Comprehensive Safety Assessment of Lentilactobacillus buchneri KU200793 as a Potential Probiotic
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Cell Culture Conditions
2.3. Assessment of Hemolytic Activity
2.4. Evaluation of Bile Salt Deconjugation
2.5. Cytotoxicity Assay Using Caco-2 Cells
2.6. Determination of Mucin Degradation
2.7. Quantification of D-Lactic Acid Production
2.8. Analysis of Biogenic Amine Production
2.9. Antibiotic Susceptibility Test
2.10. Genomic Analysis of Antibiotic Resistance and Virulence Factors
2.11. Gelatin Liquefaction Assay
2.12. Urease Activity Assay
2.13. Indole Production Assay
2.14. Statistical Analysis
3. Results
3.1. Hemolytic Profile of L. buchneri KU200793
3.2. Bile Salt Deconjugation Activity
3.3. Cytotoxic Effects on Caco-2 Cells
3.4. Mucin Degradation Potential
3.5. D-Lactic Acid Production Levels
3.6. Biogenic Amine Production Profile
3.7. Antibiotic Resistance Pattern
3.8. Genome-Based Identification of Resistance and Virulence Determinants
3.9. Gelatin Liquefaction Activity
3.10. Urease Activity
3.11. Indole Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koll, P.; Mändar, R.; Smidt, I.; Hütt, P.; Truusalu, K.; Mikelsaar, R.H.; Shchepetova, J.; Krogh-Andersen, K.; Marcotte, H.; Hammarström, L.; et al. Screening and evaluation of human intestinal lactobacilli for the development of novel gastrointestinal probiotics. Curr. Microbiol. 2010, 61, 560–566. [Google Scholar] [CrossRef]
- Gemechu, T. Review on lactic acid bacteria function in milk fermentation and preservation. Afr. J. Food Sci. 2015, 9, 170–175. [Google Scholar] [CrossRef]
- FAO/WHO. Guidelines for the Evaluation of Probiotics in Food; FAO/WHO Working Group; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2002; pp. 1–11. [Google Scholar]
- Barrea, L.; Verde, L.; Auriemma, R.S.; Vetrani, C.; Cataldi, M.; Frias-Toral, E.; Pugliese, G.; Camajani, E.; Savastano, S.; Colao, A.; et al. Probiotics and prebiotics: Any role in menopause-related diseases? Curr. Nutr. Rep. 2023, 12, 83–97. [Google Scholar] [CrossRef]
- Chon, J.W.; Youn, H.Y.; Kim, H.J.; Oh, H.; Kang, S.H.; Hwang, W.U.; Jeong, H.; Kim, H.J.; Seo, K.H.; Song, K.Y. Anti-viral activities of probiotics against viral gastroenteritis: A review. J. Dairy Sci. Biotechnol. 2023, 41, 87–102. [Google Scholar] [CrossRef]
- Lee, B.S.; Ban, O.H.; Bang, W.Y.; Chae, S.A.; Oh, S.; Park, C.; Lee, M.; Kim, S.J.; Yang, J.; Jung, Y.H. Safety assessment of Lactobacillus reuteri IDCC 3701 based on phenotypic and genomic analysis. Ann. Microbiol. 2021, 71, 10. [Google Scholar] [CrossRef]
- Sarita, B.; Samadhan, D.; Hassan, M.Z.; Kovaleva, E.G. A comprehensive review of probiotics and human health—Current prospective and applications. Front. Microbiol. 2025, 15, 1487641. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.T.; Chao, W.Y.; Lin, C.H.; Shih, T.W.; Pan, T.M. Comprehensive safety assessment of Lacticaseibacillus paracasei subsp. paracasei NTU 101 through integrated genotypic and phenotypic analysis. Curr. Issues Mol. Biol. 2024, 46, 12354–12374. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Bang, W.Y.; Lee, H.B.; Yang, S.Y.; Lee, K.S.; Kang, H.J.; Hong, S.M.; Yang, J. Safety assessment and evaluation of probiotic potential of Lactobacillus bulgaricus IDCC 3601 for human use. Microorganisms 2024, 12, 2063. [Google Scholar] [CrossRef]
