Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = biomass deconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1589 KB  
Article
Low-Alkali Assisted Instant Catapult Steam Explosion Enhances Enzymatic Hydrolysis of Corn Stover by Alleviating Anti-Enzymatic Hydrolysis Factors Through Lignin Structural Rearrangement
by Hongsen Zhang, Wenjing Li, Yufei Yang, Guotao Mao, Fengqin Wang, Hui Xie, Zengping Su, Jingliang Xu and Andong Song
Polymers 2025, 17(23), 3148; https://doi.org/10.3390/polym17233148 - 26 Nov 2025
Viewed by 307
Abstract
The effective deconstruction of lignocellulosic biomass is essential for sustainable biorefineries. In this study, corn stover was pretreated by low-alkali (1–5 wt% NaOH) pre-impregnation assisted instant catapult steam explosion (ICSE) to investigate its influence on enzymatic hydrolysis efficiency and the mechanism of lignin-derived [...] Read more.
The effective deconstruction of lignocellulosic biomass is essential for sustainable biorefineries. In this study, corn stover was pretreated by low-alkali (1–5 wt% NaOH) pre-impregnation assisted instant catapult steam explosion (ICSE) to investigate its influence on enzymatic hydrolysis efficiency and the mechanism of lignin-derived anti-enzymatic factors. The results showed that this pretreatment effectively enhanced glucose yield. Under 4–5% NaOH conditions, washed samples achieved glucose yields above 98%. At 4% NaOH, the glucose yields of washed and unwashed groups were 98.88% and 56.34%, respectively, indicating that washing removed soluble inhibitors. LC-MS analysis identified three major water-soluble inhibitory compounds-vanillin, syringaldehyde, and 2-carboxybenzaldehyde-confirming their negative effects on cellulase activity. The alkali-soluble lignin content of unwashed samples (43.28%) was 1.36 times higher than that of washed samples (31.93%), demonstrating its role as a water-insoluble inhibitory factor. Moreover, SEM, XRD, FTIR, and contact angle analyses revealed that 5% NaOH treatment enhanced lignin solubilization, induced structural rearrangement and interfacial hydrophilic reconstruction, and increased cellulose crystallinity and enzyme accessibility. These findings elucidate the mechanistic pathways of lignin transformation and inhibition mitigation, providing valuable insights for efficient and sustainable biomass conversion. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 1133 KB  
Article
CO2 Emission Avoidance in Organic Waste Management: Co-Digestion of Brewery’s Spent Grain Pulp with Lemna minor
by Alberto Maria Gambelli, Jessica Di Mario, Dario Priolo, Daniele Del Buono and Giovanni Gigliotti
Sustainability 2025, 17(22), 9985; https://doi.org/10.3390/su17229985 - 8 Nov 2025
Viewed by 326
Abstract
This study focuses on biogas production within lab-scale semi-batch bioreactors using agro-industrial wastes and dry biomass of an invasive aquatic species. In particular, the primary objective is to increase the yield of anaerobic digestion processes, with a specific focus on reducing CO2 [...] Read more.
This study focuses on biogas production within lab-scale semi-batch bioreactors using agro-industrial wastes and dry biomass of an invasive aquatic species. In particular, the primary objective is to increase the yield of anaerobic digestion processes, with a specific focus on reducing CO2 emissions associated with the degradation of biomass, by co-digesting different raw biomasses and agro-industrial wastes. In detail, the experiments concerned the pulp of Brewery’s Spent Grain (BSGp), consisting of the residual of Brewery’s Spent Grain after fiber deconstruction with ionic liquids–based treatment, and Lemna minor L. (LM). The two biomasses were studied separately and then co-digested. Co-digestion was carried out using a 1:1 (VS basis) mixture of Lemna minor and Brewery’s Spent Grain pulp. Due to the lack of organic nitrogen, BSGp showed low biogas production if compared with untreated BSG (1.14 × 10−3 vs. 1.71 × 10−3 Nm3/gVS). Differently, LM has a high nitrogen content and, when digested alone, produced 9.79 × 10−4 Nm3/gVS. The co-digestion tests allowed us to reach the highest performance: 2.94 × 10−3 Nm3/gVS. In terms of bioenergy production, the two biomasses showed high synergy when used in co-digestion. The amount of energy produced was calculated using a lower heating value (LHV) of CH4 equal to 52 MJ. The results showed that co-digestion yielded 64.9 ± 0.6 MJ/kgVS, followed by BSG (43.3 ± 5.3 MJ/kgVS), BSGp (25.6 ± 0.3 MJ/kgVS), and LM (19.3 ± 1.0 MJ/kgVS). In addition, in terms of CO2 avoided, the following results were achieved: 0.38–0.40 gCO2/gVS with BSGp, 0.73–0.8 gCO2/gVS with LM. Conversely, co-digestion tests allowed for the avoidance of 1.68–1.91 gCO2/gVS. In conclusion, co-digesting BSGp with Lemna minor yields more methane and less CO2 per unit processed, providing an effective way to convert readily available waste and biomass into bioenergy. Full article
(This article belongs to the Special Issue Carbon Capture, Utilization, and Storage (CCUS) for Clean Energy)
Show Figures

