Effects of Dietary Fiber Supplementation on Gut Microbiota and Bowel Function in Healthy Adults: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statements and Participants
2.2. Randomization and Intervention
2.3. Questionnaires
2.4. Fecal Microbiota
2.4.1. Measurement of Fecal Organic Acid Concentrations
2.4.2. Analysis of the Fecal Microbiota
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Comparisons Between Groups
3.3. Changes During the Intervention in Each Group
3.3.1. Stool Diary
3.3.2. JPAC-QOL
3.3.3. OSA-MA
3.3.4. Skin Condition
3.3.5. Effect of the Intervention on Fecal Organic Acids
3.3.6. Effect of the Intervention on Fecal Microbiota
3.4. Correlation Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef]
- Carlson, J.L.; Erickson, J.M.; Lloyd, B.B.; Slavin, J.L. Health Effects and Sources of Prebiotic Dietary Fiber. Curr. Dev. Nutr. 2018, 2, nzy005. [Google Scholar] [CrossRef]
- Carlsen, H.; Pajari, A.M. Dietary fiber—A scoping review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 67, 9979. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Petersen, C.; Round, J.L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 2014, 16, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Kolida, S.; Meyer, D.; Gibson, G.R. A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. Eur. J. Clin. Nutr. 2007, 61, 1189–1195. [Google Scholar] [CrossRef]
- Calame, W.; Weseler, A.R.; Viebke, C.; Flynn, C.; Siemensma, A.D. Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br. J. Nutr. 2008, 100, 1269–1275. [Google Scholar] [CrossRef]
- Kayama, H.; Takeda, K. Manipulation of epithelial integrity and mucosal immunity by host and microbiota-derived metabolites. Eur. J. Immunol. 2020, 50, 921–931. [Google Scholar] [CrossRef]
- de Vries, J.; Miller, P.E.; Verbeke, K. Effects of cereal fiber on bowel function: A systematic review of intervention trials. World J. Gastroenterol. 2015, 21, 8952–8963. [Google Scholar] [CrossRef]
- Hillemeier, C. An overview of the effects of dietary fiber on gastrointestinal transit. Pediatrics 1995, 96, 997–999. [Google Scholar] [CrossRef] [PubMed]
- So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef]
- Lai, H.; Li, Y.; He, Y.; Chen, F.; Mi, B.; Li, J.; Xie, J.; Ma, G.; Yang, J.; Xu, K.; et al. Effects of dietary fibers or probiotics on functional constipation symptoms and roles of gut microbiota: A double-blinded randomized placebo trial. Gut Microbes 2023, 15, 2197837. [Google Scholar] [CrossRef]
- Moreira-Rosario, A.; Marques, C.; Pinheiro, H.; Norberto, S.; Sintra, D.; Teixeira, J.A.; Calhau, C.; Azevedo, L.F. Daily intake of wheat germ-enriched bread may promote a healthy gut bacterial microbiota: A randomised controlled trial. Eur. J. Nutr. 2020, 59, 1951–1961. [Google Scholar] [CrossRef]
- Yasukawa, Z.; Inoue, R.; Ozeki, M.; Okubo, T.; Takagi, T.; Honda, A.; Naito, Y. Effect of Repeated Consumption of Partially Hydrolyzed Guar Gum on Fecal Characteristics and Gut Microbiota: A Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Clinical Trial. Nutrients 2019, 11, 2170. [Google Scholar] [CrossRef] [PubMed]
- De Pessemier, B.; Grine, L.; Debaere, M.; Maes, A.; Paetzold, B.; Callewaert, C. Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 2021, 9, 353. [Google Scholar] [CrossRef]
- Han, M.; Yuan, S.; Zhang, J. The interplay between sleep and gut microbiota. Brain Res. Bull. 2022, 180, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Z.; Lu, T.; Chen, W.; Yan, W.; Yuan, K.; Shi, L.; Liu, X.; Zhou, X.; Shi, J.; et al. The microbiota-gut-brain axis in sleep disorders. Sleep Med. Rev. 2022, 65, 101691. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare, Japan. The Japan National Health and Nutrition Survey. Available online: https://www.mhlw.go.jp/content/10900000/001338334.pdf (accessed on 19 August 2025).