- Nethery, M.A.; Henriksen, E.D.; Daughtry, K.V.; Johanningsmeier, S.D.; Barrangou, R. Comparative genomics of eight Lactobacillus buchneri strains isolated from food spoilage. BMC Genom. 2019, 20, 902. [Google Scholar] [CrossRef]
- Heinl, S.; Wibberg, D.; Eikmeyer, F.; Szczepanowski, R.; Blom, J.; Linke, B.; Goesmann, A.; Grabherr, R.; Schwab, H.; Pühler, A.; et al. Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage. J. Biotechnol. 2012, 161, 153–166. [Google Scholar] [CrossRef]
- Cheon, M.J.; Lim, S.M.; Lee, N.K.; Paik, H.D. Probiotic properties and neuroprotective effects of Lactobacillus buchneri KU200793 isolated from Korean fermented foods. Int. J. Mol. Sci. 2020, 21, 1227. [Google Scholar] [CrossRef]
- Shokryazdan, P.; Faseleh Jahromi, M.; Liang, J.B.; Kalavathy, R.; Sieo, C.C.; Ho, Y.W. Safety assessment of two new Lactobacillus strains as probiotic for human using a rat model. PLoS ONE 2016, 11, e0159851. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, e05206. [Google Scholar] [CrossRef]
- Lee, M.G.; Kang, M.J.; Kim, S.; Jeong, H.; Kang, D.K.; Paik, H.D.; Park, Y.S. Safety assessment of Levilactobacillus brevis KU15006: A comprehensive analysis of its phenotypic and genotypic properties. Probiotics Antimicrob. Proteins 2024, 17, 1117–1131. [Google Scholar] [CrossRef]
- Tail, M.; Zhang, H.; Zheng, G.; Hatami, M.; Skutella, T.; Unterberg, A.; Zweckberger, K.; Younsi, A. The sonic hedgehog pathway modulates survival, proliferation, and differentiation of neural progenitor cells under inflammatory stress in vitro. Cells 2022, 11, 736. [Google Scholar] [CrossRef]
- Kim, T.; Mondal, S.C.; Jeong, C.R.; Kim, S.R.; Ban, O.H.; Jung, Y.H.; Yang, J.; Kim, S.J. Safety evaluation of Lactococcus lactis IDCC 2301 isolated from homemade cheese. Food Sci. Nutr. 2022, 10, 67–74. [Google Scholar] [CrossRef]
- Lee, Y.R.; Bang, W.Y.; Baek, K.R.; Kim, G.H.; Kang, M.J.; Yang, J.; Seo, S.O. Safety evaluation by phenotypic and genomic characterization of four Lactobacilli strains with probiotic properties. Microorganisms 2022, 10, 2218. [Google Scholar] [CrossRef]
- Bourgin, M.; Kriaa, A.; Mkaouar, H.; Mariaule, V.; Jablaoui, A.; Maguin, E.; Rhimi, M. Bile salt hydrolases: At the crossroads of microbiota and human health. Microorganisms 2021, 9, 1122. [Google Scholar] [CrossRef]
- Costarelli, V.; Key, T.; Appleby, P.; Allen, D.; Fentiman, I.; Sanders, T. A prospective study of serum bile acid concentrations and colorectal cancer risk in post-menopausal women on the island of Guernsey. Br. J. Cancer 2002, 86, 1741–1744. [Google Scholar] [CrossRef]
- Joung, H.; Chu, J.; Kwon, Y.J.; Kim, K.H.; Shin, C.H.; Ha, J.H. Assessment of the safety and hepatic lipid-lowering effects of Lactobacillus delbrueckii subsp. lactis CKDB001. Appl. Biol. Chem. 2024, 67, 101. [Google Scholar] [CrossRef]
- Pradhan, D.; Singh, R.; Tyagi, A.; Rashmi, H.; Batish, V.; Grover, S. Assessing safety of Lactobacillus plantarum MTCC 5690 and Lactobacillus fermentum MTCC 5689 using in vitro approaches and an in vivo murine model. Regul. Toxicol. Pharmacol. 2019, 101, 1–11. [Google Scholar] [CrossRef]
- Varada, V.V.; Panneerselvam, D.; Pushpadass, H.A.; Mallapa, R.H.; Ram, C.; Kumar, S. In vitro safety assessment of electrohydrodynamically encapsulated Lactiplantibacillus plantarum CRD7 and Lacticaseibacillus rhamnosus CRD11 for probiotics use. Curr. Res. Food Sci. 2023, 6, 100507. [Google Scholar] [CrossRef]
