kinetics and growth modeling after treatment. Environ. Sci. Pollut. Res. 2018, 25, 27693. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Fancello, F.; Balmas, V.; Dettori, M.; Motroni, A.; Zara, G.; Budroni, M. Microbial communities and malt quality of durum wheat used in brewing. J. Inst. Brew. 2019, 125, 222–229. [Google Scholar] [CrossRef]
- Kim, D.H.; Brunt, J.; Austin, B. Microbial diversity of intestinal contents and mucus in rainbow trout Oncorhynchus mykiss. J. Appl. Microbiol. 2007, 102, 1654–1664. [Google Scholar] [CrossRef] [PubMed]
- Pękala, A.; Paździor, E.; Antychowicz, J.; Bernad, A.; Głowacka, H.; Więcek, B.; Niemczuk, W. Kocuria rhizophila and Micrococcus luteus as emerging opportunist pathogens in brown trout Salmo trutta Linnaeus 1758 and rainbow trout Oncorhynchus mykiss Walbaum 1792. Aquaculture 2018, 486, 285–289. [Google Scholar] [CrossRef]
- Savini, V.; Catavitello, C.; Bianco, A.; Balbinot, A.; D’Antonio, D. Epidemiology, pathogenicity and emerging resistances in Staphylococcus pasteuri: From mammals and lampreys, to man. Recent Pat. Antiinfect. Drug. Discov. 2009, 4, 123–129. [Google Scholar] [CrossRef]
- Chesneau, O.; Morvan, A.; Grimont, F.; Labischinski, H.; El Solh, N. Staphylococcus pasteuri sp. nov., isolated from human, animal, and food specimens. Int. J. Syst. Bacteriol. 1993, 43, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.H.; Park, M.D.; Otto, M. Host response to Staphylococcus epidermidis colonization and infections. Front. Cell. Infect. Microbiol. 2017, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Olazarán, S.; Morfin-Otero, R.; Rodríguez-Noriega, E.; Llaca-Díaz, J.; Flores-Treviño, S.; González-González, G.M.; Garza-González, E. Microbiological and Molecular Characterization of Staphylococcus hominis Isolates from Blood. PLoS ONE 2013, 8, e61161. [Google Scholar] [CrossRef] [Green Version]
- Dib, J.R.; Liebl, W.; Wagenknecht, M.; Farías, M.E.; Meinhardt, F. Extrachromosomal genetic elements in Micrococcus. Appl. Microbiol. Biotechnol. 2013, 97, 63. [Google Scholar] [CrossRef]
- Wong, A.; Junqueira, A.C.M.; Uchida, A.; Purbojati, R.W.; Houghton, J.N.I.; Chénard, C.; Clare, M.E.; Kushwaha, K.K.; Putra, A.; Gaultier, N.E.; et al. Complete genome sequence of Lysinibacillus sp. strain SGAir0095, isolated from tropical air samples collected in Singapore. Microbiol. Resour. Announc. 2019, 8, e00604-19. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.; Sugrue, I.; Tobin, C.; Hill, C.; Stanton, C.; Ross, R.P. The Lactobacillus casei Group: History and health related applications. Front. Microbiol. 2018, 9, 2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, C.G.; Kottmann, T.; Alavi, M. Commercially available probiotic drinks containing Lactobacillus casei Dn-114001 reduce antibiotic-associated diarrhea. World J. Gastroenterol. 2014, 20, 15837–15844. [Google Scholar] [CrossRef] [PubMed]
