A Two-Year Retrospective Study of Blood Cultures in a Secondary Western Greece Healthcare Setting
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Pathogen Distribution
3.2. Antimicrobial Resistance
3.3. True Bacteremia vs. Contamination Cases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamy, B.; Dargère, S.; Arendrup, M.C.; Parienti, J.-J.; Tattevin, P. How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State-of-the Art. Front. Microbiol. 2016, 7, 697. [Google Scholar] [CrossRef]
- Hall, K.K.; Lyman, J.A. Updated review of blood culture contamination. Clin. Microbiol. Rev. 2006, 19, 788–802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- European Committee on Antimicrobial Susceptibility Testing. Clinical Breakpoint Tables. 2025. Available online: https://www.eucast.org (accessed on 28 September 2025).
- NHS England. Improving the Blood Culture Pathway. 2022. Available online: https://www.england.nhs.uk/wp-content/uploads/2022/06/B0686-improving-the-blood-culture-pathway-executive-summary-v1-1.pdf.pdf (accessed on 19 September 2025).
- Garcia, R.A.; Spitzer, E.D.; Beaudry, J.; Beck, C.; Diblasi, R.; Gilleeny-Blabac, M.; Haugaard, C.; Heuschneider, S.; Kranz, B.P.; McLean, K.; et al. Multidisciplinary team review of best practices for collection and handling of blood cultures to determine effective interventions for increasing the yield of true-positive bacteremias, reducing contamination, and eliminating false-positive central line-associated bloodstream infections. Am. J. Infect. Control 2015, 43, 1222–1237. [Google Scholar] [CrossRef]
- Washer, L.L.; Chenoweth, C.; Kim, H.W.; Rogers, M.A.; Malani, A.N.; Riddell, J., IV; Kuhn, L.; Noeyack, B.; Neusius, H.; Newton, D.W.; et al. Blood culture contamination: A randomized trial evaluating the comparative effectiveness of 3 skin antiseptic interventions. Infect. Control. Hosp. Epidemiol. 2013, 34, 15–21. [Google Scholar] [CrossRef]
- Caldeira, D.; David, C.; Sampaio, C. Skin antiseptics in venous puncture-site disinfection for prevention of blood culture contamination: Systematic review with meta-analysis. J. Hosp. Infect. 2011, 77, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Castrillo, L.; Cadamuro, J.; Dodt, C.; Lauwaert, D.; Hachimi-Idrissi, S.; Van Der Linden, C.; Bergs, J.; Costelloe, S.; Grossmann, F.; Koca, A.; et al. Recommendations for blood sampling in emergency departments from the European Society for Emergency Medicine (EUSEM), European Society for Emergency Nursing (EuSEN), and European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group for the Preanalytical Phase. Executive summary. Clin. Chem. Lab. Med. 2024, 62, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Schifman, R.B.; Strand, C.L.; Meier, F.A.; Howanitz, P.J. Blood culture contamination: A college of American pathologists Q-Probes study involving 640 institutions and 497134 specimens from adult patients. Arch. Pathol. Lab Med. 1998, 122, 216–221. [Google Scholar] [PubMed]
- Chandrasekar, P.H.; Brown, W.J. Clinical issues of blood cultures. Arch. Intern. Med. 1994, 154, 841–849. [Google Scholar] [CrossRef]
- Ernst, D.J. Controlling blood-culture contamination rates. Med. Lab. Obs. 2004, 36, 14–18; quiz 20–21. [Google Scholar]
- Dawson, S. Blood culture contaminants. J. Hosp. Infect. 2014, 87, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.R.; Favoretto, A.M.; Baetz, R.A.; Derzon, J.H.; Madison, B.M.; Mass, D.; Shaw, C.S.; Layfield, C.D.; Christenson, R.H.; Liebow, E.B. Effectiveness of practices to reduce blood culture contamination: A laboratory medicine best practices systematic review and meta-analysis. Clin. Biochem. 2012, 45, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Gowardman, J.R.; Montgomery, C.; Thirlwell, S.; Shewan, J.; Idema, A.; Larsen, P.D.; Havill, J.H. Central venous catheter-related blood stream infections: An analysis of incidence and risk factors in a cohort of 400 patients. Intensive Care Med. 1998, 24, 1034–1039. [Google Scholar] [CrossRef]
- Tacconelli, E.; Tumbarello, M.; Pittiruti, M.; Leone, F.; Lucia, B.M.; Cauda, R.; Ortona, L. Central venous catheter-related sepsis in a cohort of 366 hospitalised patients. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 203–209. [Google Scholar] [CrossRef]
- Kirn, T.J.; Weinstein, M.P. Update on blood cultures: How to obtain, process, report, and interpret. Clin. Microbiol. Infect. 2013, 19, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Washington, J.A. Blood cultures: Principles and techniques. Mayo Clin. Proc. 1975, 52, 91–98. [Google Scholar] [CrossRef]
- Jonsson, B.; Nyberg, A.; Henning, C. Theoretical aspects of detection of bacteraemia as a function of the volume of blood cultured. APMIS 1993, 101, 595–601. [Google Scholar] [CrossRef]
- Public Health England. SMI B37 Investigation of Blood Cultures (for Organisms Other than Mycobacterium Species). 2014. Available online: http://www.apsi.it/public/ufiles/smi/b37_8_en_141104.pdf (accessed on 28 September 2025).