- Zhou, J.; Gopal, P.; Gill, H. Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int. J. Food Microbiol. 2001, 63, 81–90. [Google Scholar] [CrossRef]
- Araújo, C.; Munoz-Atienza, E.; Ramírez, M.; Poeta, P.; Igrejas, G.; Hernández, P.E.; Herranz, C.; Cintas, L.M. Safety assessment, genetic relatedness and bacteriocin activity of potential probiotic Lactococcus lactis strains from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Eur. Food Res. Technol. 2015, 241, 647–662. [Google Scholar] [CrossRef]
- Song, E.J.; Lee, E.S.; Kim, Y.I.; Shin, D.U.; Eom, J.E.; Shin, H.S.; Lee, S.Y.; Nam, Y.D. Gut microbial change after administration of Lacticaseibacillus paracasei AO356 is associated with anti-obesity in a mouse model. Front. Endocrinol. 2023, 14, 1224636. [Google Scholar] [CrossRef]
- Łukasik, J.; Salminen, S.; Szajewska, H. Rapid review shows that probiotics and fermented infant formulas do not cause d-lactic acidosis in healthy children. Acta Paediatr. 2018, 107, 1322–1326. [Google Scholar] [CrossRef]
- Uchida, H.; Yamamoto, H.; Kisaki, Y.; Fujino, J.; Ishimaru, Y.; Ikeda, H. D-lactic acidosis in short-bowel syndrome managed with antibiotics and probiotics. J. Pediatr. Surg. 2004, 39, 634–636. [Google Scholar] [CrossRef]
- Jang, Y.J.; Gwon, H.M.; Jeong, W.S.; Yeo, S.H.; Kim, S.Y. Safety evaluation of Weissella cibaria JW15 by phenotypic and genotypic property analysis. Microorganisms 2021, 9, 2450. [Google Scholar] [CrossRef]
- Stuivenberg, G.; Daisley, B.; Akouris, P.; Reid, G. In vitro assessment of histamine and lactate production by a multi-strain synbiotic. J. Food Sci. Technol. 2021, 59, 3419–3427. [Google Scholar] [CrossRef]
- Kim, M.J.; Ku, S.; Kim, S.Y.; Lee, H.H.; Jin, H.; Kang, S.; Li, R.; Johnston, T.V.; Park, M.S.; Ji, G.E. Safety evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Int. J. Mol. Sci. 2018, 19, 1422. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Ladero, V.; Fernández, M.; Fiocco, D.; Alvarez, M.A.; Grieco, F.; Spano, G. Biogenic amines degradation by Lactobacillus plantarum: Toward a potential application in wine. Front. Microbiol. 2012, 3, 122. [Google Scholar] [CrossRef]
- Bin Hafeez, A.; Pełka, K.; Worobo, R.; Szweda, P. In silico safety assessment of Bacillus isolated from polish bee pollen and bee bread as novel probiotic candidates. Int. J. Mol. Sci. 2024, 25, 666. [Google Scholar] [CrossRef]
- Ku, S.; Yang, S.; Lee, H.H.; Choe, D.; Johnston, T.V.; Ji, G.E.; Park, M.S. Biosafety assessment of Bifidobacterium animalis subsp. lactis AD011 used for human consumption as a probiotic microorganism. Food Control 2020, 117, 106985. [Google Scholar] [CrossRef]
- Yilmaz, N. Quantitative analysis of biogenic amine production of different lactic acid bacteria isolated from ready-to-eat packaged fish products. Vet. Res. Forum 2024, 15, 537–543. [Google Scholar] [CrossRef]
- Chen, T.; Zhao, Y.; Fan, Y.; Dong, Y.; Gai, Z. Genome sequence and evaluation of safety and probiotic potential of Lacticaseibacillus paracasei LC86 and Lacticaseibacillus casei LC89. Front. Microbiol. 2025, 15, 1501502. [Google Scholar] [CrossRef]