- Segers, M.E.; Lebeer, S. Towards a better understanding of Lactobacillus rhamnosus Gg–host interactions. Microb. Cell Factorics 2014, 13, S7. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Xi, Z.; Debabrata, B. Polyphenols and tri-terpenoids from Olea europaea L. in alleviation of enteric pathogen infections through limiting bacterial virulence and attenuating inflammation. J. Funct. Foods 2017, 36, 132–143. [Google Scholar] [CrossRef]
- Iconomou, D.; Arapoglou, D.; Israilides, C. Improvement of phenolic anitioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing. Grasas Y Aceites 2010, 61, 303–311. [Google Scholar] [CrossRef]
- Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R.; Serraiocco, A. Virgin olive oil differentiation in relation to extraction methodologies. J. Sci. Food Agric. 2000, 80, 2190–2195. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Beneduce, L.; Sinigaglia, M.; Corbo, M.R. Selection of yeasts as starter cultures for table olives. J. Food Sci. 2013, 78, M742–M751. [Google Scholar] [CrossRef]
- Ammar, E.; Nasri, M.; Medhioub, K. Isolation of phenol degrading Enterobacteria from the wastewater of olive oil extraction process. World. J. Microbiol. Biotechnol. 2005, 21, 253–259. [Google Scholar] [CrossRef]
- Azhdarpoor, A.; Mortazavi, B.; Moussavi, G. Oily wastewaters treatment using Pseudomonas sp. isolated from the compost fertilizer. J. Environ. Health Sci. Eng. 2014, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Kissi, M.; Mountadar, M.; Assobhei, O.; Gargiulo, E.; Palmieri, G.; Giardina, P. Roles of two white-rot basidiomycete fungi in decolorization and detoxification of olive mill wastewater. Appl. Microbiol. Biotechnol. 2001, 57, 221–226. [Google Scholar]
- Maier, R. Biosurfactants: Evolution and diversity in Bacteria. Adv. Appl. Microbiol. 2003, 52, 101–121. [Google Scholar] [PubMed]
- Singh, A.; Hamme, J.D.; Ward, O.P. Surfactants in microbiology and biotechnology: Part 2: Application aspects. Biotechnol. Adv. 2007, 25, 99–121. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Chamignon, C.; Mhedbi-Hajri, N.; Chain, F.; Derrien, M.; Escribano-Vázquez, U.; Bermúdez-Humarán, L.G. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci. Rep. 2019, 9, 5398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cairns, L.S.; Hobley, L.; Stanley-Wall, N.R. Biofilm formation by Bacillus subtilis: New insights into regulatory strategies and assembly mechanisms. Mol. Microbiol. 2014, 93, 587–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Yan, F.; Chai, Y.; Liu, H.; Kolter, R.; Losick, R.; Guo, J. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 2013, 15, 848–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshaghabee, F.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef] [Green Version]
- Adimpong, D.B.; Sørensen, K.I.; Thorsen, L.; Stuer-Lauridsen, B.; Abdelgadir, W.S.; Nielsen, D.S.; Derkx, P.M.F.; Jespersen, L. Antimicrobial susceptibility of Bacillus strains Isolated from primary starters for african traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis. Appl. Environ. Microbiol. 2012, 78, 7903–7914. [Google Scholar] [CrossRef] [Green Version]