Figure 1

20 pages, 13496 KB  
Article
Effect of Pretreatment on the Structure and Enzymatic Hydrolysis of Pineapple Waste Biomass in Hydrothermal Deconstruction
by Carlos Méndez-Durazno, Nilo M. Robles Carrillo, Valeria Ramírez, Oscar M. Rodriguez-Narváez, Pablo A. Cisneros-Pérez, Diego Chulde, Alexis Debut and Patricio J. Espinoza-Montero
Recycling 2025, 10(6), 198; https://doi.org/10.3390/recycling10060198 - 28 Oct 2025
Viewed by 1125
Abstract
Pineapple biomass represents an abundant renewable source of carbon and a promising feedstock with considerable potential for the production of sustainable fuels. In the present study, the influence of liquid hot water (LHW) pretreatment on the pineapple mother plant was investigated at different [...] Read more.
Pineapple biomass represents an abundant renewable source of carbon and a promising feedstock with considerable potential for the production of sustainable fuels. In the present study, the influence of liquid hot water (LHW) pretreatment on the pineapple mother plant was investigated at different controlled severities, then characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results show that LHW pretreatment causes structural changes, leading to lignin and hemicellulose depolymerization up to a severity factor of 2.36–3.55, whereas at severity factors in the range of 4.13–5.90, cellulose, hemicellulose, and lignin appear to repolymerize. This pretreatment resulted in a higher hydrolysis efficiency (94.92 ± 0.04%) at 50 °C for 72 h. Compared with the untreated sample, the hydrolysis rate under these conditions increased by a factor of 2.16. SEM imaging revealed significant disruption of the PMP microstructure following LHW treatment, while XRD data confirmed an increase in the crystallinity index. FTIR analysis further indicated modifications in functional group profiles, supporting the structural and compositional changes induced by pretreatment. Overall, this study demonstrates the effectiveness of LHW pretreatment in enhancing the enzymatic digestibility and modifying the physicochemical properties of PMP biomass, providing a foundation for its valorization into high value bioproducts. Full article
Show Figures

