Effect of Enzymatic Lactose Hydrolysis on the Quality and Texture of Full-Fat Curd Cheese Produced Without Whey Separation
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Model Curd Cheeses Without Whey Separation and Experimental Design
2.2. Chemical Analysis
2.3. Textural Analysis
2.4. Microbiological Analyses
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Detailed Chemical Analysis
3.2. The Textural Properties
3.3. pH Analysis
3.4. Total Viable Counts of Starter Culture Bacteria
3.5. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borek, D.; Głowacka-Smolis, K.; Gustyn, J.; Kozera, A.; Kozłowska, J.; Marikin, M.; Morytz-Balska, E.; Piotrowski, F.; Rybak-Nguyen, E.; Safader, M.; et al. Concise Statistical Yearbook of Poland; Statistical Publishing Establishment: Warsaw, Poland, 2022. [Google Scholar]
- Król, J.; Wawryniuk, A.; Brodziak, A. The Effect of Raw Milk Quality and Starter Cultures on the Yield and Nutritional Value of Polish Acid Curd Cheese (Tvarog). Ann. Anim. Sci. 2022, 22, 439–458. [Google Scholar] [CrossRef]
- Najgebauer-Lejko, D.; Domagała, J.; Walczycka, M. Traditional Cheeses from the Malopolska Region. In Cultural Heritage—Possibilities for Land-Centered Societal Development; Hernik, J., Walczycka, M., Sankowski, E., Harris, B.J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 171–190. ISBN 978-3-030-58092-6. [Google Scholar]
- Ziarno, M.; Lenart, A. Traditional Polish Curd Cheeses. In Modernization of Traditional Food Processes and Products; McElhatton, A., El Idrissi, M.M., Eds.; Springer: Boston, MA, USA, 2016; pp. 3–12. ISBN 978-1-4899-7671-0. [Google Scholar]
- Lepilkina, O.V.; Grigorieva, A.I. Enzymatic Proteolysis during the Conversion of Milk into Cheese. Food Syst. 2023, 6, 36–45. [Google Scholar] [CrossRef]
- Pietrzak-Fiećko, R.; Staniewska, K. Fatty Acid Profile of Milk Fat in the Local Dairy Products from North-Eastern Poland. Pol. J. Nat. Sci. 2017, 32, 143–151. [Google Scholar]
- Morard, D. Communist Quality: Dairy Production at the Leningrad Dairy Combine, 1965–1982. Glob. Food Hist. 2025, 10, 187–202. [Google Scholar] [CrossRef]
- Oliveira, D.; Fox, P.; O’Mahony, J.A. Byproducts from Dairy Processing. In Byproducts from Agricultural and Fisheries: Adding Value for Food, Feed, Pharma and Fuels; Simpson, B.K., Kwofie, E.M., Aryee, A.N.A., Eds.; Willey: Hoboken, NJ, USA, 2018; in press. [Google Scholar]
- Dekker, P.J.T.; Koenders, D.; Bruins, M.J. Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients 2019, 11, 551. [Google Scholar] [CrossRef]
- Werner, A.V.; Grashchenkov, D.V.; Chugunova, O.V. Метoдические и технoлoгические аспекты прoизвoдства безлактoзных мoлoчных прoдуктoв. [Methodological and technological aspects of the production of lactose-free dairy products]. Нoвые технoлoгии/New Technol. 2024, 20, 37–48. [Google Scholar] [CrossRef]
- Murador, G.; Bosso, A.; Suguimoto, H.; Morioka, R.L.I. Produção de β-Galactosidase Através da Saccharomyces Fragilis Cultivada Em Soro de Queijo. Ens. Ciência Ciências Biológicas Agrárias Saúde 2020, 24, 337–342. [Google Scholar] [CrossRef]
- Alzahrani, F.; Akanbi, T.O.; Scarlett, C.J.; Aryee, A.N.A. The Use of Immobilised Enzymes for Lipid and Dairy Processing and Their Waste Products: A Review of Current Progress. Processes 2024, 12, 634. [Google Scholar] [CrossRef]
- Hou, J.; McSweeney, P.L.H.; Beresford, T.P.; Guinee, T.P. Effect of Curd Washing on the Properties of Reduced-Calcium and Standard-Calcium Cheddar Cheese. J. Dairy Sci. 2014, 97, 5983–5999. [Google Scholar] [CrossRef]
- Fenelon, M.A.; O’Connor, P.; Guinee, T.P. The Effect of Fat Content on the Microbiology and Proteolysis in Cheddar Cheese During Ripening. J. Dairy Sci. 2000, 83, 2173–2183. [Google Scholar] [CrossRef]
- McCarthy, C.M.; Wilkinson, M.G.; Kelly, P.M.; Guinee, T.P. Effect of Salt and Fat Reduction on the Composition, Lactose Metabolism, Water Activity and Microbiology of Cheddar Cheese. Dairy Sci. Technol. 2015, 95, 587–611. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Trujillo Escorza, M. Strategies for Cheese Whey Processing and Valorization. In Treballs Finals de Grau (TFG)—Enginyeria Química; Universitat de Barcelona: Barcelona, Spain, 2024; Available online: https://diposit.ub.edu/dspace/handle/2445/214856 (accessed on 22 October 2025).
