Survival of Escherichia coli O157:H7 in Soils Along a Natural pH Gradient
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection and Characterization
2.2. Bacterial Strains
2.3. Survival of E. coli O157:H7 in Soils
2.4. Soil Bacterial Communities’ Characterization
2.5. Survival Data Modeling
2.6. Statistics Analysis
3. Results
3.1. Soil Characterization and Grouping
3.2. Soil Bacterial Community Characterization
3.3. Survival Behavior of E. coli O157:H7 in Soils
3.4. Stepwise Multiple Regression, Mantel and Partial Mantel Tests Analysis
3.5. Co-Occurrence Network of Survival Time, Soil Properties, and Microbial Community Composition and Structure
3.6. Structural Equation Model of Survival Data, Soil Properties, and Bacterial Community
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bach, S.J.; McAllister, T.A.; Veira, D.M.; Gannon, V.P.; Holley, R.A. Transmission and control of Escherichia coli O157:H7—A review. Can. J. Anim. Sci. 2002, 82, 475–490. [Google Scholar] [CrossRef]
- Artz, R.R.E.; Killham, K. Survival of Escherichia coli O157:H7 in private drinking water wells: Influences of protozoan grazing and elevated copper concentrations. Fems Microbiol. Lett. 2002, 216, 117–122. [Google Scholar] [CrossRef]
- Chauret, C. Survival and control of Escherichia coli O157:H7 in foods, beverages, soil and water. Virulence 2011, 2, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.F.; Tauxe, R.V.; Hedberg, C.W. The growing burden of foodborne outbreaks due to contaminated fresh produce: Risks and opportunities. Epidemio. Infect. 2009, 137, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Sharapov, U.M.; Wendel, A.M.; Davis, J.P.; Keene, W.E.; Farrar, J.; Sodha, S.; Hyytia-Trees, E.; Leeper, M.; Gerner-Smidt, P.; Griffin, P.M.; et al. Multistate outbreak of Escherichia coli O157:H7 infections associated with consumption of fresh spinach: United States, 2006. J. Food Protect. 2016, 79, 2024–2030. [Google Scholar] [CrossRef]
- van Elsas, J.D.; Hill, P.; Chronaková, A.; Grekova, M.; Topalová, Y.; Elhottová, D.; Kristufek, V. Survival of genetically marked Escherichia coli O157:H7 in soil as affected by soil microbial community shifts. ISME J. 2007, 1, 204–214. [Google Scholar] [CrossRef]
- Ma, J.C.; Ibekwe, A.M.; Crowley, D.E.; Yang, C.H. Persistence of Escherichia coli O157:H7 in major leafy green producing soils. Environ. Sci. Technol. 2012, 46, 12154–12161. [Google Scholar] [CrossRef]
- Xian, H.; Hao, Y.F.; Lv, J.Y.; Wang, C.; Zuo, P.J.; Pei, Z.G.; Li, Y.M.; Yang, R.Q.; Zhang, Q.H.; Jiang, G.B. Novel brominated flame retardants (NBFRs) in soil and moss in Mt. Shergyla, southeast Tibetan Plateau: Occurrence, distribution and influencing factors. Environ. Pollut. 2021, 291, 118252. [Google Scholar] [CrossRef]
- Neidhardt, H.; Lemke, E.; Epp, T.; Marks, M.A.W.; Markl, G.; Oelmann, Y. Impact of abiotic and biogeochemical processes on halogen concentrations (Cl, Br, F, I) in mineral soil along a climatic gradient. Environ. Sci.-Proc. Imp. 2022, 24, 1330–1342. [Google Scholar] [CrossRef]
- Xu, K.L.; Liu, X.A.; Pang, L.A.; Yue, Y.; Chatzisymeon, E.; Yang, P. Response behavior of antibiotic resistance genes and human pathogens to slope gradient and position: An environmental risk analysis in sloping cultivated land. Sci. Total Environ. 2023, 905, 166994. [Google Scholar] [CrossRef]
- Rath, K.M.; Fierer, N.; Murphy, D.V.; Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2019, 13, 836–846. [Google Scholar] [CrossRef]