- Cook, J.A.; Julious, S.A.; Sones, W.; Hampson, L.V.; Hewitt, C.; Berlin, J.A.; Ashby, D.; Emsley, R.; Fergusson, D.A.; Walters, S.J.; et al. DELTA(2) guidance on choosing the target difference and undertaking and reporting the sample size calculation for a randomised controlled trial. Trials 2018, 19, 606. [Google Scholar] [CrossRef]
- Rao, S.S.; Yu, S.; Fedewa, A. Systematic review: Dietary fibre and FODMAP-restricted diet in the management of constipation and irritable bowel syndrome. Aliment. Pharmacol. Ther. 2015, 41, 1256–1270. [Google Scholar] [CrossRef]
- Fu, J.; Zheng, Y.; Gao, Y.; Xu, W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022, 10, 2507. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Takachi, R.; Ishihara, J.; Ishii, Y.; Sasazuki, S.; Sawada, N.; Shinozawa, Y.; Tanaka, J.; Kato, E.; Kitamura, K.; et al. Validity of Short and Long Self-Administered Food Frequency Questionnaires in Ranking Dietary Intake in Middle-Aged and Elderly Japanese in the Japan Public Health Center-Based Prospective Study for the Next Generation (JPHC-NEXT) Protocol Area. J. Epidemiol. 2016, 26, 420–432. [Google Scholar] [CrossRef]
- Nomura, H.; Agatsuma, T.; Mimura, T. Validity and reliability of the Japanese version of the Patient Assessment of Constipation Quality of Life questionnaire. J. Gastroenterol. 2014, 49, 667–673. [Google Scholar] [CrossRef]
- Yamamoto, Y. Standardization of revised version of OSA sleep inventory for middle age and aged. Brain Sci. Ment. Disord. 1999, 10, 401–409. [Google Scholar]
- Miura, H.; Oda, M.; Abe, K.; Ikeda, H.; Fujibayashi, M.; Oda, N.; Segawa, T.; Abe, A.; Ueta, N.; Tsukahara, T.; et al. Effects of Blackcurrant Extract and Partially Hydrolyzed Guar Gum Intake on Gut Dysbiosis in Male University Rugby Players. Microorganisms 2025, 13, 1561. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Jiang, Y.; Balaban, M.; Cantrell, K.; Zhu, Q.; Gonzalez, A.; Morton, J.T.; Nicolaou, G.; Parks, D.H.; Karst, S.M.; et al. Greengenes2 unifies microbial data in a single reference tree. Nat. Biotechnol. 2024, 42, 715–718. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; pp. 361–362. [Google Scholar]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Watson, D.; O’Connell Motherway, M.; Schoterman, M.; van Neerven, R.J.; Nauta, A.; Van Sinderen, D. Selective carbohydrate utilization by lactobacilli and bifidobacteria. J. Appl. Microbiol. 2013, 114, 1132–1146. [Google Scholar] [CrossRef] [PubMed]