- Samilyk, M.; Vechorka, V.; Natalia, B.; Samokhina, Y.; Kyselov, O. Analysis of Cheeses Made by Waste-Free Technology. Food Sci. Technol. 2023, 16, 2539. [Google Scholar] [CrossRef]
- Addai, F.P.; Lin, F.; Wang, T.; Kosiba, A.A.; Sheng, P.; Yu, F.; Gu, J.; Zhou, Y.; Shi, H. Technical Integrative Approaches to Cheese Whey Valorization towards Sustainable Environment. Food Funct. 2020, 11, 8407–8423. [Google Scholar] [CrossRef] [PubMed]
- Hallab, R.; Kohen, C.; Grandison, M.A.; Lewis, M.J.; Grandison, A.S. Assessment of the Quality of Cottage Cheese Produced from Standard and Protein-Fortified Skim Milk. Int. J. Dairy Technol. 2007, 60, 69–73. [Google Scholar] [CrossRef]
- Mahmood, W.A. Effect of Microbial Transglutaminase Treatment on Soft Cheese Properties. Mesop. J. Agric. 2009, 37, 19–27. [Google Scholar] [CrossRef]
- Guinee, T.P.; Pudja, P.D.; Farkye, N.Y. Fresh Acid-Curd Cheese Varieties. In Cheese: Chemistry, Physics and Microbiology: Volume 2: Major Cheese Groups; Fox, P.F., Ed.; Springer: Boston, MA, USA, 1999; pp. 363–419. ISBN 978-1-4615-2800-5. [Google Scholar]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Cheese Yield. In Fundamentals of Cheese Science; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2017; pp. 279–331. ISBN 978-1-4899-7681-9. [Google Scholar]
- Lepesioti, S.; Zoidou, E.; Lioliou, D.; Moschopoulou, E.; Moatsou, G. Quark-Type Cheese: Effect of Fat Content, Homogenization, and Heat Treatment of Cheese Milk. Foods 2021, 10, 184. [Google Scholar] [CrossRef]
- Ibrahim, A.; Mabood Qazi, I.; Hashmi, M.; Ahmad, A.; Javed, H.; Ahmad, F.; Mukhtar, S. Quality and Consumer Acceptability of Cottage Cheese Prepared from the Blend of Cow and Goat Milk. Sarhad J. Agric. 2024, 40, 1102–1532. [Google Scholar] [CrossRef]
- Murtaza, G.; Kalim, F.; Aafreen, A. Chapter 43—Characterization of Functional Milk Products. In Handbook of Milk Production, Quality and Nutrition; Rana, T., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 525–540. ISBN 978-0-443-24820-7. [Google Scholar]
- Leal, I.; Correia, P.; Lima, M.; Machado, B.; Souza, C. de Cheese Analogues, an Alternative to Dietary Restrictions and Choices: The Current Scenario and Future. Foods 2025, 14, 2522. [Google Scholar] [CrossRef]
- Ghailan, A.Z.; Niamah, A.K. Streptococcus Thermophilus: Metabolic Properties, Functional Features, and Useful Applications. Appl. Microbiol. 2025, 5, 101. [Google Scholar] [CrossRef]
- Goyal, C.; Dhyani, P.; Rai, D.C.; Tyagi, S.; Dhull, S.B.; Sadh, P.K.; Duhan, J.S.; Saharan, B.S. Emerging Trends and Advancements in the Processing of Dairy Whey for Sustainable Biorefining. J. Food Process. Preserv. 2023, 2023, 6626513. [Google Scholar] [CrossRef]
- Abdulakhadova, G.S.; Zukhritdinova, N.Y.; Kutliyeva, G.J.; Azimova, K.B. Analysis of Lactic Acid Content in Lactobacilli Using with Spectrophotometric Method. Sci. Innov. 2025, 4, 182–186. [Google Scholar] [CrossRef]