- Namba, M.; Hashimoto, M.; Ito, M.; Momota, K.; Smith, C.; Yorisue, T.; Nakaoka, M. The effect of environmental gradient on biodiversity and similarity of invertebrate communities in eelgrass (Zostera marina) beds. Ecol. Res. 2020, 35, 61–75. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.Y.; Gao, Q.; Li, C.L.; Yan, L.; Feng, G.Z. Temporal and spatial variability of soil pH in cropland of Jilin Province. J. Soil Sci. 2017, 48, 387–391. (In Chinese) [Google Scholar]
- Lu, C.; Liu, H.; Zhao, X. Soil salinization problem research and prevention & control measures in the western of Jilin Province. Resour. Environ. Eng. 2016, 30, 419–424+463. (In Chinese) [Google Scholar]
- Wang, J.; Liu, K.; Ren, H.L.; Tang, X.L.; Li, J.; Wang, Y. Soil moisture charateristics of spring in Jilin Province and its influencing factors. Sci. Geogr. Sinica 2012, 32, 759–763. (In Chinese) [Google Scholar]
- Xing, J.J.; Wang, H.Z.; Brookes, P.C.; Salles, J.F.; Xu, J.M. Soil pH and microbial diversity constrain the survival of E-coli in soil. Soil Biol. Biochem. 2019, 128, 139–149. [Google Scholar] [CrossRef]
- Wang, H.Z.; Wei, G.; Yao, Z.Y.; Lou, J.; Xiao, K.C.; Wu, L.S.; Wu, J.J.; Xu, J.M. Response of Escherichia coli O157:H7 survival to pH of cultivated soils. J. Soil Sediment 2014, 14, 1841–1849. [Google Scholar] [CrossRef]
- Wang, H.Z.; Zhang, T.X.; Wei, G.; Wu, L.S.; Wu, J.J.; Xu, J.M. Survival of Escherichia coli O157:H7 in soils under different land use types. Environ. Sci. Pollut. Res. 2014, 21, 518–524. [Google Scholar] [CrossRef]
- Zhang, T.X.; Wang, H.Z.; Wu, L.S.; Lou, J.; Wu, J.J.; Brookes, P.C.; Xu, J.M. Survival of Escherichia coli O157:H7 in soils from Jiangsu Province, China. PLoS ONE 2013, 8, e81178. [Google Scholar] [CrossRef]
- Ma, J.C.; Ibekwe, A.M.; Yang, C.H.; Crowley, D.E. Influence of bacterial communities based on 454-pyrosequencing on the survival of Escherichia coli O157:H7 in soils. FEMS Microbiol. Ecol. 2013, 84, 542–554. [Google Scholar] [CrossRef]
- Franz, E.; Semenov, A.V.; Termorshuizen, A.J.; de Vos, O.J.; Bokhorst, J.G.; van Bruggen, A.H.C. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils. Environ. Microbiol. 2008, 10, 313–327. [Google Scholar]
- Yao, Z.Y.; Wang, H.Z.; Wu, L.S.; Wu, J.J.; Brookes, P.C.; Xu, J.M. Interaction between the microbial community and invading Escherichia coli O157:H7 in soils from vegetable fields. Appl. Environ. Microb. 2014, 80, 70–76. [Google Scholar] [CrossRef]
- Ma, J.C.; Ibekwe, A.M.; Yang, C.H.; Crowley, D.E. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations. Sci. Total Environ. 2016, 563, 199–209. [Google Scholar] [CrossRef]
- Sánchez-Marañón, M.; Miralles, I.; Aguirre-Garrido, J.F.; Anguita-Maeso, M.; Millán, V.; Ortega, R.; García-Salcedo, J.A.; Martínez-Abarca, F.; Soriano, M. Changes in the soil bacterial community along a pedogenic gradient. Sci. Rep. 2017, 7, 14593. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microb. 2009, 75, 5111–5120. [Google Scholar] [CrossRef]
- Beery, J.T.; Doyle, M.P.; Higley, N.A. Cytotoxic activity of Escherichia coli O157:H7 culture filtrate on the mouse colon and kidney. Curr. Microbiol. 1984, 11, 335–342. [Google Scholar] [CrossRef]
- Ma, J.C.; Ibekwe, A.M.; Yi, X.; Wang, H.Z.; Yamazaki, A.; Crowley, D.E.; Yang, C.H. Persistence of Escherichia coli O157:H7 and its mutants in soils. PLoS ONE 2011, 6, e23191. [Google Scholar] [CrossRef]