- Ohmiya, K.; Tanaka, T.; Noguchi, N.; O’Hara, K.; Kono, M. Nucleotide sequence of the chromosomal gene coding for the aminoglycoside 6-adenylyltransferase from Bacillus subtilis Marburg 168. Gene 1989, 78, 377–378. [Google Scholar]
- Pawlowski, A.C.; Westman, E.L.; Koteva, K.; Waglechner, N.; Wright, G.D. The complex resistomes of Paenibacillaceae reflect diverse antibiotic chemical ecologies. ISME J. 2018, 12, 885–897. [Google Scholar] [CrossRef]
- Bannerman, T.L.; Peacock, S.J. Staphylococcus, Micrococcus, and Other Catalase- Positive Cocci. In Manual of Clinical Microbiology, 9th ed.; Murray, P.R., Baron, E.J., Jorgensen, J.H., Landry, M.L., Pfaller, M.A., Eds.; ASM Press: Washington, DC, USA, 2007; pp. 390–404. [Google Scholar]
- Gómez, P.; Casado, C.; Sáenz, Y.; Ruiz-Ripa, L.; Estepa, V.; Zarazaga, M.; Torres, C. Diversity of species and antimicrobial resistance determinants of staphylococci in superficial waters in Spain. FEMS Microb. Ecol. 2017, 93. [Google Scholar] [CrossRef] [Green Version]
- Purty, S.; Saranathan, R.; Prashanth, K.; Narayanan, K.; Asir, J.; Sheela Devi, C.; Kumar Amarnath, S. The expanding spectrum of human infections caused by Kocuria species: A case report and literature review. Emerg. Microbes Infect. 2013, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.; Tyrrell, K.L.; Citron, D.M. Lactobacillus species: Taxonomic complexity and controversial susceptibilities. Clin. Infect. Dis. 2015, 60, S98–S107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnew, A.; Wang, J.; Fanning, S.; Bearhop, S.; McMahon, B.J. Insights into antimicrobial resistance among long distance migratory East Canadian High Arctic light-bellied Brent geese (Branta bernicla hrota). Ir. Vet. J. 2015, 69, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strains | No. Isolates | Frantoio | Coratina | Bosana | Semidana | Bianca di Villacidro | Confetto | Nera di Gonnos | Nera di Oliena | Palma | Paschixedda | Pizz’e Carroga | Sivigliana | Terza Grande | Tonda di Cagliari | Tonda di Villacidro |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B. amyloliquefaciens | 11 | - | - | - | - | 9 | 1 | - | - | - | - | - | - | - | - | 1 |
B. megaterium | 1 | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - |
B. subtilis | 5 | - | - | - | - | 1 | - | - | - | - | - | 4 | - | - | - | - |
Br. agri | 9 | 1 | - | - | 2 | - | - | 2 | 1 | 1 | - | - | 2 | - | - | - |
Br. parabrevis | 3 | - | - | - | - | - | - | - | 1 | 1 | - | - | - | 1 | - | - |
Br. invocatus | 6 | - | - | - | 3 | - | - | - | . | 2 | - | - | 1 | - | - | - |
L. rhamnosus | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
S. epidermidis | 1 | - | - | - | - | - | - | - | - | - | 1 | - | - | - | -- | - |
S. pasteuri | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - |
S. hominis | 2 | - | - | 1 | - | - | - | - | - | - | - | - | - | - | 1 | - |
K. rhizophila | 1 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - |
Brevibacillus spp. | 4 | - | - | - | 2 | - | - | - | 2 | - | - | - | - | - | - | - |