- Tunick, M.H.; Renye, J.A.; Garcia, R.A. Conversion of Whey and Other Dairy Waste into Antimicrobial and Immunoregulatory Compounds by Fermentation. Front. Food Sci. Technol. 2025, 5, 1542284. [Google Scholar] [CrossRef]
- Airouyuwa, J.O.; Mudgil, P.; Maqsood, S. An Investigation into Impact of Date Seed Bioactive Compound Addition on the Quality Attributes, Shelf Life, In Vitro Digestibility, and Bioactive Properties of Cottage Cheese. Food Sci. Nutr. 2025, 13, e70535. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, D.; Martindale, W.; Romeih, E.; Hebishy, E. Recent Advances in Whey Processing and Valorisation: Technological and Environmental Perspectives. Int. J. Dairy Technol. 2023, 76, 291–312. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Mari, E.; Guerrini, S.; Granchi, L. Selection of Yeast and Lactic Acid Bacteria Strains, Isolated from Spontaneous Raw Milk Fermentation, for the Production of a Potential Probiotic Fermented Milk. Fermentation 2022, 8, 407. [Google Scholar] [CrossRef]
- ISO 3432:2008; Cheese—Determination of Fat Content—Butyrometer for Van Gulik Method. ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/46335.html (accessed on 22 October 2025).
- ISO 8968-1:2014; Milk and Milk Products—Determination of Nitrogen Content Part 1: Kjeldahl Principle and Crude Protein Calculation. ISO: Geneva, Switzerland, 2014. Available online: https://www.iso.org/standard/61020.html (accessed on 22 October 2025).
- Kowalska, E.; Maliszewska, B.; Ziarno, M. Characterization of Fermented Milks After the Passaging Process of Starter Cultures. Post. Techn. Przetw. Spoz. 2021, 2, 11–22. [Google Scholar]
- Ziarno, M.; Zaręba, D.; Kowalska, E.; Florowski, T. A Study into the Effects of Chosen Lactic Acid Bacteria Cultures on the Quality Characteristics of Fermented Dairy, Dairy–Oat, and Oat Beverages. Appl. Sci. 2025, 15, 3714. [Google Scholar] [CrossRef]
- Ziarno, M.; Zaręba, D.; Ścibisz, I.; Kozłowska, M. Comprehensive Studies on the Stability of Yogurt-Type Fermented Soy Beverages during Refrigerated Storage Using Dairy Starter Cultures. Front. Microbiol. 2023, 14, 1230025. [Google Scholar] [CrossRef]
- Ziarno, M.; Zaręba, D.; Maciejak, M.; Veber, A. The Impact of Dairy Starter Cultures on Selected Qualitative Properties of Functional Fermented Beverage Prepared from Germinated White Kidney Beans. J. Food Nutr. Res. 2019, 58, 167–176. [Google Scholar]
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors. ISO: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/76667.html (accessed on 22 October 2025).
- WMA—The World Medical Association. Declaration of Helsinki; WMA: Hong Kong, China, 2000. [Google Scholar]
- Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA Relevance). Off. J. Eur. Union 2016, L119, 1–88. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng (accessed on 22 October 2025).