- Baron, E.J.; Miller, J.M.; Weinstein, M.P.; Richter, S.S.; Gilligan, P.H.; Thomson, R.B., Jr.; Bourbeau, P.; Carroll, K.C.; Kehl, S.C.; Dunne, W.M.; et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM) (a). Clin. Infect. Dis. 2013, 57, e22–e121. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef]
- Wilson, M.L.; Mirrett, S.; Meredith, F.T.; Weinstein, M.P.; Scotto, V.; Reller, L.B. Controlled clinical comparison of BACTEC Plus Anaerobic/F to standard Anaerobic/F as the anaerobic companion bottle to plus Aerobic/F medium for culturing blood from adults. J. Clin. Microbiol. 2001, 39, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Reimer, L.G.; Wilson, M.L.; Weinstein, M.P. Update on detection of bacteremia and fungemia. Clin. Microbiol. Rev. 1997, 103, 444–465. [Google Scholar] [CrossRef]
- Lamy, B.; Seifert, H. Microbial diagnosis: Septicemia. In European Manual of Clinical Microbiology (SFM/ESCMID), 1st ed.; Cornaglia, G., Courcol, R., Herrmann, J.L., Kahlmeter, G., Peigue-Lafeuille, H., Vila, J., Eds.; SFM: Paris, France, 2012; pp. 101–110. [Google Scholar]
- Lemming, L.; Holt, H.M.; Petersen, I.S.; Østergaard, C.; Bruun, B. Bactec 9240 blood culture system: To preincubate at 35 degrees C or not? Clin. Microbiol. Infect. 2004, 10, 1089–1091. [Google Scholar] [CrossRef]
- Huber, S.; Hetzer, B.; Crazzolara, R.; Orth-Höller, D. The correct blood volume for paediatric blood cultures: A conundrum? Clin. Microbiol. Infect. 2020, 26, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Tokars, J.I. Predictive value of blood cultures positive for coagulase negative Staphylococci: Implications for patient care and health care quality assurance. Clin. Infect. Dis. 2004, 39, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.R.; Truant, A.L.; Kostman, J.; Locke, L. The detection of positive blood cultures by the BACTEC NR660. The clinical importance of four-day versus seven-day testing. Diagn. Microbiol. Infect. Dis. 1991, 14, 107 110. [Google Scholar] [CrossRef]
- Han, X.Y.; Truant, A.L. The detection of positive blood cultures by the AccuMed ESP-384 system: The clinical significance of three-day testing. Diagn. Microbiol. Infect. Dis. 1999, 33, 1–6. [Google Scholar] [CrossRef]
- Hardy, D.J.; Hulbert, B.B.; Migneault, P.C. Time to detection of positive BacT/Alert blood cultures and lack of need for routine subculture of 5- to 7-day negative cultures. J. Clin. Microbiol. 1992, 30, 2743–2745. [Google Scholar] [CrossRef]
- Huang, A.H.; Yan, J.J.; Wu, J.J. Comparison of five days versus seven days of incubation for detection of positive blood cultures by the Bactec 9240 system. Eur. J. Clin. Microbiol. Infect. Dis. 1998, 17, 637–641. [Google Scholar] [CrossRef]
- Kurlat, I.; Stoll, B.J.; McGowan, J.E., Jr. Time to positivity for detection of bacteremia in neonates. J. Clin. Microbiol. 1989, 27, 1068–1071. [Google Scholar] [CrossRef]
- Saito, T.; Senda, K.; Takakura, S.; Fujihara, N.; Kudo, T.; Iinuma, Y.; Tanimoto, M.; Ichiyama, S. Detection of bacteria and fungi in BacT/Alert standard blood-culture bottles. J. Infect. Chemother. 2003, 9, 227–232. [Google Scholar] [CrossRef]