- Takada, T.; Kurakawa, T.; Tsuji, H.; Nomoto, K. Fusicatenibacter saccharivorans gen. nov., sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2013, 63, 3691–3696. [Google Scholar] [CrossRef]
- Shetty, S.A.; Boeren, S.; Bui, T.P.N.; Smidt, H.; de Vos, W.M. Unravelling lactate-acetate and sugar conversion into butyrate by intestinal Anaerobutyricum and Anaerostipes species by comparative proteogenomics. Environ. Microbiol. 2020, 22, 4863–4875. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef]
- Ferreira-Halder, C.V.; Faria, A.V.S.; Andrade, S.S. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Kovatcheva-Datchary, P.; Nilsson, A.; Akrami, R.; Lee, Y.S.; De Vadder, F.; Arora, T.; Hallen, A.; Martens, E.; Bjorck, I.; Backhed, F. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab. 2015, 22, 971–982. [Google Scholar] [CrossRef]
- Riviere, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016, 7, 979. [Google Scholar] [CrossRef]
- Takagi, T.; Inoue, R.; Oshima, A.; Sakazume, H.; Ogawa, K.; Tominaga, T.; Mihara, Y.; Sugaya, T.; Mizushima, K.; Uchiyama, K.; et al. Typing of the Gut Microbiota Community in Japanese Subjects. Microorganisms 2022, 10, 664. [Google Scholar] [CrossRef]
- Sasaki, S. Dietary Reference Intakes for Japanese (2025): The Fundamental and Comprehensive Guideline for Healthy and Diets. Health Eval. Promot. 2025, 52, 342–352. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies. Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462. [Google Scholar] [CrossRef]
- O’Riordan, K.J.; Collins, M.K.; Moloney, G.M.; Knox, E.G.; Aburto, M.R.; Fülling, C.; Morley, S.J.; Clarke, G.; Schellekens, H.; Cryan, J.F. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol. Cell. Endocrinol. 2022, 546, 111572. [Google Scholar] [CrossRef] [PubMed]
- Ferraretto, A.; Donetti, E.; García-Mena, J.; Pacheco-López, G. The gut-skin-brain axis in human health and disease. Front. Nutr. 2023, 10, 1155614. [Google Scholar] [CrossRef] [PubMed]
Cereal | Noodle | Cookie | Waffle | Tea | ||||||
---|---|---|---|---|---|---|---|---|---|---|
LoFib | HiFib | LoFib | HiFib | LoFib | HiFib | LoFib | HiFib | LoFib | HiFib | |
Energy, kcal | 169.1 | 168.0 | 307.7 | 309.0 | 154.5 | 152.0 | 194.0 | 203.0 | 0.0 | 25.0 |
Protein, g | 3.2 | 2.9 | 13.3 | 13.0 | 2.1 | 2.8 | 3.5 | 5.4 | 0.0 | 0.0 |
Fat, g | 6.2 | 5.7 | 5.4 | 5.4 | 7.3 | 6.9 | 3.9 | 9.0 | 0.0 | 0.0 |