- Siemianowski, K.; Szpendowski, J. Importance of tvorog in human nutrition. Probl. Hig. Epidemiol. 2014, 95, 115–119. [Google Scholar]
- Bella, K.; Pilli, S.; Venkateswara Rao, P.; Tyagi, R.D. Bio-Conversion of Whey Lactose Using Enzymatic Hydrolysis with β-Galactosidase: An Experimental and Kinetic Study. Environ. Technol. 2024, 45, 1234–1247. [Google Scholar] [CrossRef] [PubMed]
- Shpak, M.A.; Ryabtseva, S.A.; Lodygin, A.D.; Semchenko, A.A. Исследoвание oсoбеннoстей культивирoвания мoлoчнoкислых бактерий в пoдсырнoй сывoрoтке и уфпермеате для пoлучения β-галактoзидаз. [Study of the peculiarities of cultivating lactic acid bacteria in cheese whey and uppermeate for the production of β-galactosidases]. Сoвременная наука и иннoвации/Mod. Sci. Innov. 2023, 2, 133–144. [Google Scholar] [CrossRef]
- de Freitas, M.d.F.M.; Hortêncio, L.C.; de Albuquerque, T.L.; Rocha, M.V.P.; Gonçalves, L.R.B. Simultaneous Hydrolysis of Cheese Whey and Lactulose Production Catalyzed by β-Galactosidase from Kluyveromyces Lactis NRRL Y1564. Bioprocess Biosyst. Eng. 2020, 43, 711–722. [Google Scholar] [CrossRef]
- Adamberg, K.; Adamberg, S.; Laht, T.-M.; Ardö, Y.; Paalme, T. Study of Cheese Associated Lactic Acid Bacteria Under Carbohydrate-Limited Conditions Using D-Stat Cultivation. Food Biotechnol. 2006, 20, 143–160. [Google Scholar] [CrossRef]
- Mendoza, M.R.; Olano, A.; Villamiel, M. Chemical Indicators of Heat Treatment in Fortified and Special Milks. J. Agric. Food Chem. 2005, 53, 2995–2999. [Google Scholar] [CrossRef]
- Lorántfy, B.; Johanson, A.; Faria-Oliveira, F.; Franzén, C.J.; Mapelli, V.; Olsson, L. Presence of Galactose in Precultures Induces lacS and Leads to Short Lag Phase in Lactose-Grown Lactococcus Lactis Cultures. J. Ind. Microbiol. Biotechnol. 2019, 46, 33–43. [Google Scholar] [CrossRef]
- Iskandar, C.F.; Cailliez-Grimal, C.; Borges, F.; Revol-Junelles, A.-M. Review of Lactose and Galactose Metabolism in Lactic Acid Bacteria Dedicated to Expert Genomic Annotation. Trends Food Sci. Technol. 2019, 88, 121–132. [Google Scholar] [CrossRef]
- Green, I.R.; Oberg, C.J.; Broadbent, J.R.; Thunell, R.K.; McMahon, D.J. Galactose-Positive Adjunct Cultures Prevent Gas Formation by Paucilactobacillus Wasatchensis WDC04 in a Model Gas Production Test. J. Dairy Sci. 2021, 104, 10540–10549. [Google Scholar] [CrossRef]
- Neves, A.R.; Pool, W.A.; Solopova, A.; Kok, J.; Santos, H.; Kuipers, O.P. Towards Enhanced Galactose Utilization by Lactococcus lactis. Appl. Environ. Microbiol. 2010, 76, 7048–7060. [Google Scholar] [CrossRef]