- Haimi-Cohen, Y.; Shafinoori, S.; Tucci, V.; Rubin, L.G. Use of incubation time to detection in BACTEC 9240 to distinguish coagulase negative staphylococcal contamination from infection in pediatric blood cultures. Pediatr. Infect. Dis. J. 2003, 22, 968–974. [Google Scholar] [CrossRef]
- Weinstein, M.P.; Towns, M.L.; Quartey, S.M.; Mirrett, S.; Reimer, L.G.; Parmigiani, G.; Reller, L.B. The clinical significance of positive blood cultures in the 1990s: A prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin. Infect. Dis. 1997, 24, 584–602. [Google Scholar] [CrossRef]
- Weinstein, M.P. Blood culture contamination: Persisting problems and partial progress. J. Clin. Microbiol. 2003, 41, 2275–2278. [Google Scholar] [CrossRef]
- Shafazand, S.; Weinacker, A.B. Blood cultures in the critical care unit: Improving utilization and yield. Chest 2002, 122, 1727–1736. [Google Scholar] [CrossRef] [PubMed]
- Rubin, L.G.; Sanchez, P.J.; Siegel, J.; Levine, G.; Saiman, L.; Jarvis, W.R.; Network, T.P.P. Evaluation and treatment of neonates with suspected late-onset sepsis: A survey of neonatologists’ practices. Pediatrics 2002, 110, e42. [Google Scholar] [CrossRef]
- Dargère, S.; Parienti, J.J.; Roupie, E.; Gancel, P.E.; Wiel, E.; Smaiti, N.; Loiez, C.; Joly, L.-M.; Lemée, L.; Pestel-Caron, M.; et al. Unique blood culture for diagnosis of bloodstream infections in emergency departments: A prospective multicentre study. Clin. Microbiol. Infect. 2014, 20, O920–O927. [Google Scholar] [CrossRef]
- Bates, D.W.; Cook, E.F.; Goldman, L.; Lee, T.H. Predicting bacteremia in hospitalized patients. a prospectively validated model. Ann. Intern. Med. 1990, 113, 495–500. [Google Scholar] [CrossRef]
- Souvenir, D.; Anderson, D.E., Jr.; Palpant, S.; Mroch, H.; Askin, S.; Anderson, J.; Claridge, J.; Eiland, J.; Malone, C.; Garrison, M.W.; et al. Blood cultures positive for coagulase-negative Staphylococci: Antisepsis, pseudobacteremia, and therapy of patients. J. Clin. Microbiol. 1998, 36, 1923–1926. [Google Scholar] [CrossRef] [PubMed]
- Marginson, M.J.; Daveson, K.L.; Kennedy, K.J. Clinical impact of reducing routine blood culture incubation time from 7 to 5 days. Pathology 2014, 46, 636–639. [Google Scholar] [CrossRef] [PubMed]
- Calfee, D.P.; Farr, B.M. Comparison of four antiseptic preparations for skin in the prevention of contamination of percutaneously drawn blood cultures: A randomized trial. J. Clin. Microbiol. 2002, 40, 1660–1665. [Google Scholar] [CrossRef]
- Norberg, A.; Christopher, N.C.; Ramundo, M.L.; Bower, J.R.; Berman, S.A. Contamination rates of blood cultures obtained by dedicated phlebotomy vs. intravenous catheter. JAMA 2003, 289, 726–729. [Google Scholar] [CrossRef]
- Sharma, M.; Riederer, K.; Johnson, L.B.; Khatib, R. Molecular analysis of coagulase-negative Staphylococcus isolates from blood cultures: Prevalence of genotypic variation and polyclonal bacteremia. Clin. Infect. Dis. 2001, 33, 1317–1323. [Google Scholar] [CrossRef]