Graphical abstract

26 pages, 2658 KB  
Review
Microwave Pretreatment for Biomass Pyrolysis: A Systematic Review on Efficiency and Environmental Aspects
by Diego Venegas-Vásconez, Lourdes M. Orejuela-Escobar, Yanet Villasana, Andrea Salgado, Luis Tipanluisa-Sarchi, Romina Romero-Carrillo and Serguei Alejandro-Martín
Processes 2025, 13(10), 3194; https://doi.org/10.3390/pr13103194 - 8 Oct 2025
Cited by 1 | Viewed by 1607
Abstract
Microwave pretreatment (MWP) has emerged as a promising strategy to enhance the pyrolysis of lignocellulosic biomass due to its rapid, volumetric, and selective heating. By disrupting the recalcitrant structure of cellulose, hemicellulose, and lignin, MWP improves biomass deconstruction, increases carbohydrate accessibility, and enhances [...] Read more.
Microwave pretreatment (MWP) has emerged as a promising strategy to enhance the pyrolysis of lignocellulosic biomass due to its rapid, volumetric, and selective heating. By disrupting the recalcitrant structure of cellulose, hemicellulose, and lignin, MWP improves biomass deconstruction, increases carbohydrate accessibility, and enhances yields of bio-oil, syngas, and biochar. When combined with complementary pretreatments—such as alkali, acid, hydrothermal, ultrasonic, or ionic-liquid methods—MWP further reduces activation energies, facilitating more efficient saccharification and thermal conversion. This review systematically evaluates scientific progress in this field through bibliometric analysis, mapping research trends, evolution, and collaborative networks. Key research questions are addressed regarding the technical advantages of MWP, the physicochemical transformations induced in biomass, and associated environmental benefits. Findings indicate that microwave irradiation promotes hemicellulose depolymerization, reduces cellulose crystallinity, and weakens lignin–carbohydrate linkages, which facilitates subsequent thermal decomposition and contributes to improved pyrolysis efficiency and product quality. From an environmental perspective, MWP contributes to energy savings, mitigates greenhouse gas emissions, and supports the integration of renewable electricity in biomass conversion. Full article
(This article belongs to the Special Issue Biomass Pretreatment for Thermochemical Conversion)
Show Figures

Figure 1

11 pages, 852 KB  
Article
Furthering the Application of a Low-Moisture Anhydrous Ammonia Pretreatment of Corn Stover
by Ming-Hsun Cheng and Kurt A. Rosentrater
Processes 2025, 13(8), 2643; https://doi.org/10.3390/pr13082643 - 20 Aug 2025
Viewed by 638
Abstract
The use of an ammonia fiber expansion pretreatment using low-moisture anhydrous ammonia (LMAA) is a promising strategy for biomass deconstruction, with significant effects on depolymerizing lignin and hemicellulose. An LMAA pretreatment provides several advantages, including compatibility with the high-biomass loading of solids, efficient [...] Read more.
The use of an ammonia fiber expansion pretreatment using low-moisture anhydrous ammonia (LMAA) is a promising strategy for biomass deconstruction, with significant effects on depolymerizing lignin and hemicellulose. An LMAA pretreatment provides several advantages, including compatibility with the high-biomass loading of solids, efficient ammonia recovery, and scalability for industrial operations. In this study, the reactor was revisited and optimized to improve glucan digestibility from corn stover through enzymatic hydrolysis, building on our previous findings that identified limitations in ammonia distribution. The effects of the biomass particle size, the reaction time, and their interaction on glucose yields were investigated to determine their influence on the subsequent enzymatic hydrolysis kinetics. The best glucose yield of 83% was achieved using an LMAA pretreatment of biomass with a 0.5 mm particle size, representing an improvement of approximately 5% compared to biomass with a 1 mm particle size. Additionally, reactor optimization led to a 22% improvement in the glucose yield compared to the previous reactor configuration. According to the results of the reaction kinetics fitting, the enzymatic hydrolysis data indicated that the reaction followed a pseudo-first-order model. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design (2nd Edition))
Show Figures