- Turna, N.S.; Chung, R.; McIntyre, L. A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon 2024, 10, e24501. [Google Scholar] [CrossRef]
- Rajasekaran, J.J.; Krishnamurthy, H.K.; Bosco, J.; Jayaraman, V.; Krishna, K.; Wang, T.; Bei, K. Oral microbiome: A review of its impact on oral and systemic health. Microorganisms 2024, 12, 1797. [Google Scholar] [CrossRef]
- Coppola, R.; Succi, M.; Tremonte, P.; Reale, A.; Salzano, G.; Sorrentino, E. Antibiotic susceptibility of Lactobacillus rhamnosus strains isolated from parmigiano reggiano cheese. Lait 2005, 85, 193–204. [Google Scholar] [CrossRef]
- Imperial, I.C.; Ibana, J.A. Addressing the antibiotic resistance problem with probiotics: Reducing the risk of its double-edged sword effect. Front. Microbiol. 2016, 7, 1983. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.H.; Yang, R.S.; Lin, Y.C.; Xin, W.G.; Zhou, H.Y.; Wang, F.; Zhang, Q.L.; Lin, L.B. Assessment of the safety and probiotic characteristics of Lactobacillus salivarius CGMCC20700 based on whole-genome sequencing and phenotypic analysis. Front. Microbiol. 2023, 14, 1120263. [Google Scholar] [CrossRef]
- Kondrotiene, K.; Lauciene, L.; Andruleviciute, V.; Kasetiene, N.; Serniene, L.; Sekmokiene, D.; Malakauskas, M. Safety assessment and preliminary in vitro evaluation of probiotic potential of Lactococcus lactis strains naturally present in raw and fermented milk. Curr. Microbiol. 2020, 77, 3013–3023. [Google Scholar] [CrossRef] [PubMed]
- Colautti, A.; Arnoldi, M.; Comi, G.; Iacumin, L. Antibiotic resistance and virulence factors in lactobacilli: Something to carefully consider. Food Microbiol. 2022, 103, 103934. [Google Scholar] [CrossRef]
- de Niederhäusern, S.; Bondi, M.; Messi, P.; Iseppi, R.; Sabia, C.; Manicardi, G.; Anacarso, I. Vancomycin-resistance transferability from VanA enterococci to Staphylococcus aureus. Curr. Microbiol. 2011, 62, 1363–1367. [Google Scholar] [CrossRef]
- van Reenen, C.A.; Dicks, L.M. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: What are the possibilities? A review. Arch. Microbiol. 2011, 193, 157–168. [Google Scholar] [CrossRef]
- Im, E.J.; Lee, H.H.Y.; Kim, M.; Kim, M.K. Evaluation of enterococcal probiotic usage and review of potential health benefits, safety, and risk of antibiotic-resistant strain emergence. Antibiotics 2023, 12, 1327. [Google Scholar] [CrossRef]
- Mathur, S.; Singh, R. Antibiotic resistance in food lactic acid bacteria—A review. Int. J. Food Microbiol. 2005, 105, 281–295. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, M.; Wan, C.; Chen, X.; Chen, X.; Tao, X.; Shah, N.P.; Wei, H. Screening probiotic strains for safety: Evaluation of virulence and antimicrobial susceptibility of enterococci from healthy Chinese infants. J. Dairy Sci. 2016, 99, 4282–4290. [Google Scholar] [CrossRef] [PubMed]
- Mortezaei, M.; Dadmehr, M.; Korouzhdehi, B.; Hakimi, M.; Ramshini, H. Colorimetric and label free detection of gelatinase positive bacteria and gelatinase activity based on aggregation and dissolution of gold nanoparticles. J. Microbiol. Methods 2021, 191, 106349. [Google Scholar] [CrossRef] [PubMed]
- Koksharova, O.A.; Butenko, I.O.; Pobeguts, O.V.; Safronova, N.A.; Govorun, V.M. β-N-methylamino-L-alanine (BMAA) causes severe stress in Nostoc sp. PCC 7120 cells under diazotrophic conditions: A proteomic study. Toxins 2021, 13, 325. [Google Scholar] [CrossRef]