Carbohydrate, g | 28.8 | 30.0 | 55.3 | 56.0 | 20.1 | 23.6 | 28.8 | 30.3 | 0.0 | 10.1 |
Dietary Fiber, g | 3.8 | 7.3 | 5.3 | 8.7 | 1.1 | 7.5 | 1.7 | 10.6 | 0.0 | 8.1 |
Salt, mg | 98.4 | 90.0 | 5700.0 | 5700.0 | 60.0 | 25.0 | 300.0 | 290.0 | 20.0 | 190.0 |
Source of Major Dietary Fiber | Oats Barley | Oats Barley Inulin | WF * Oat flour Soy flour | WF * Oat flour Inulin Soy flour | Inulin RD * OP * | IMO * OP * WF * PHP * CF * | Inulin RD * |
Item | LoFib | HiFib | p Value * | |||
---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | |
N (Male/Female) | 20 | 33 | 17 | 35 | N/A | N/A |
Age | 38.5 ± 8.5 | 42.0 ± 7.4 | 39.0 ± 6.8 | 42.8 ± 6.5 | 0.91 | 0.96 |
Height, cm | 173.9 ± 5.0 | 159.7 ± 5.8 | 172.3 ± 5.0 | 158.1 ± 6.3 | 0.40 | 0.32 |
Body weight, kg | 71.0 ± 12.2 | 53.8 ± 8.5 | 69.3 ± 7.1 | 54.5 ± 10.0 | 0.85 | 0.31 |
Body mass index | 23.5 ± 4.3 | 21.1 ± 3.3 | 23.3 ± 1.9 | 21.7 ± 3.3 | 0.84 | 0.17 |
Basal intake of dietary fiber, g | 13.2 ± 1.7 | 14.1 ± 1.2 | 13.9 ± 2.2 | 14.5 ± 2.0 | 0.34 | 0.63 |
LoFib | HiFib | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Week 0 | Week 2 | Week 4 | Week 0 vs. 2 | Week 0 vs. 4 | Week 0 | Week 2 | Week 4 | Week 0 vs. 2 | Week 0 vs. 4 | ||||||||||||
p Value | Effect Size | p Value | Effect Size | p Value | Effect Size | p Value | Effect Size | ||||||||||||||
Stool Diary | Number of days having bowel movement last week | 5 | (5–7) | 6 | (5–7) | 7 | (5–7) | 0.24 | 0.16 | 0.03 | 0.30 | 5 | (4–7) | 6 | (5–7) | 6 | (5–7) | 0.06 | 0.26 | 0.01 | 0.37 |
Number of defecation times last week | 6 | (5–8) | 7 | (6–9) | 8 | (6–9) | <0.01 | 0.43 | <0.01 | 0.40 | 6 | (5–7) | 7 | (5–8) | 7 | (5–10) | 0.03 | 0.29 | <0.01 | 0.39 | |
Amount of stool per bowel movement | 19 | (12–31) | 28 | (19–44) | 30 | (17–51) | <0.01 | 0.47 | <0.01 | 0.44 | 19 | (14–28.5) | 25 | (16.75–39.75) | 30.5 | (20–43.25) | <0.01 | 0.51 | <0.01 | 0.62 | |
Form of stool | 5 | (5–6) | 5 | (4–5) | 5 | (5–5) | 0.90 | 0.02 | 0.30 | 0.14 | 5 | (4–6) | 5 | (4–5) | 5 | (4.75–5) | 0.40 | 0.12 | 0.78 | 0.04 | |
Smell | 3 | (3–3) | 3 | (3–3) | 3 | (3–3) | 0.30 | 0.14 | 0.48 | 0.10 | 3 | (3–3) | 3 | (3–3) | 3 | (3–3) | 0.18 | 0.19 | 0.18 | 0.18 | |
Feeling after defecation | 2 | (2–2) | 2 | (2–2) | 2 | (2–2) | 0.80 | 0.03 | 0.13 | 0.21 | 2 | (2–2) | 2 | (1–2) | 2 | (2–2) | 0.05 | 0.27 | 0.36 | 0.13 | |