Figure 1

22 pages, 5133 KB  
Article
An Investigation of the Secretome Composition of Coriolopsis trogii Mafic-2001 and the Optimization of the Mafic-2001 Enzyme Cocktail to Enhance the Saccharification Efficacy of Chinese Distillers’ Grains
by Chengling Bao, Zhiyun Liu, Xiaoxia Zhong, Xiaofeng Guan, Yunhe Cao and Jinxiu Huang
Int. J. Mol. Sci. 2025, 26(10), 4702; https://doi.org/10.3390/ijms26104702 - 14 May 2025
Viewed by 725
Abstract
The efficient degradation of lignocellulose is essential for valorizing agricultural waste and reducing environmental pollution. An efficient degradation process requires an enzyme cocktail capable of comprehensively deconstructing lignocellulosic components. In this study, the secretome of Coriolopsis trogii Mafic-2001 induced by rice straw was [...] Read more.
The efficient degradation of lignocellulose is essential for valorizing agricultural waste and reducing environmental pollution. An efficient degradation process requires an enzyme cocktail capable of comprehensively deconstructing lignocellulosic components. In this study, the secretome of Coriolopsis trogii Mafic-2001 induced by rice straw was examined, and the enzymatic composition and reaction conditions of Coriolopsis trogii were optimized. Mafic-2001 secreted an enzyme cocktail that included ligninolytic enzymes, cellulases, and hemicellulases. However, the relative abundances of endoglucanase (EG) and β-glucosidase (βG) were only 64.37% and 10.69%, respectively, compared with the relative abundance of cellobiohydrolase, which indicated a critical bottleneck in degradation efficiency. To overcome this limitation, the recombinant enzymes rEG1 and rβG1 were expressed in Pichia pastoris X-33. A functionally enhanced enzyme cocktail (rEG1–rβG1–Mafic-2001 = 0.05:0.09:0.86) was developed via a mixture design to achieve a reducing sugar yield of 2.77 mg/mL from Chinese distillers’ grains (CDGs). Structural analyses revealed that the optimized enzyme cocktail disrupted the reticulated fiber architecture of CDGs and attenuated the characteristic Fourier-transform infrared spectroscopy peaks of lignin, cellulose, and hemicellulose. This study elucidates the synergistic lignocellulose deconstruction mechanism of Mafic-2001 and establishes a precision enzyme-supplementation strategy for efficient CDG bioconversion, providing a scalable platform for the valorization of lignocellulosic biomass. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 626 KB  
Article
Optimization of Microwave-Assisted Organosolv Cellulose Recovery from Olive-Tree Pruning with Three Different Solvents
by Soledad Mateo, Giacomo Fabbrizi, M. Renee Chapeta and Alberto J. Moya
Appl. Sci. 2024, 14(22), 10670; https://doi.org/10.3390/app142210670 - 19 Nov 2024
Cited by 3 | Viewed by 1477
Abstract
Research studies for cellulose recovery from lignocellulosic materials are essential in order to propose sustainable alternatives to harness residual biomasses, solving problems caused by their abundance and inadequate use. In this study, olive-tree pruning biomass has been subjected to different pretreatments with different [...] Read more.
Research studies for cellulose recovery from lignocellulosic materials are essential in order to propose sustainable alternatives to harness residual biomasses, solving problems caused by their abundance and inadequate use. In this study, olive-tree pruning biomass has been subjected to different pretreatments with different organosolvents (acetone, ethanol, and γ-valerolactone) with microwave radiation assistance. The effect of operating parameters has been studied, considering specific ranges of variables values according to each experimental design but, in any case, located in the ranges of 33–67% (chemical compound concentration), 130–170 °C (temperature), 5–30 min (reaction time), and 1/20–1/5 (solid/liquid ratio, s/L). Based on the R2 and R2adj values (mostly above 0.97), the experimental data were adequately adjusted to four selected response variables: post-solids cellulose and lignin content apart from removal percentages of both structural components. The optimization process resulted in post-treatment solids with meaningful cellulose yields (higher than 84.7%) and reduced lignin content (lower than 4.2%). The best results were obtained using 66.5% acetone (155 °C, 8.4 min and s/L = 1/19), involving greater material deconstruction, a high percentage of delignification (96.7%), not very significant cellulose loss (29.4%), and a post-treatment solid consisting almost exclusively of cellulose (≈99%). Full article
(This article belongs to the Special Issue Resource Utilization of Agricultural Wastes)
Show Figures