- Apostolakos, I.; Paramithiotis, S.; Mataragas, M. Comparative Genomic Analysis Reveals the Functional Traits and Safety Status of Lactic Acid Bacteria Retrieved from Artisanal Cheeses and Raw Sheep Milk. Foods 2023, 12, 599. [Google Scholar] [CrossRef]
- Anbukkarasi, K.; UmaMaheswari, T.; Hemalatha, T.; Nanda, D.K.; Singh, P.; Singh, R. Preparation of Low Galactose Yogurt Using Cultures of Gal + Streptococcus Thermophilus in Combination with Lactobacillus Delbrueckii Ssp. Bulgaricus. J. Food Sci. Technol. 2014, 51, 2183–2189. [Google Scholar] [CrossRef]
- Hu, H.; Qimu, G.; Nie, J.; Wu, N.; Dan, T. Selection of a Galactose-Positive Mutant Strain of Streptococcus Thermophilus and Its Optimized Production as a High-Vitality Starter Culture. J. Dairy Sci. 2024, 107, 6558–6575. [Google Scholar] [CrossRef] [PubMed]
- Lucey, J.A.; Johnson, M.E.; Horne, D.S. Invited Review: Perspectives on the Basis of the Rheology and Texture Properties of Cheese. J. Dairy Sci. 2003, 86, 2725–2743. [Google Scholar] [CrossRef] [PubMed]
- Everett, D.W.; Auty, M.A.E. Cheese Structure and Current Methods of Analysis. Int. Dairy J. 2008, 18, 759–773. [Google Scholar] [CrossRef]
- Fang, X.; Rioux, L.-E.; Labrie, S.; Turgeon, S.L. Commercial Cheeses with Different Texture Have Different Disintegration and Protein/Peptide Release Rates during Simulated in Vitro Digestion. Int. Dairy J. 2016, 56, 169–178. [Google Scholar] [CrossRef]
- Rahimi, J.; Khosrowshahi, A.; Moradi, M.M.; Mohamadi, H.; Abbasi, H.; Madadlou, A. Texture and Chemistry of Iranian White Cheese as Influenced by Brine Treatments. J. Food Process. Technol. 2013, 4, 219. [Google Scholar] [CrossRef]
- Xiang, F.; Tang, H.; Li, Y.X.; Li, B. Differences in Protein Hydrolysis on Quality of Fermented Milk: The Changes in Structure and Processing Characteristics. Innov. Food Sci. Emerg. Technol. 2024, 98, 103862. [Google Scholar] [CrossRef]
- Guinee, T.P. Protein in Cheese and Cheese Products: Structure-Function Relationships. In Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects; McSweeney, P.L.H., O’Mahony, J.A., Eds.; Springer: New York, NY, USA, 2016; pp. 347–415. ISBN 978-1-4939-2800-2. [Google Scholar]
- Marchesseau, S.; Cuq, J.-L. Water-Holding Capacity and Characterization of Protein Interactions in Processed Cheese. J. Dairy Res. 1995, 62, 479–489. [Google Scholar] [CrossRef]
- Castillo, M.; Lucey, J.A.; Wang, T.; Payne, F.A. Effect of Temperature and Inoculum Concentration on Gel Microstructure, Permeability and Syneresis Kinetics. Cottage Cheese-Type Gels. Int. Dairy J. 2006, 16, 153–163. [Google Scholar] [CrossRef]
- Domagała, J.; Najgebauer-Lejko, D.; Wieteska-Śliwa, I.; Sady, M.; Wszołek, M.; Bonczar, G.; Filipczak-Fiutak, M. Influence of Milk Protein Cross-Linking by Transglutaminase on the Rennet Coagulation Time and the Gel Properties. J. Sci. Food Agric. 2016, 96, 3500–3507. [Google Scholar] [CrossRef]