JPAC-QOL | Overall | 22 | (15–37) | 20 | (13–28) | 18 | (12–26) | <0.01 | 0.46 | <0.01 | 0.57 | 29.5 | (19.75–43.75) | 24.5 | (14.5–34) | 20 | (11.5–30.5) | <0.01 | 0.73 | <0.01 | 0.72 |
Physical discomfort | 2 | (1–4) | 1 | (0–3) | 1 | (0–2) | 0.01 | 0.38 | <0.01 | 0.49 | 3 | (1–6) | 2 | (1–3.25) | 2 | (0–3) | <0.01 | 0.50 | <0.01 | 0.60 | |
Psychosocial discomfort | 1 | (0–4) | 1 | (0–4) | 1 | (0–5) | 0.03 | 0.30 | 0.01 | 0.35 | 2 | (1–9) | 1.5 | (0.75–6) | 1 | (0–5) | <0.01 | 0.58 | <0.01 | 0.57 | |
Worries concerns | 6 | (4–11) | 4 | (4–9) | 4 | (3–8) | <0.01 | 0.43 | <0.01 | 0.45 | 10 | (4–17) | 7 | (4–11.25) | 5.5 | (3–11) | <0.01 | 0.48 | <0.01 | 0.55 | |
Satisfaction | 12 | (9–15) | 10 | (8–14) | 10 | (6–13) | 0.03 | 0.31 | <0.01 | 0.45 | 13 | (10.75–16) | 13 | (8–14) | 10.5 | (6.75–14) | <0.01 | 0.44 | <0.01 | 0.57 | |
OSA-MA | Sleepiness on rising | 17.1 | (13.6–20.4) | 17.3 | (13.9–20.6) | 17.8 | (14.6–20.3) | 0.55 | 0.08 | 0.15 | 0.20 | 16.15 | (13.55–20.5) | 17.5 | (13.58–20.47) | 17.1 | (13.8–20.22) | 0.50 | 0.09 | 0.99 | 0.00 |
Initiation and maintenance | 18.9 | (13.7–20.5) | 18 | (15.9–21.3) | 18.3 | (14.7–21.9) | 0.65 | 0.06 | 0.33 | 0.13 | 16.9 | (14.83–19.8) | 17.45 | (13.8–19.62) | 15.85 | (12.75–20.65) | 0.65 | 0.06 | 0.50 | 0.09 | |
Frequent dreaming | 25.5 | (20.8–29.5) | 25.5 | (18.8–29.5) | 27.5 | (18.8–29.5) | 0.38 | 0.12 | 0.65 | 0.06 | 23 | (18.78–29.5) | 22.8 | (18.45–29.5) | 23.5 | (16.88–29.5) | 0.72 | 0.05 | 0.60 | 0.07 | |
Refreshness | 16.4 | (13.2–19.7) | 16.2 | (13.2–19.8) | 17.2 | (14.4–20.1) | 0.95 | 0.01 | 0.06 | 0.26 | 15.7 | (13–18.4) | 15.55 | (12.52–18.95) | 15.2 | (12–19.33) | 0.70 | 0.05 | 0.85 | 0.03 | |
Sleep length | 17.8 | (16–21.5) | 19.7 | (16–21.5) | 18.2 | (16–21.5) | 0.98 | 0.00 | 0.62 | 0.07 | 16 | (14.2–20.6) | 17.8 | (14.2–21.35) | 17.8 | (16–20.38) | 0.91 | 0.02 | 0.54 | 0.09 | |
Skin questionnaire | Q1. Overall skin condition | 4 | (1–6) | 3 | (1–5) | 3 | (2–5) | 0.82 | 0.03 | 0.65 | 0.06 | 3 | (1.75–6) | 4 | (2–5.25) | 5 | (3–6) | 0.51 | 0.09 | 0.08 | 0.24 |
Q2. Skin roughness | 4 | (1–6) | 4 | (1–5) | 4 | (2–6) | 0.27 | 0.15 | 0.88 | 0.02 | 3 | (2–6) | 3 | (2–6) | 3.5 | (2–6) | 0.84 | 0.03 | 0.84 | 0.03 | |
Q3. Skin itchiness | 2 | (0–3) | 2 | (0–4) | 2 | (0–4) | 0.39 | 0.12 | 0.46 | 0.10 | 2 | (0–4.25) | 2.5 | (0–5) | 2 | (0–4.25) | 0.18 | 0.19 | 0.32 | 0.14 | |
Q4. Noticeable wrinkles | 5 | (2–7) | 3 | (1–6) | 4 | (2–6) | 0.15 | 0.20 | 0.10 | 0.23 | 5 | (3–7) | 4 | (2–7) | 4.5 | (3–6) | 0.14 | 0.21 | 0.23 | 0.17 | |