- Lee, C.S.; Park, M.H.; Kim, S.H. Selection and characterization of probiotic bacteria exhibiting antiadipogenic potential in 3T3-L1 preadipocytes. Probiotics Antimicrob. Proteins 2022, 14, 72–86. [Google Scholar] [CrossRef]
- Jaglin, M.; Rhimi, M.; Philippe, C.; Pons, N.; Bruneau, A.; Goustard, B.; Daugé, V.; Maguin, E.; Naudon, L.; Rabot, S. Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. Front. Neurosci. 2018, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.q.; Zeng, S.p.; Liang, M.h.; Yousaf, M.; Wu, Y.p.; Tang, J.; Xiong, J.; Liu, D.m. Safety and metabolism characteristics of Lacticaseibacillus rhamnosus LR-ZB1107-01 based on complete genome and corresponding phenotype. LWT 2024, 204, 116443. [Google Scholar] [CrossRef]
- Lee, D.Y.; Seo, Y.S.; Rayamajhi, N.; Kang, M.L.; Lee, S.I.; Yoo, H.S. Isolation, characterization, and evaluation of wild isolates of Lactobacillus reuteri from pig feces. J. Microbiol. 2009, 47, 663–672. [Google Scholar] [CrossRef] [PubMed]
Strain | D-Lactic Acid (mM) |
---|---|
L. buchneri KU200793 | 2.0 ± 0.3 |
Biogenic Amines | Concentration (ppm) |
---|---|
Agmatine | n.d. * |
β-phenylethylamine | n.d. |
Putrescine | n.d. |
Histamine | n.d. |
Serotonin | n.d. |
Spermidine | 15.3 ± 7.0 |
Tryptamine | n.d. |
Tyramine | n.d. |
Antibiotics | Cut-Off Value (µg/mL) * | MIC (µg/mL) | Assessment |
---|---|---|---|
Ampicillin | 2 | 0.38 | S *** |
Vancomycin | n.r. ** | - | - |
Gentamycin | 16 | 0.047 | S |
Kanamycin | 32 | 1 | S |
Streptomycin | 64 | 0.5 | S |
Erythromycin | 1 | 0.016 | S |
Clindamycin | 1 | 0.016 | S |
Tetracycline | 8 | 48 | R **** |
Chloramphenicol | 4 | 1 | S |
RGI Criteria | ARO Term | AMR Gene Family | Drug Class | % Identity Matching Region |
---|---|---|---|---|
Loose | tetA(58) | Major facilitator superfamily antibiotic efflux pump | tetracycline antibiotic | 33.64 |
nalD | Resistance-nodulation-cell division antibiotic efflux pump | macrolide antibiotic, fluoroquinolone antibiotic, monobactam, carbapenem, cephalosporin, cephamycin, penam, tetracycline antibiotic, peptide antibiotic, aminocoumarin antibiotic, diaminopyrimidine antibiotic, sulfonamide antibiotic, phenicol antibiotic, penem | 30.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Jeong, H.; Lee, N.-K.; Kang, D.-K.; Paik, H.-D.; Park, Y.-S.; Lee, J.H. Comprehensive Safety Assessment of Lentilactobacillus buchneri KU200793 as a Potential Probiotic. Microorganisms 2025, 13, 2067. https://doi.org/10.3390/microorganisms13092067
Kim S, Jeong H, Lee N-K, Kang D-K, Paik H-D, Park Y-S, Lee JH. Comprehensive Safety Assessment of Lentilactobacillus buchneri KU200793 as a Potential Probiotic. Microorganisms. 2025; 13(9):2067. https://doi.org/10.3390/microorganisms13092067
Chicago/Turabian StyleKim, Suin, Huijin Jeong, Na-Kyoung Lee, Dae-Kyung Kang, Hyun-Dong Paik, Young-Seo Park, and Jong Hun Lee. 2025. "Comprehensive Safety Assessment of Lentilactobacillus buchneri KU200793 as a Potential Probiotic" Microorganisms 13, no. 9: 2067. https://doi.org/10.3390/microorganisms13092067
APA StyleKim, S., Jeong, H., Lee, N.-K., Kang, D.-K., Paik, H.-D., Park, Y.-S., & Lee, J. H. (2025). Comprehensive Safety Assessment of Lentilactobacillus buchneri KU200793 as a Potential Probiotic. Microorganisms, 13(9), 2067. https://doi.org/10.3390/microorganisms13092067