Pantoea spp. | 3 | - | - | - | 3 | - | - | - | - | - | - | - | - | - | - | - |
Lysinbacillus spp. | 1 | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - |
Micrococcus spp. | 3 | - | - | 1 | 1 | - | - | - | - | - | - | - | - | - | 1 | - |
Total | 52 |
Strains | No. Isolates | Glucosidase | Glucanase | Lipase | Decarboxylase | Catalase | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | W | M | S | N | W | M | S | N | W | M | S | N | W | M | S | N | W | M | S | ||
B. amyloliquefaciens | 11 | 4 | 4 | 1 | 2 | 1 | - | 9 | 1 | - | - | 1 | 10 | 2 | - | 1 | 8 | 9 | - | 2 | - |
B. megaterium | 1 | - | 1 | - | - | 1 | - | - | - | - | - | - | 1 | - | 1 | - | - | - | 1 | - | - |
B. subtilis | 5 | - | 1 | 4 | - | - | - | 5 | - | - | 1 | -- | 4 | 1 | - | - | 4 | 1 | - | 3 | 1 |
Br. agri | 9 | 7 | 1 | 1 | - | 3 | 2 | 4 | - | 2 | 1 | 4 | 2 | 8 | - | - | 1 | 4 | - | 3 | 2 |
Br. parabrevis | 3 | 3 | - | - | - | 3 | - | - | - | - | 1 | 1 | 1 | - | 3 | - | - | 2 | 1 | - | - |
Br. invocatus | 6 | 4 | 2 | - | - | 5 | - | 1 | - | - | 1 | 4 | 1 | 2 | 6 | - | - | 6 | - | - | - |
L. rhamnosus | 1 | 1 | - | - | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - | |
S. epidermidis | 1 | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - |
S. pasteuri | 1 | - | 1 | - | - | - | - | 1 | - | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - |
S. hominis | 2 | 1 | 1 | - | - | - | 1 | - | 1 | - | 1 | 1 | - | - | 1 | - | - | 1 | - | - | - |
K. rhizophila | 1 | - | 1 | - | - | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - | - | 1 | - | - |
Brevibacillus spp. | 4 | 3 | 1 | - | - | 2 | - | - | 2 | 2 | - | 1 | 1 | 2 | - | 2 | 2 | 3 | - | - | 1 |
Pantoea spp. | 3 | 1 | 1 | - | 1 | 2 | - | - | 1 | 2 | - | 1 | - | 2 | - | - | - | 1 | 1 | 1 | - |
Lysinbacillus spp. | 1 | - | 1 | - | - | 1 | - | - | - | - | - | 1 | - | 1 | - | - | - | - | - | 1 | - |
Micrococcus spp. | 3 | 2 | 1 | - | - | 2 | 1 | - | - | 2 | - | 1 | - | 2 | - | - | 1 | 3 | - | - | - |
Strain | No. Isolates | Adhesion to Plastic | |||
---|---|---|---|---|---|
No Biofilm | Weak | Moderate | Strong | ||
B. amyloliquefaciens | 11 | - | 2 | 1 | 8 |
B. megaterium | 1 | 1 | - | - | - |
B. subtilis | 5 | - | 3 | 1 | 1 |
Br. agri | 9 | 1 | 3 | 1 | 4 |
Br. parabrevis | 3 | - | 2 | - | 1 |
Br. invocatus | 6 | - | 5 | 1 | - |
L. rhamnosus | 1 | - | - | - | 1 |
S. epidermidis | 1 | - | 1 | - | - |
S. pasteuri | 1 | - | 1 | - | - |
S. hominis | 2 | - | 1 | 1 | - |
K. rhizophila | 1 | - | 1 | - | - |
Staphylococcus spp. | 1 | - | - | 1 | - |
Brevibacillus spp. | 4 | - | 3 | 1 | - |
Pantoea spp. | 3 | - | 1 | 1 | 1 |
Lysinbacillus spp. | 1 | 1 | - | - | - |
Micrococcus spp. | 3 | - | 1 | 2 | - |
Strains | No. Isolates | pH 2.5 | Bile Salt 1.5% | ||||||
---|---|---|---|---|---|---|---|---|---|
N | W | M | S | N | W | M | S | ||
B. amyloliquefaciens | 11 | 1 | 5 | - | 5 | 6 | 2 | 1 | 2 |
B. megaterium | 1 | 1 | - | - | - | 1 | - | - | |
B. subtilis | 5 | - | - | - | 5 | - | 2 | - | 3 |
Br. agri | 9 | 7 | 1 | - | 1 | 5 | 1 | 2 | 1 |