Q5. Noticeable spots | 6 | (3–8) | 6 | (2–7) | 5 | (3–7) | 0.29 | 0.14 | 0.04 | 0.29 | 6 | (2.75–7.25) | 5 | (3–6.25) | 4 | (3–6.25) | 0.21 | 0.17 | 0.21 | 0.17 | |
Q6. Noticeable facial breakouts | 3 | (1–6) | 3 | (0–6) | 3 | (1–6) | 0.16 | 0.19 | 0.28 | 0.15 | 5 | (1–7) | 3 | (1.75–6) | 4 | (1.75–6) | 0.44 | 0.11 | 0.97 | 0.01 | |
Q7. Noticeable sebum and dirt around nose | 6 | (3–7) | 5 | (3–7) | 5 | (3–6) | 0.06 | 0.26 | 0.09 | 0.23 | 6 | (4–8) | 5 | (3–7) | 5 | (3–7) | 0.22 | 0.17 | 0.12 | 0.22 | |
Q8. Noticeable pores | 6 | (4–8) | 5 | (4–7) | 5 | (3–7) | 0.04 | 0.28 | 0.09 | 0.24 | 6.5 | (3.75–8) | 5 | (3–7) | 5 | (3–7) | 0.04 | 0.28 | 0.12 | 0.22 | |
Q9. Skin dryness | 4 | (3–6) | 3 | (2–5) | 3 | (1–6) | 0.01 | 0.37 | 0.01 | 0.33 | 4 | (2–6) | 3.5 | (2–5) | 4 | (2–5) | 0.66 | 0.06 | 0.64 | 0.06 | |
Q10. Facial swelling | 4 | (2–6) | 3 | (1–6) | 3 | (1–6) | 0.18 | 0.18 | 0.40 | 0.12 | 5.5 | (1.75–7) | 4 | (2–5) | 4 | (2–6) | 0.04 | 0.28 | 0.13 | 0.21 | |
Q11. Skin color under eyes | 5 | (2–8) | 5 | (2–7) | 5 | (2–7) | 0.39 | 0.12 | 0.10 | 0.22 | 5 | (4–8) | 5 | (2–7) | 5 | (3–7) | 0.05 | 0.27 | 0.07 | 0.25 | |
Q12. Skin firmness and elasticity | 5 | (5–7) | 5 | (4–6) | 5 | (3–7) | 0.07 | 0.25 | 0.10 | 0.23 | 5 | (4–7) | 5 | (3.75–7) | 5 | (3.75–6.25) | 0.65 | 0.06 | 0.29 | 0.15 | |
Q13. Skin clarity | 6 | (5–8) | 5 | (4–7) | 5 | (3–8) | 0.00 | 0.41 | 0.14 | 0.20 | 6 | (5–8) | 5 | (4–7) | 5 | (4–7) | 0.01 | 0.34 | <0.01 | 0.45 | |
Q14. Skin smoothness | 5 | (4–7) | 5 | (3–6) | 5 | (3–6) | 0.01 | 0.34 | 0.11 | 0.22 | 5 | (4–6.25) | 5 | (4–6) | 4 | (3–6) | 0.74 | 0.05 | 0.03 | 0.29 | |
Q15. Makeup adherence | 5 | (5–7) | 5 | (3–6) | 5 | (3–6) | 0.00 | 0.41 | 0.10 | 0.23 | 5 | (4–7) | 5 | (4–6) | 5 | (4–5) | 0.32 | 0.14 | 0.28 | 0.15 | |
Organic Acids | Succinate | 1.45 | 3.16 | 2.23 | 6.25 | 1.73 | 6.05 | 0.89 | 0.02 | 0.87 | 0.02 | 1.40 | 3.07 | 0.92 | 1.68 | 2.02 | 5.03 | 0.39 | 0.12 | 0.98 | 0.00 |
Lactate | 0.26 | 0.65 | 0.11 | 0.21 | 0.26 | 1.32 | 0.32 | 0.14 | 0.41 | 0.11 | 0.26 | 0.84 | 0.11 | 0.20 | 0.33 | 1.83 | 0.25 | 0.16 | 0.07 | 0.25 | |
Formate | 0.34 | 0.58 | 0.18 | 0.11 | 0.27 | 0.48 | 0.89 | 0.02 | 0.74 | 0.05 | 0.21 | 0.33 | 0.16 | 0.15 | 0.23 | 0.42 | 0.57 | 0.08 | 0.68 | 0.06 | |
Acetate | 49.78 | 24.96 | 51.54 | 21.95 | 47.16 | 20.32 | 0.38 | 0.12 | 0.47 | 0.10 | 51.78 | 23.53 | 55.83 | 25.45 | 52.35 | 22.97 | 0.53 | 0.09 | 0.90 | 0.02 | |