- Cole, J.R.; Chai, B.; Farris, R.J.; Wang, Q.; Kulam, S.A.; McGarrell, D.M.; Garrity, G.M.; Tiedje, J.M. The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 2005, 33, D294–D296. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Caporaso, J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Mafart, P.; Couvert, O.; Gaillard, S.; Leguerinel, I. On calculating sterility in thermal preservation methods: Application of the Weibull frequency distribution model. Int. J. Food Microbiol. 2002, 72, 107–113. [Google Scholar] [CrossRef]
- Geeraerd, A.H.; Valdramidis, V.; Van Impe, J.F. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 2005, 102, 95–105, Erratum in Int. J. Food Microbiol. 2006, 110, 297. [Google Scholar] [CrossRef]
- Coroller, L.; Leguerinel, I.; Mettler, E.; Savy, N.; Mafart, P. General model, based on two mixed Weibull distributions of bacterial resistance, for describing various shapes of inactivation curves. Appl. Environ. Microb. 2006, 72, 6493–6502. [Google Scholar] [CrossRef]
- Xiong, J.B.; Liu, Y.Q.; Lin, X.G.; Zhang, H.Y.; Zeng, J.; Hou, J.Z.; Yang, Y.P.; Yao, T.D.; Knight, R.; Chu, H.Y. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ. Microbiol. 2012, 14, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Ranjard, L.; Richaume, A.S. Quantitative and qualitative microscale distribution of bacteria in soil. Res. Microbiol. 2001, 152, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Z.; Xia, B.C.; Treves, D.S.; Wu, L.Y.; Marsh, T.L.; O’Neill, R.V.; Palumbo, A.V.; Tiedje, J.M. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microb. 2002, 68, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Ibekwe, A.M.; Ma, J.C. Effects of fumigants on microbial diversity and persistence of E. coli O15:H7 in contrasting soil microcosms. Sci. Total Environ. 2011, 409, 3740–3748. [Google Scholar] [CrossRef]
- van Overbeek, L.S.; Franz, E.; Semenov, A.V.; de Vos, O.J.; van Bruggen, A.H.C. The effect of the native bacterial community structure on the predictability of E. coli O157:H7 survival in manure-amended soil. Lett. Appl. Microbiol. 2010, 50, 425–430. [Google Scholar] [CrossRef]
- Qin, H.; Cai, R.H.; Wang, Y.A.; Deng, X.H.; Chen, J.H.; Xing, J.J. Intensive management facilitates bacterial invasion on soil microbial community. J. Environ. Manag. 2023, 340, 117963. [Google Scholar] [CrossRef]
- Jiang, X.P.; Morgan, J.; Doyle, M.P. Fate of Escherichia coli O157:H7 in manure-amended soil. Appl. Environ. Microb. 2002, 68, 2605–2609. [Google Scholar] [CrossRef]
- Semenov, A.V.; Franz, E.; van Overbeek, L.; Termorshuizen, A.J.; van Bruggen, A.H.C. Estimating the stability of Escherichia coli O157:H7 survival in manure-amended soils with different management histories. Environ. Microbiol. 2008, 10, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.A.; Shaaban, M.; Wu, Y.P.; Hu, R.G.; Wang, B.Y.; Wang, J. The diversity of iron reducing bacteria communities in subtropical paddy soils of China. Appl. Soil Ecol. 2016, 101, 20–27. [Google Scholar] [CrossRef]
- Jones, R.T.; Robeson, M.S.; Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009, 3, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Liu, J.J.; Sui, Y.Y.; Yu, Z.H.; Yao, Q.; Shi, Y.; Chu, H.Y.; Jin, J.; Liu, X.B.; Wang, G.H. Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China. Soil Biol. Biochem. 2016, 95, 212–222. [Google Scholar] [CrossRef]
- Baker, C.A.; De, J.; Schneider, K.R. Escherichia coli O157 survival in liquid culture and artificial soil microcosms with variable pH, humic acid and clay content. J. Appl. Microbiol. 2021, 130, 416–423. [Google Scholar] [CrossRef]
- Gutierrez-Gines, M.J.; Alizadeh, H.; Alderton, E.; Ambrose, V.; Meister, A.; Robinson, B.H.; Halford, S.; Prosser, J.A.; Horswell, J. Phytoremediation of microbial contamination in soil by New Zealand native plants. Appl. Soil Ecol. 2021, 167, 104040. [Google Scholar] [CrossRef]