Figure 1

21 pages, 7200 KB  
Article
Thermophilic Hemicellulases Secreted by Microbial Consortia Selected from an Anaerobic Digester
by Luca Bombardi, Marco Orlando, Martina Aulitto and Salvatore Fusco
Int. J. Mol. Sci. 2024, 25(18), 9887; https://doi.org/10.3390/ijms25189887 - 13 Sep 2024
Cited by 1 | Viewed by 2234
Abstract
The rise of agro-industrial activities over recent decades has exponentially increased lignocellulose biomasses (LCB) production. LCB serves as a cost-effective source for fermentable sugars and other renewable chemicals. This study explores the use of microbial consortia, particularly thermophilic consortia, for LCB deconstruction. Thermophiles [...] Read more.
The rise of agro-industrial activities over recent decades has exponentially increased lignocellulose biomasses (LCB) production. LCB serves as a cost-effective source for fermentable sugars and other renewable chemicals. This study explores the use of microbial consortia, particularly thermophilic consortia, for LCB deconstruction. Thermophiles produce stable enzymes that retain activity under industrial conditions, presenting a promising approach for LCB conversion. This research focused on two microbial consortia (i.e., microbiomes) that were analyzed for enzyme production using a cheap medium, i.e., a mixture of spent mushroom substrate (SMS) and digestate. The secreted xylanolytic enzymes were characterized in terms of temperature and pH optima, thermal stability, and hydrolysis products from LCB-derived polysaccharides. These enzymes showed optimal activity aligning with common biorefinery conditions and outperformed a formulated enzyme mixture in thermostability tests in the digestate. Phylogenetic and genomic analyses highlighted the genetic diversity and metabolic potential of these microbiomes. Bacillus licheniformis was identified as a key species, with two distinct strains contributing to enzyme production. The presence of specific glycoside hydrolases involved in the cellulose and hemicellulose degradation underscores these consortia’s capacity for efficient LCB conversion. These findings highlight the potential of thermophilic microbiomes, isolated from an industrial environment, as a robust source of robust enzymes, paving the way for more sustainable and cost-effective bioconversion processes in biofuel and biochemical production and other biotechnological applications. Full article
Show Figures

Figure 1

12 pages, 3058 KB  
Article
Heterologous Expression and Biochemical Characterization of a Novel Lytic Polysaccharide Monooxygenase from Chitinilyticum aquatile CSC-1
by Xuezhi Shao, Hongliang Fang, Tao Li, Liyan Yang, Dengfeng Yang and Lixia Pan
Microorganisms 2024, 12(7), 1381; https://doi.org/10.3390/microorganisms12071381 - 8 Jul 2024
Cited by 3 | Viewed by 1974
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the oxidative cleavage of recalcitrant polysaccharides. There are limited reports on LPMOs capable of concurrently catalyzing the oxidative cleavage of both cellulose and chitin. In this study, we identified and cloned a novel LPMO [...] Read more.
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the oxidative cleavage of recalcitrant polysaccharides. There are limited reports on LPMOs capable of concurrently catalyzing the oxidative cleavage of both cellulose and chitin. In this study, we identified and cloned a novel LPMO from the newly isolated bacterium Chitinilyticum aquatile CSC-1, designated as CaLPMO10. When using 2, 6-dimethylphenol (2, 6-DMP) as the substrate, CaLPMO10 exhibited optimal activity at 50 °C and pH 8, demonstrating good temperature stability at 30 °C. Even after a 6 h incubation at pH 8 and 30 °C, CaLPMO10 retained approximately 83.03 ± 1.25% residual enzyme activity. Most metal ions were found to enhance the enzyme activity of CaLPMO10, with ascorbic acid identified as the optimal reducing agent. Mass spectrometry analysis indicated that CaLPMO10 displayed oxidative activity towards both chitin and cellulose, identifying it as a C1/C4-oxidized LPMO. CaLPMO10 shows promise as a key enzyme for the efficient utilization of biomass resources in future applications. Full article
(This article belongs to the Special Issue The Role of Microbes in Biorefinery Products and Biofuels)
Show Figures