Propionate | 17.32 | 10.05 | 18.32 | 9.20 | 17.01 | 9.70 | 0.30 | 0.14 | 0.91 | 0.02 | 18.24 | 11.11 | 19.19 | 8.21 | 18.12 | 7.93 | 0.15 | 0.20 | 0.64 | 0.06 | |
isoButyrate | 1.78 | 1.83 | 1.65 | 0.98 | 1.75 | 1.03 | 0.56 | 0.08 | 0.37 | 0.12 | 1.61 | 1.14 | 2.01 | 0.99 | 1.76 | 1.28 | <0.01 | 0.49 | 0.51 | 0.09 | |
nButyrate | 10.49 | 8.75 | 10.17 | 6.55 | 8.81 | 4.90 | 0.88 | 0.02 | 0.39 | 0.12 | 9.11 | 7.96 | 10.79 | 6.65 | 9.44 | 6.21 | 0.01 | 0.35 | 0.52 | 0.09 | |
isoValerate | 1.66 | 1.41 | 1.63 | 1.23 | 1.81 | 1.23 | 0.89 | 0.02 | 0.35 | 0.13 | 1.70 | 1.40 | 2.08 | 1.27 | 1.73 | 1.50 | <0.01 | 0.42 | 0.95 | 0.01 | |
nValerate | 1.33 | 1.40 | 1.48 | 1.31 | 1.46 | 1.36 | 0.10 | 0.22 | 0.16 | 0.19 | 1.43 | 1.53 | 1.48 | 1.37 | 1.37 | 1.44 | 0.48 | 0.10 | 0.80 | 0.04 | |
Total SCFA | 82.35 | 40.06 | 84.79 | 33.05 | 78.00 | 32.30 | 0.45 | 0.10 | 0.61 | 0.07 | 83.88 | 38.55 | 91.38 | 37.27 | 84.78 | 35.22 | 0.18 | 0.19 | 0.86 | 0.02 |
Taxon | Week 0 | Week 2 | Week4 | Week 0 vs. 2 | Week 0 vs. 4 | |||
---|---|---|---|---|---|---|---|---|
p Value | Effect Size | p Value | Effect Size | |||||
LoFib group | ||||||||
Anaerobutyricum | 0.468 ± 0.471 | 0.401 ± 0.520 | 0.729 ± 0.795 | <0.01 | 0.380 | <0.01 | 0.590 | |
Blautia_A_141781 | 5.280 ± 3.391 | 4.547 ± 3.309 | 7.136 ± 6.000 | 0.088 | 0.235 | 0.020 | 0.320 | |
Enterocloster | 1.815 ± 1.675 | 1.690 ± 1.726 | 1.458 ± 1.512 | 0.463 | 0.101 | 0.017 | 0.328 | |
Bacteroidaceae genus unclassified | 0.004 ± 0.026 | 0.007 ± 0.041 | 0.005 ± 0.032 | 0.018 | 0.325 | 0.361 | 0.125 | |
Hungatella_A_128155 | 0.169 ± 0.726 | 0.032 ± 0.099 | 0.060 ± 0.249 | 0.024 | 0.310 | 0.175 | 0.186 | |
Ventrisoma | 0.015 ± 0.038 | 0.006 ± 0.023 | 0.008 ± 0.030 | 0.025 | 0.308 | 0.100 | 0.226 | |
HiFib group | ||||||||
Agathobaculum | 0.309 ± 0.309 | 0.291 ± 0.263 | 0.403 ± 0.305 | 0.392 | 0.120 | <0.01 | 0.391 | |
Anaerobutyricum | 0.424 ± 0.406 | 0.293 ± 0.306 | 0.746 ± 0.635 | <0.01 | 0.400 | <0.01 | 0.610 | |
Anaerostipes | 0.673 ± 0.838 | 0.626 ± 0.652 | 1.141 ± 1.658 | 0.956 | 0.008 | <0.01 | 0.475 | |
Bariatricus | 0.147 ± 0.246 | 0.110 ± 0.184 | 0.192 ± 0.315 | <0.01 | 0.363 | 0.082 | 0.243 | |
Bifidobacterium_388775 | 3.177 ± 3.453 | 4.008 ± 4.206 | 4.863 ± 4.841 | <0.01 | 0.361 | <0.01 | 0.389 | |
Blautia_A_141781 | 4.457 ± 3.151 | 3.559 ± 3.027 | 5.483 ± 3.105 | <0.01 | 0.367 | <0.01 | 0.381 | |
Butyricimonas | 0.072 ± 0.147 | 0.099 ± 0.159 | 0.123 ± 0.312 | <0.01 | 0.354 | 0.089 | 0.238 | |