- Alegbeleye, O.; Sant’Ana, A.S. Survival behavior of six enterotoxigenic Escherichia coli strains in soil and biochar-amended soils. Environ. Res. 2023, 223, 115443. [Google Scholar] [CrossRef]
- Gurtler, J.B.; Garner, C.M.; Mullen, C.A.; Vinyard, B.T. Minimum concentrations of slow pyrolysis paper and walnut hull cyclone biochars needed to inactivate Escherichia coli O157:H7 in soil. J. Food Protect. 2024, 87, 100210. [Google Scholar] [CrossRef]
- Goss, M.J.; Tubeileh, A.; Goorahoo, D. A review of the use of organic amendments and the risk to human health. Adv. Agron. 2013, 120, 275–379. [Google Scholar]
- Xu, M.Y.; Zhang, X.; Su, K.J.; Du, M.; Feng, S.; Li, Y.F. Influence of soil pH on nitrogen and phosphorus contents of Leymus chinensis in western Jilin Province. Chin. Agr. Sci. Bull. 2016, 32, 146–151. (In Chinese) [Google Scholar]
- Yao, Z.Y.; Yang, L.; Wang, H.Z.; Wu, J.J.; Xu, J.M. Fate of Escherichia coli O157:H7 in agricultural soils amended with different organic fertilizers. J. Hazard. Mater. 2015, 296, 30–36. [Google Scholar]
- Li, H.; Parent, L.E.; Karam, A.; Tremblay, C. Potential of Sphagnum peat for improving soil organic matter, water holding capacity, bulk density and potato yield in a sandy soil. Plant Soil 2004, 265, 355–365. [Google Scholar] [CrossRef]
- Fenlon, D.R.; Ogden, I.D.; Vinten, A.; Svoboda, I. The fate of Escherichia coli and E. coli O157 in cattle slurry after application to land. J. Appl. Microbiol. 2000, 88, 149S–156S. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.J.; Sun, S.S.; Wang, H.Z.; Brookes, P.C.; Xu, J.M. Response of soil native microbial community to Eschericia coli O157:H7 invasion. Environ. Pollut. 2020, 261, 114225. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.J.; Jia, X.; Wang, H.Z.; Ma, B.; Salles, J.F.; Xu, J.M. The legacy of bacterial invasions on soil native communities. Environ. Microbiol. 2021, 23, 669–681. [Google Scholar] [CrossRef] [PubMed]






| Regression Equation | R2 | F | p | r and T Value of Partial Regression Coefficient | ||
|---|---|---|---|---|---|---|
| r | T | |||||
| ttd = −177.079 − 2.845 × pH − 3.912 × NO3−-N + 25.409 × Proteobacteria − 111.826 × Acidobacteria + 28.432 × H | 0.861 | 8.155 | 0.000 | pH NO3−-N Proteobacteria Acidobacteria H | −0.152 −0.274 0.074 −0.396 +0.825 | −0.430 ** −1.629 ** −0.335 ** −1.136 ** +3.748 ** | 
| Mantel | Partial Mantel | |
|---|---|---|
| H | *** | *** | 
| Bacterial community | *** | *** | 
| NO3−-N | *** | ** | 
| pH | *** | * | 
| Acidobacteria | *** | - | 
| WSOC | *** | - | 
| EC | ** | - | 
| Proteobacteria | ** | - | 
| NH4+-N | * | - | 
| Actinobacteria | * | - | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, G.; Li, H.; Hu, J.; Ma, J. Survival of Escherichia coli O157:H7 in Soils Along a Natural pH Gradient. Microorganisms 2025, 13, 2492. https://doi.org/10.3390/microorganisms13112492
Lyu G, Li H, Hu J, Ma J. Survival of Escherichia coli O157:H7 in Soils Along a Natural pH Gradient. Microorganisms. 2025; 13(11):2492. https://doi.org/10.3390/microorganisms13112492
Chicago/Turabian StyleLyu, Guangze, Huiru Li, Jiayang Hu, and Jincai Ma. 2025. "Survival of Escherichia coli O157:H7 in Soils Along a Natural pH Gradient" Microorganisms 13, no. 11: 2492. https://doi.org/10.3390/microorganisms13112492
APA StyleLyu, G., Li, H., Hu, J., & Ma, J. (2025). Survival of Escherichia coli O157:H7 in Soils Along a Natural pH Gradient. Microorganisms, 13(11), 2492. https://doi.org/10.3390/microorganisms13112492
 
        



 
       