- Gai, N.; Uniacke-Lowe, T.; O’Regan, J.; Goulding, D.A.; Kelly, A.L. Influence of β-Casein Genotype on Physicochemical Properties and Functionality of Bovine Milk. J. Dairy Sci. 2023, 106, 8357–8367. [Google Scholar] [CrossRef]
- Salaün, F.; Mietton, B.; Gaucheron, F. Buffering Capacity of Dairy Products. Int. Dairy J. 2005, 15, 95–109. [Google Scholar] [CrossRef]
- Farkye, N.Y. Acid- and Acid/Rennet-Curd Cheeses Part B: Cottage Cheese. In Cheese: Chemistry, Physics and Microbiology; Fox, P.F., McSweeney, P.L.H., Cogan, T.M., Guinee, T.P., Eds.; Major Cheese Groups; Academic Press: Cambridge, MA, USA, 2004; Volume 2, pp. 329–341. [Google Scholar]
- Ziarno, M.; Zaręba, D.; Piskorz, J. Fortifying buttermilk with calcium, magnesium, and whey proteins. Zywnosc Nauka Technol. Jakosc 2009, 63, 14–27. [Google Scholar]
| Feature | Traditional (Whey-Separated) | Whey-Free (Lactose-Containing) | Whey-Free + Lactose-Hydrolyzed (This Study) |
|---|---|---|---|
| Lactose content | high | moderate | low |
| Galactose/glucose content | low | low | high (from hydrolysis) |
| Nutrient retention | partial | high | high |
| Environmental footprint | higher (whey disposal) | lower | lowest |
| Microbial activity (lactic acid bacteria) | controlled by lactose input | sustained by residual lactose | modulated by glucose/galactose availability |
| Target consumers | general, lactose-tolerant | general | lactose-intolerant + health-conscious |
| Production complexity | standard | moderate | higher (requires enzyme control) |
| Sample Code | Dry Matter Content (% w/w) | Fat Content (% w/w) | Protein Content (% w/w) |
|---|---|---|---|
| LDM | 16.5 ± 0.4 a 1 | 10.86 ± 0.3 a | 4.99 ± 0.2 a |
| LDM-LH | 16.5 ± 0.4 a | 10.86 ± 0.3 a | 4.99 ± 0.2 a |
| HDM | 20.8 ± 0.4 b | 11.03 ± 0.2 b | 3.74 ± 0.3 b |
| HDM-LH | 20.8 ± 0.4 b | 11.03 ± 0.2 b | 3.74 ± 0.3 b |
| Storage Time (Week) | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| Sample Code | |||||
| Lactose content (%) | |||||
| LDM | 4.25 a 1 ± 0.24 | 2.50 b ± 0.08 | 2.23 b ± 0.21 | 2.10 b ± 0.21 | 1.96 b,c ± 0.20 |
| LDM-LH | nd d | nd d | nd d | nd d | nd d |
| HDM | 4.35 a ± 0.10 | 2.25 b ± 0.17 | 2.00 b,c ± 0.09 | 1.87 c ± 0.10 | 1.64 c ± 0.11 |
| HDM-LH | nd d | nd d | nd d | nd d | nd d |
| Glucose content (%) | |||||
| LDM | nd a | 0.15 a,b ± 0.06 | nd a | nd a | 0.05 a,b ± 0.00 |
| LDM-LH | 1.70 c ± 0.14 | 1.45 b ± 0.10 | 1.38 b ± 0.10 | 1.32 b ± 0.11 | 1.22 b ± 0.20 |
| HDM | nd a | 0.10 a ± 0.00 | 0.01 a ± 0.00 | nd a | nd a |