CAG-41 | 0.079 ± 0.088 | 0.142 ± 0.187 | 0.127 ± 0.164 | <0.01 | 0.342 | 0.073 | 0.251 | |
Dorea_A | 0.461 ± 0.421 | 0.439 ± 0.459 | 0.543 ± 0.527 | 0.654 | 0.063 | <0.01 | 0.346 | |
Eubacterium_I | 0.057 ± 0.091 | 0.040 ± 0.072 | 0.072 ± 0.104 | 0.029 | 0.306 | 0.128 | 0.213 | |
Fusicatenibacter | 1.267 ± 1.296 | 1.155 ± 1.403 | 1.593 ± 1.610 | 0.476 | 0.100 | 0.023 | 0.319 | |
Enterobacteriaceae_A genus unclassified | 0.452 ± 1.575 | 0.098 ± 0.263 | 0.126 ± 0.688 | 0.094 | 0.235 | 0.028 | 0.308 | |
Peptostreptococcaceae_256921 genus unclassified | 0.071 ± 0.113 | 0.082 ± 0.196 | 0.465 ± 2.113 | 0.758 | 0.043 | 0.023 | 0.318 | |
Limivivens | 0.008 ± 0.026 | 0.014 ± 0.031 | 0.018 ± 0.039 | 0.196 | 0.181 | <0.01 | 0.368 | |
Oliverpabstia | 0.181 ± 0.444 | 0.089 ± 0.191 | 0.132 ± 0.300 | 0.029 | 0.305 | 0.344 | 0.133 | |
Parasutterella | 0.830 ± 1.728 | 1.427 ± 2.875 | 1.244 ± 2.259 | <0.01 | 0.475 | 0.051 | 0.274 | |
RUG115 | 0.008 ± 0.033 | 0.012 ± 0.071 | 0.042 ± 0.202 | 1.000 | 0.000 | 0.021 | 0.324 | |
Ruminococcus_C_58660 | 0.086 ± 0.240 | 0.106 ± 0.267 | 0.192 ± 0.465 | 0.666 | 0.060 | 0.031 | 0.302 | |
UMGS1375 | 0.105 ± 0.308 | 0.049 ± 0.141 | 0.053 ± 0.148 | <0.01 | 0.385 | 0.019 | 0.328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inoue, R.; Suzuki, K.; Takaoka, M.; Narumi, M.; Naito, Y. Effects of Dietary Fiber Supplementation on Gut Microbiota and Bowel Function in Healthy Adults: A Randomized Controlled Trial. Microorganisms 2025, 13, 2068. https://doi.org/10.3390/microorganisms13092068
Inoue R, Suzuki K, Takaoka M, Narumi M, Naito Y. Effects of Dietary Fiber Supplementation on Gut Microbiota and Bowel Function in Healthy Adults: A Randomized Controlled Trial. Microorganisms. 2025; 13(9):2068. https://doi.org/10.3390/microorganisms13092068
Chicago/Turabian StyleInoue, Ryo, Kenta Suzuki, Masachika Takaoka, Michihiro Narumi, and Yuji Naito. 2025. "Effects of Dietary Fiber Supplementation on Gut Microbiota and Bowel Function in Healthy Adults: A Randomized Controlled Trial" Microorganisms 13, no. 9: 2068. https://doi.org/10.3390/microorganisms13092068
APA StyleInoue, R., Suzuki, K., Takaoka, M., Narumi, M., & Naito, Y. (2025). Effects of Dietary Fiber Supplementation on Gut Microbiota and Bowel Function in Healthy Adults: A Randomized Controlled Trial. Microorganisms, 13(9), 2068. https://doi.org/10.3390/microorganisms13092068