- Souli, M.; Galani, I.; Giamarellou, H. Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Euro Surveill. 2008, 13, 47. [Google Scholar] [CrossRef]
- Koupetori, M.; Retsas, T.; Antonakos, N.; Vlachogiannis, G.; Perdios, I.; Nathanail, C.; Makaritsis, K.; Papadopoulos, A.; Sinapidis, D.; Giamarellos-Bourboulis, E.J.; et al. Hellenic Sepsis Study Group. Bloodstream infections and sepsis in Greece: Over-time change of epidemiology and impact of de-escalation on final outcome. BMC Infect. Dis. 2014, 14, 272. [Google Scholar] [CrossRef]
- Tchesnokova, V.; Larson, L.; Basova, I.; Sledneva, Y.; Choudhury, D.; Solyanik, T.; Heng, J.; Bonilla, T.C.; Pham, S.; Schartz, E.M.; et al. Increase in the community circulation of ciprofloxacin-resistant Escherichia coli despite reduction in antibiotic prescriptions. Commun. Med. 2023, 3, 110. [Google Scholar] [CrossRef] [PubMed]
- Neyestani, Z.; Khademi, F.; Teimourpour, R.; Amani, M.; Arzanlou, M. Prevalence and mechanisms of ciprofloxacin resistance in Escherichia coli isolated from hospitalized patients, healthy carriers, and wastewaters in Iran. BMC Microbiol. 2023, 23, 191. [Google Scholar] [CrossRef] [PubMed]
- Jadoon, R.J.; Jalal-ud-Din, M.; Khan, S.A. E. coli Resistance to Ciprofloxacin and Common Associated Factors. J. Coll. Physicians Surg. Pak. 2015, 25, 824–827. [Google Scholar] [PubMed]
- Kang, C.I.; Kim, S.H.; Kim, D.M.; Park, W.B.; Lee, K.D.; Kim, H.B.; Kim, E.C.; Choe, K.W. Risk Factors for Ciprofloxacin Resistance in Bloodstream Infections Due to Extended-Spectrum beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae. Microb. Drug Resist. 2004, 10, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Palavecino, E.L.; Campodónico, V.L.; She, R.C. Laboratory approaches to determining blood culture contamination rates: An ASM Laboratory Practices Subcommittee report. J. Clin. Microbiol. 2024, 62, e01028-23. [Google Scholar] [CrossRef]
| p-Value | Result | |
|---|---|---|
| Gender per year (Χ2) | 0.9931 | No statistically significant difference |
| Origin per year (Χ2) | 0.0799 | No statistically significant difference |
| Pathogen | Hemodialysis Unit | Emergency Department | Internal Medicine Ward | Orthopedics Department | Surgery Department | Total |
|---|---|---|---|---|---|---|
| Gram-positive cocci | ||||||
| S. aureus | 7 | 4 | 3 | 1 | 15 | |
| CoNS | 36 | 24 | 10 | 1 | 1 | 72 |
| E. faecalis | 3 | 2 | 1 | 6 | ||
| E. faecium | 2 | 2 | ||||
| S. pneumoniae | 1 | 1 | ||||
| Pediococcus pentosaceus | 2 | 2 | ||||
| Streptococcus gallolyticus | 1 | 1 | ||||
| Listeria | 1 | 1 | ||||
| Campylobacter jejuni | 1 | 1 | ||||
| Enterobacterales | ||||||
| E. coli | 1 | 29 | 8 | 38 | ||
| K. pneumoniae | 1 | 6 | 4 | 11 | ||
| P. mirabilis | 4 | 2 | 6 | |||
| Morganella morganii | 2 | 2 | ||||
| K. aerogenes | 1 | 1 | 2 | |||
| K. oxytoca | 1 | 1 | ||||
| Citrobacter freundii | 1 | 1 | ||||
| Enterobacter cloacae | 1 | 1 | ||||
| Serratia sp. | 1 | 1 | 2 | |||
| Pantoea spp. | 1 | 1 | ||||
| A. baumannii | 1 | 1 | 1 | 1 | 4 | |
| Sphingomonas paucimobilis | 1 | 1 | ||||
| Stenotrophomonas maltophilia | 2 | 1 | 3 | |||