Figure 1

23 pages, 14137 KB  
Article
Steam Explosion-Based Method for the Extraction of Cellulose and Lignin from Rice Straw Waste
by Víctor M. Serrano-Martínez, Henoc Pérez-Aguilar, María Pilar Carbonell-Blasco, Francisca Arán-Ais and Elena Orgilés-Calpena
Appl. Sci. 2024, 14(5), 2059; https://doi.org/10.3390/app14052059 - 1 Mar 2024
Cited by 28 | Viewed by 8047
Abstract
This paper focuses on the optimisation of an efficient extraction process for cellulose and lignin from rice straw waste from the Albufera of Valencia using the steam explosion method. This method is particularly pertinent given the environmental and economic challenges posed by the [...] Read more.
This paper focuses on the optimisation of an efficient extraction process for cellulose and lignin from rice straw waste from the Albufera of Valencia using the steam explosion method. This method is particularly pertinent given the environmental and economic challenges posed by the current disposal practices of agricultural waste. The technique comprises a high-temperature cooking stage followed by instantaneous decompression, effectively altering the biomass’s physical and chemical properties to enhance its surface area and porosity. Our adaptation of the steam explosion technique specifically addresses the challenges of rice straw waste, marking a significant departure from previous applications. This innovation is crucial in addressing the urgent need for more sustainable waste management practices, as it effectively deconstructs the lignocellulosic matrix of rice straw. This facilitates the selective extraction of cellulose at a 70% efficiency, with a 20% yield and the subsequent recovery of lignin. The results of this study are significant for sustainable biomaterial production, offering novel insights into optimising these crucial biomass components. By refining the process and focusing on critical parameters, our work advances the application of steam explosion methods for agricultural waste, enhancing efficiency and sustainability. By utilising rice straw biowaste, this research not only proposes a solution to a pressing environmental issue but also demonstrates the potential to create new market opportunities, increase the economic value for rice producers, and significantly reduce the environmental footprint of existing waste disposal methods. The holistic and ecological approach of this study underscores the vital need for innovative strategies in agricultural waste management, positioning the valorisation of rice straw waste as a key component in the pursuit of environmental sustainability. Full article
(This article belongs to the Special Issue Research Progress in Waste Resource Utilization)
Show Figures

Figure 1

11 pages, 5167 KB  
Article
Improved Cellulase Production of Trichoderma reesei by Regulating Mycelium Morphology
by Fangting Jiang, Jiudong Tian, Jie Yuan, Shengjie Wang, Tongtong Bao, Qiuhui Chen, Le Gao, Jinyang Li and Lijuan Ma
Fermentation 2024, 10(1), 26; https://doi.org/10.3390/fermentation10010026 - 28 Dec 2023
Cited by 1 | Viewed by 4530
Abstract
The small GTPases of the Rho family are known to regulate various biological processes in filamentous fungi. In this study, we investigated the impact of deleting Rho proteins on the growth and cellulase production of Trichoderma reesei. Our findings revealed that deletion [...] Read more.
The small GTPases of the Rho family are known to regulate various biological processes in filamentous fungi. In this study, we investigated the impact of deleting Rho proteins on the growth and cellulase production of Trichoderma reesei. Our findings revealed that deletion of cdc42 led to the most severe growth defect and impaired cellulase production. Conversely, overexpression of cdc42 resulted in a hyperbranched phenotype, significantly enhancing cellulase production. Furthermore, the cdc42-overexpressing (OCdc42) strain showed an increased expression of multiple cellulase genes and Rho GTPase genes. Analysis of the secretome in the OCdc42 strain unveiled an increased abundance and diversity of extracellular proteins compared to the parent strain. These discoveries provide valuable insights into the functionality of Rho GTPases in T. reesei and offer potential targets for engineering fungi to improve plant biomass deconstruction in biorefineries. Full article
Show Figures