Br. parabrevis | 3 | 2 | - | 1 | - | 1 | 2 | - | - |
Br. invocatus | 6 | 5 | - | - | 1 | 6 | - | - | - |
L. rhamnosus | 1 | 1 | - | - | - | 1 | - | - | - |
S. epidermidis | 1 | 1 | - | - | - | 1 | - | - | - |
S. pasteuri | 1 | 1 | - | - | - | 1 | - | - | - |
S. hominis | 2 | - | 1 | - | 1 | - | - | - | 2 |
K. rhizophila | 1 | - | 1 | - | - | - | - | - | 1 |
Staphylococcus spp. | 1 | 1 | - | - | - | 1 | - | - | - |
Brevibacillus spp. | 4 | - | 1 | 2 | 1 | 1 | 1 | - | 2 |
Pantoea spp. | 3 | 1 | - | - | 1 | - | - | - | 2 |
Lysinbacillus spp. | 1 | 1 | - | - | - | 1 | - | - | - |
Micrococcus spp. | 3 | 3 | - | - | - | 2 | - | - | 1 |
MIC | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain Code | Species | CLI | VAN | ERI | TET | AMP | CIP | STR | CMP | ||||||||
50 | B. amyloliquefaciens | 0.5 | 0.5 | 0.25 | 16 | 1 | R | 0.25 | 4 | 2 | |||||||
52 | B. amyloliquefaciens | 0.5 | 0.5 | 0.25 | 16 | 0.5 | R | 0.25 | 2 | 2 | |||||||
53 | B. amyloliquefaciens | 0.5 | 0.5 | 0.25 | 16 | 0.5 | R | 0.25 | 2 | 4 | |||||||
54 | B. amyloliquefaciens | 0.5 | 1 | 0.25 | 16 | 1 | R | 0.25 | 8 | 2 | |||||||
57 | B. amyloliquefaciens | 1 | 0.5 | 0.25 | 8 | 0.031 | 0.25 | 2 | 1 | ||||||||
58 | B. amyloliquefaciens | 0.5 | 0.5 | 0.25 | 16 | >16 | R | 0.25 | 8 | 4 | |||||||
75 | B. amyloliquefaciens | 1 | 1 | 0.25 | 16 | 4 | R | 0.25 | 4 | 2 | |||||||
55B | B. amyloliquefaciens | 0.5 | 0.5 | 0.25 | 16 | 2 | R | 0.25 | 2 | 4 | |||||||
49 | B. amyloliquefaciens | 0.5 | 0.5 | 0.25 | 16 | 4 | R | 0.25 | 16 | R | 4 | ||||||
113 | B. amyloliquefaciens | 1 | 0.5 | 0.25 | 16 | 0.5 | 0.25 | 4 | 2 | ||||||||
56 | B. amyloliquefaciens | 0.5 | 0.5 | 0.25 | 16 | 2 | 0.25 | 8 | 2 | ||||||||
61 | B. megaterium | >16 | R | 0.25 | 0.25 | 0.5 | 8 | R | 0.25 | 1 | 4 | ||||||
11 | B. subtilis | 2 | 1 | 0.25 | 4 | 0.031 | 0.25 | 32 | R | 2 | |||||||
13 | B. subtilis | 4 | 4 | 0.25 | 4 | 0.031 | 0.25 | 2 | 4 | ||||||||
16 | B. subtilis | 4 | 4 | 0.25 | 4 | 0.062 | 0.25 | 4 | 4 | ||||||||
20 | B. subtilis | 4 | 4 | 0.25 | 4 | 0.062 | 0.25 | 4 | 2 | ||||||||
59 | B. subtilis | 0.5 | 0.5 | 0.25 | 16 | 8 | R | 0.25 | 4 | 4 | |||||||
1 | Br. agri | 8 | R | 1 | 32 | R | 0.5 | 0.125 | 1 | 8 | 2 | ||||||
3 | Br. agri | 2 | 0.5 | 1 | 1 | 0.125 | 1 | 16 | R | 8 | |||||||
32 | Br. agri | 1 | 1 | 1 | 1 | 0.125 | 0.25 | 16 | R | 4 | |||||||
34 | Br. agri | 2 | 0.5 | 1 | 2 | 0.031 | 0.25 | 8 | 1 | ||||||||
90 | Br. agri | 0.25 | 2 | 0.5 | 1 | 0.125 | 0.5 | 4 | 8 | ||||||||
79 | Br. agri | 2 | 0.5 | 0.125 | 0.5 | 0.031 | 0.05 | 16 | R | 8 | |||||||
89 | Br. agri | 2 | 0.5 | 0.25 | 8 | 0.062 | 0.5 | 16 | R | 2 | |||||||
112 | Br. agri | 2 | 0.5 | 1 | 2 | 0.031 | 0.25 | 16 | R | 2 | |||||||
102 | Br. agri | 1 | 0,5 | 1 | 2 | 0.0625 | 0.25 | 8 | 1 | ||||||||
2 | Br. invocatus | 0.5 | 0.5 | 1 | 2 | 0.125 | 0.25 | 4 | 2 | ||||||||
29 | Br. invocatus | 2 | 0.5 | 0.5 | 2 | 0.062 | 0.25 | 16 | R | 1 | |||||||
30 | Br. invocatus | 0.125 | 0.5 | 0.125 | 2 | 0.031 | 0.25 | 4 | 2 | ||||||||
35 | Br. invocatus | 0.125 | 0.5 | 0.125 | 2 | 0.031 | 0.25 | 4 | 2 | ||||||||