| P. aeruginosa | 3 | 3 | 1 | 1 | 8 | |
| Candida parapsilosis | 1 | 1 | ||||
| Candida glabrata | 2 | 2 | ||||
| Candida tropicalis | 3 | 3 |
| Ward | E. coli Total Number of Samples (Resistant to Ciprofloxacin Samples) | E. coli ESBL Producers (Number of Samples) | CoNS: Total Number of Samples (Resistant to Cefoxitin Samples) | S. aureus MRSA Number of Samples | E. faecium VRE Number of Samples | A. baumannii Pandrug-Resistant Number of Samples | Total Blood Culture Samples Performed |
|---|---|---|---|---|---|---|---|
| Hemodialysis Unit | 1 (not Ciprofloxacin-resistant) | 36 (22 Cefoxitin-resistant) | 111 | ||||
| Emergency Department | 29 (11 Ciprofloxacin-resistant) | 2 | 24 (14 Cefoxitin-resistant) | 1 | 698 | ||
| Internal Medicine Ward | 8 (4 Ciprofloxacin-resistant) | 10 (5 Cefoxitin-resistant) | 401 | ||||
| Orthopedics Department | 1 (1 Cefoxitin-resistant) | 1 | 1 | 18 | |||
| Surgery Department | 1 (1 Cefoxitin-resistant) | 52 | |||||
| Cardiology Department | 10 |
| Pathogen | Number of Isolates | Ward/Origin | Key Resistance Markers |
|---|---|---|---|
| E. coli | 38 | Hemodialysis Unit, Emergency Department, Internal Medicine Ward | Ciprofloxacin-resistant 39.5%, ESBL producers 5.2% |
| S. aureus | 15 | Hemodialysis Unit, Emergency Department, Internal Medicine Ward, Orthopedics Department | MRSA 6.67% |
| E. faecium | 2 | Emergency Department | VRE 50% |
| A. baumannii | 4 | Emergency Department, Internal Medicine Ward, Orthopedics Department, Surgery Department | Pandrug-resistant 25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tsolakidou, E.; Angelidis, I.; Asproukos, A.; Chalmouki, A.; Zalavras, N.; Louca, K.; Spyropoulou, P.; Markopoulou, A.; Katsorida, E.; Stathakopoulou, P.; et al. A Two-Year Retrospective Study of Blood Cultures in a Secondary Western Greece Healthcare Setting. Microorganisms 2026, 14, 107. https://doi.org/10.3390/microorganisms14010107
Tsolakidou E, Angelidis I, Asproukos A, Chalmouki A, Zalavras N, Louca K, Spyropoulou P, Markopoulou A, Katsorida E, Stathakopoulou P, et al. A Two-Year Retrospective Study of Blood Cultures in a Secondary Western Greece Healthcare Setting. Microorganisms. 2026; 14(1):107. https://doi.org/10.3390/microorganisms14010107
Chicago/Turabian StyleTsolakidou, Eirini, Ioannis Angelidis, Apostolos Asproukos, Aikaterini Chalmouki, Nikolaos Zalavras, Kyriakos Louca, Panagiota Spyropoulou, Aliki Markopoulou, Eleni Katsorida, Paraskevi Stathakopoulou, and et al. 2026. "A Two-Year Retrospective Study of Blood Cultures in a Secondary Western Greece Healthcare Setting" Microorganisms 14, no. 1: 107. https://doi.org/10.3390/microorganisms14010107
APA StyleTsolakidou, E., Angelidis, I., Asproukos, A., Chalmouki, A., Zalavras, N., Louca, K., Spyropoulou, P., Markopoulou, A., Katsorida, E., Stathakopoulou, P., Filioti, K., Markopoulos, D., Tsitsa, K., Potsios, C., Letsas, K., & Xaplanteri, P. (2026). A Two-Year Retrospective Study of Blood Cultures in a Secondary Western Greece Healthcare Setting. Microorganisms, 14(1), 107. https://doi.org/10.3390/microorganisms14010107