Figure 1

16 pages, 3044 KB  
Article
Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei
by Muhammad Adnan, Xuekun Ma, Yanping Xie, Abdul Waheed and Gang Liu
Int. J. Mol. Sci. 2023, 24(24), 17202; https://doi.org/10.3390/ijms242417202 - 6 Dec 2023
Cited by 3 | Viewed by 2102
Abstract
The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) [...] Read more.
The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. T. reesei LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of Phanerochaete chrysosporium (PcCDH) in Trichoderma reesei (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant PcCDH was found to be 45 °C and the optimum pH of PcCDH was observed as 4.5. PcCDH has high cello-oligosaccharide kcat, Km, and kcat/Km values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when PcCDH is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 3693 KB  
Article
Application of Aromatic Ring Quaternary Ammonium and Phosphonium Salts–Carboxylic Acids-Based Deep Eutectic Solvent for Enhanced Sugarcane Bagasse Pretreatment, Enzymatic Hydrolysis, and Cellulosic Ethanol Production
by Biying Li, Ziqi Qiu, Jiale Huang, Xiaoling Xian, Xiaojie Zheng and Xiaoqing Lin
Fermentation 2023, 9(11), 981; https://doi.org/10.3390/fermentation9110981 - 16 Nov 2023
Cited by 4 | Viewed by 2690
Abstract
Deep eutectic solvents (DESs) with a hydrophobic aromatic ring structure offer a promising pretreatment method for the selective delignification of lignocellulosic biomass, thereby enhancing enzymatic hydrolysis. Further investigation is needed to determine whether the increased presence of aromatic rings in hydrogen bond receptors [...] Read more.
Deep eutectic solvents (DESs) with a hydrophobic aromatic ring structure offer a promising pretreatment method for the selective delignification of lignocellulosic biomass, thereby enhancing enzymatic hydrolysis. Further investigation is needed to determine whether the increased presence of aromatic rings in hydrogen bond receptors leads to a more pronounced enhancement of lignin removal. In this study, six DES systems were prepared using lactic acid (LA)/acetic acid (AA)/levulinic acid (LEA) as hydrogen bond donors (HBD), along with two independent hydrogen bond acceptors (HBA) (benzyl triethyl ammonium chloride (TEBAC)/benzyl triphenyl phosphonium chloride (BPP)) to evaluate their ability to break down sugarcane bagasse (SCB). The pretreatment of the SCB (raw material) was carried out with the above DESs at 120 °C for 90 min with a solid–liquid ratio of 1:15. The results indicated that an increase in the number of aromatic rings may result in steric hindrance during DES pretreatment, potentially diminishing the efficacy of delignification. Notably, the use of the TEBAC:LA-based DES under mild operating conditions proved highly efficient in lignin removal, achieving 85.33 ± 0.52% for lignin removal and 98.67 ± 2.84% for cellulose recovery, respectively. The maximum digestibilities of glucan (56.85 ± 0.73%) and xylan (66.41 ± 3.06%) were attained after TEBAC:LA pretreatment. Furthermore, the maximum ethanol concentration and productivity attained from TEBAC:LA-based DES-pretreated SCB were 24.50 g/L and 0.68 g/(L·h), respectively. Finally, the comprehensive structural analyses of SCB, employing X-rays, FT-IR, and SEM techniques, provided valuable insights into the deconstruction process facilitated by different combinations of HBDs and HBAs within the DES pretreatment. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Decomposition and Bioconversion)
Show Figures