103 | Br. invocatus | 0.25 | 1 | 0.5 | 4 | 0.031 | 0.25 | 8 | 2 | ||||||||
108 | Br. invocatus | 0.25 | 0.5 | 0.125 | 2 | 0.031 | 0.25 | 4 | 2 | ||||||||
104 | Br. parabrevis | 4 | 1 | 0.5 | 2 | 8 | R | 0.25 | 64 | R | 4 | ||||||
71 | Br. parabrevis | 0.25 | 4 | >8 | R | 2 | >16 | R | 0.5 | 4 | >64 | R | |||||
91 | Br. parabrevis | 0.25 | 1 | 0.5 | 2 | 0.031 | 0.25 | 8 | 1 | ||||||||
60TC2 | S. hominis | 1 | R | 0.5 | 1 | 0.125 | 0.031 | 0.25 | 16 | R | 2 | ||||||
63B10 | S. hominis | 0.5 | R | 4 | >8 | R | >64 | R | 16 | R | 2 | R | 32 | R | 8 | ||
70B | S. pasteuri | 2 | R | 1 | 0.25 | 4 | R | 0.125 | 0.25 | 8 | 4 | ||||||
73 | S. epidermidis | 4 | R | 0.5 | 0.25 | 2 | R | 0.031 | 0.25 | 2 | 4 | ||||||
49C1 | K. rizophila | 0.125 | 2 | 0.125 | 0.25 | 0.031 | 2 | R | 1 | 2 | |||||||
4 | L. rhamnosus | 0.25 | >128 | R | 1 | 2 | 1 | 1 | 2 | 2 | |||||||
221 | Lysinibacillus spp. | 8 | R | 1 | 8 | R | 2 | 0.25 | 2 | 32 | R | 4 | |||||
40B3 | Micrococcus spp. | 1 | R | 2 | 0.5 | 0.5 | 0.25 | 1 | 4 | 2 | |||||||
60TC1 | Micrococcus spp. | 1 | R | 1 | 0.25 | 4 | R | 0.25 | 2 | R | 2 | 4 | |||||
225 | Micrococcus spp. | 4 | R | 32 | R | 1 | 1 | 8 | R | 0.25 | 8 | 4 | |||||
227 | Brevibacillus spp. | 2 | 1 | 0.125 | 0.5 | 0.031 | 0.25 | 4 | 4 | ||||||||
31 | Brevibacillus spp. | 1 | 0.5 | 1 | 2 | 0.031 | 0.25 | 16 | R | 2 | |||||||
94 | Brevibacillus spp. | 4 | 4 | 0.25 | 4 | R | 0.062 | 0.25 | 2 | 4 | |||||||
97 | Brevibacillus spp. | 4 | 0.5 | 0.25 | 4 | R | 0.062 | 0.25 | 4 | 4 | |||||||
226A | Pantoea spp. | >16 | R | >128 | R | >8 | R | >64 | R | 16 | R | 128 | R | 256 | R | 1 | |
226B | Pantoea spp. | 1 | 2 | >8 | R | 0.25 | 16 | R | 16 | R | 64 | R | 8 | ||||
223A | Pantoea spp. | 2 | 0.5 | 0.25 | 1 | 0.062 | 1 | 8 | 16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fancello, F.; Multineddu, C.; Santona, M.; Deiana, P.; Zara, G.; Mannazzu, I.; Budroni, M.; Dettori, S.; Zara, S. Bacterial Biodiversity of Extra Virgin Olive Oils and Their Potential Biotechnological Exploitation. Microorganisms 2020, 8, 97. https://doi.org/10.3390/microorganisms8010097
Fancello F, Multineddu C, Santona M, Deiana P, Zara G, Mannazzu I, Budroni M, Dettori S, Zara S. Bacterial Biodiversity of Extra Virgin Olive Oils and Their Potential Biotechnological Exploitation. Microorganisms. 2020; 8(1):97. https://doi.org/10.3390/microorganisms8010097
Chicago/Turabian StyleFancello, Francesco, Chiara Multineddu, Mario Santona, Pierfrancesco Deiana, Giacomo Zara, Ilaria Mannazzu, Marilena Budroni, Sandro Dettori, and Severino Zara. 2020. "Bacterial Biodiversity of Extra Virgin Olive Oils and Their Potential Biotechnological Exploitation" Microorganisms 8, no. 1: 97. https://doi.org/10.3390/microorganisms8010097
APA StyleFancello, F., Multineddu, C., Santona, M., Deiana, P., Zara, G., Mannazzu, I., Budroni, M., Dettori, S., & Zara, S. (2020). Bacterial Biodiversity of Extra Virgin Olive Oils and Their Potential Biotechnological Exploitation. Microorganisms, 8(1), 97. https://doi.org/10.3390/microorganisms8010097