Figure 1

14 pages, 5454 KB  
Article
Ni-Based Hydrotalcite (HT)-Derived Cu Catalysts for Catalytic Conversion of Bioethanol to Butanol
by Yan Xiao, Jie Li, Yuan Tan, Xingkun Chen, Fenghua Bai, Wenhao Luo and Yunjie Ding
Int. J. Mol. Sci. 2023, 24(19), 14859; https://doi.org/10.3390/ijms241914859 - 3 Oct 2023
Cited by 1 | Viewed by 2352
Abstract
Catalytic conversion of biomass-derived ethanol into n-butanol through Guerbet coupling reaction has become one of the key reactions in biomass valorization, thus attracting significant attention recently. Herein, a series of supported Cu catalysts derived from Ni-based hydrotalcite (HT) were prepared and performed in [...] Read more.
Catalytic conversion of biomass-derived ethanol into n-butanol through Guerbet coupling reaction has become one of the key reactions in biomass valorization, thus attracting significant attention recently. Herein, a series of supported Cu catalysts derived from Ni-based hydrotalcite (HT) were prepared and performed in the continuous catalytic conversion of ethanol into butanol. Among the prepared catalysts, Cu/NiAlOx shows the best performance in terms of butanol selectivity and catalyst stability, with a sustained ethanol conversion of ~35% and butanol selectivity of 25% in a time-on-stream (TOS) of 110 h at 280 °C. While for the Cu/NiFeOx and Cu/NiCoOx, obvious catalyst deactivation and/or low butanol selectivity were obtained. Extensive characterization studies of the fresh and spent catalysts, i.e., X-ray diffraction (XRD), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Hydrogen temperature-programmed reduction (H2-TPR), reveal that the catalysts’ deactivation is mainly caused by the support deconstruction during catalysis, which is highly dependent on the reducibility. Additionally, an appropriate acid–base property is pivotal for enhancing the product selectivity, which is beneficial for the key process of aldol-condensation to produce butanol. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

23 pages, 9018 KB  
Article
Cellulose Isolation from Tomato Pomace: Part II—Integrating High-Pressure Homogenization in a Cascade Hydrolysis Process for the Recovery of Nanostructured Cellulose and Bioactive Molecules
by Annachiara Pirozzi, Federico Olivieri, Rachele Castaldo, Gennaro Gentile and Francesco Donsì
Foods 2023, 12(17), 3221; https://doi.org/10.3390/foods12173221 - 27 Aug 2023
Cited by 6 | Viewed by 2920
Abstract
This work proposes a biorefinery approach for utilizing tomato pomace (TP) through a top-down deconstructing strategy, combining mild chemical hydrolysis with high-pressure homogenization (HPH). The objective of the study is to isolate cellulose pulp using different combinations of chemical and physical processes: (i) [...] Read more.
This work proposes a biorefinery approach for utilizing tomato pomace (TP) through a top-down deconstructing strategy, combining mild chemical hydrolysis with high-pressure homogenization (HPH). The objective of the study is to isolate cellulose pulp using different combinations of chemical and physical processes: (i) direct HPH treatment of the raw material, (ii) HPH treatment following acid hydrolysis, and (iii) HPH treatment following alkaline hydrolysis. The results demonstrate that these isolation routes enable the production of cellulose with tailored morphological properties from TP with higher yields (up to +21% when HPH was applied before hydrolysis and approximately +6% when applied after acid or after alkaline hydrolysis). Additionally, the side streams generated by this cascade process show a four-fold increase in phenolic compounds when HPH is integrated after acid hydrolysis compared to untreated sample, and they also contain nanoparticles composed of hemicellulose and lignin, as shown by FT-IR and SEM. Notably, the further application of HPH treatment enables the production of nanostructured cellulose from cellulose pulp derived from TP, offering tunable properties. This approach presents a sustainable pathway for the extraction of cellulose and nanocellulose, as well as the valorization of value-added compounds found in residual biomass in the form of side streams. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

Back to TopTop