| HDM-LH | 1.93 d ± 0.10 | 1.65 c ± 0.17 | 1.60 c ± 0.08 | 1.54 b,c ± 0.11 | 1.40 b ± 0.04 |
| Galactose content (%) | |||||
| LDM | nd a | 1.63 b ± 0.10 | 1.75 b ± 0.10 | 1.78 b,c ± 0.08 | 1.70 b ± 0.10 |
| LDM-LH | 2.48 d ± 0.10 | 2.40 d ± 0.10 | 2.44 d ± 0.13 | 2.34 d ± 0.08 | 2.31 d ± 0.11 |
| HDM | nd a | 1.83 b,c ± 0.10 | 1.70 b ± 0.00 | 1.75 b ± 0.00 | 1.66 b ± 0.00 |
| HDM-LH | 2.75 e ± 0.21 | 2.68 e ± 0.24 | 2.69 e ± 0.18 | 2.74 e ± 0.08 | 2.70 e ± 0.10 |
| Storage Time (Week) | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| Sample Code | |||||
| Hardness (N) | |||||
| LDM | 3.2 a ± 0.2 | 3.1 a ± 0.2 | 3.5 a ± 0.2 | 3.9 a,b ± 0.2 | 3.1 a ± 0.3 |
| LDM-LH | 4.9 b ± 0.5 | 4.9 b ± 0.1 | 5.2 b ± 0.2 | 5.0 b ± 0.2 | 4.8 b ± 0.1 |
| HDM | 9.1 c ± 0.4 | 9.1 c ± 0.8 | 8.8 c ± 0.4 | 9.0 c ± 0.5 | 9.0 c ± 0.4 |
| HDM-LH | 8.7 c ± 0.5 | 9.2 c ± 0.7 | 9.2 c ± 0.5 | 9.1 c ± 0.4 | 9.0 c ± 0.4 |
| Adhesiveness (N) | |||||
| LDM | 0.8 a ± 0.1 | 0.8 a ± 0.1 | 0.8 a ± 0.1 | 0.8 a ± 0.1 | 0.8 a ± 0.1 |
| LDM-LH | 2.3 b ± 0.8 | 2.3 b ± 0.3 | 2.5 b ± 0.3 | 2.3 b ± 0.2 | 2.4 b ± 0.2 |
| HDM | 3.9 c ± 0.6 | 4.0 c ± 0.4 | 3.9 c ± 0.5 | 3.9 c ± 0.4 | 4.1 c ± 0.4 |
| HDM-LH | 5.0 d ± 0.3 | 4.7 d ± 0.2 | 4.7 c,d ± 0.7 | 4.7 c,d ± 0.5 | 4.8 d ± 0.5 |
| Water-holding capacity (%) | |||||
| LDM | 82 a ± 4 | 83 a ± 4 | 84 a ± 4 | 82 a ± 4 | 84 a ± 4 |
| LDM-LH | 98 b ± 5 | 95 b ± 5 | 95 b ± 5 | 96 b ± 5 | 97 b ± 5 |
| HDM | 100 b ± 5 | 100 b ± 5 | 100 b ± 5 | 97 b ± 5 | 100 b ± 5 |
| HDM-LH | 100 b ± 5 | 99 b ± 5 | 100 b ± 5 | 99 b ± 5 | 100 b ± 5 |
| pH | |||||
| LDM | 4.43 a ± 0.18 | 4.42 a ± 0.13 | 4.40 a ± 0.21 | 4.34 a ± 0.14 | 4.31 a ± 0.22 |
| LDM-LH | 4.43 a ± 0.17 | 4.43 a ± 0.20 | 4.37 a ± 0.22 | 4.36 a ± 0.16 | 4.33 a ± 0.13 |
| HDM | 4.47 a ± 0.22 | 4.47 a ± 0.20 | 4.45 a ± 0.22 | 4.44 a ± 0.22 | 4.42 a ± 0.16 |
| HDM-LH | 4.42 a ± 0.10 | 4.42 a ± 0.22 | 4.37 a ± 0.19 | 4.37 a ± 0.17 | 4.36 a ± 0.22 |
| Population of lactic acid bacteria (log(CFU/g)) | |||||
| LDM | 8.6 a ± 0.1 | 8.4 a ± 0.3 | 8.4 a ± 0.2 | 8.3 a ± 0.2 | 8.1 a ± 0.2 |
| LDM-LH | 8.5 a ± 0.3 | 8.3 a ± 0.3 | 8.2 a ± 0.2 | 8.1 a ± 0.2 | 8.0 a ± 0.2 |
| HDM | 8.5 a ± 0.4 | 8.4 a ± 0.3 | 8.3 a ± 0.2 | 8.1 a ± 0.3 | 8.1 a ± 0.3 |
| HDM-LH | 8.7 a ± 0.4 | 8.5 a ± 0.3 | 8.2 a ± 0.2 | 8.2 a ± 0.3 | 8.1 a ± 0.3 |
| Sensory Parameter | Appearance | Consistency | Taste | Smell | Overall Acceptability |
|---|---|---|---|---|---|
| Sample code | 1st week | ||||
| LDM | 4.80 a ± 0.20 | 4.78 a ± 0.22 | 4.50 a ± 0.30 | 4.67 b ± 0.20 | 4.82 a ± 0.20 |
| LDM-LH | 4.82 a ± 0.16 | 4.77 a ± 0.21 | 4.45 a ± 0.23 | 4.53 b ± 0.11 | 4.83 a ± 0.18 |
| HDM | 4.87 a ± 0.11 | 4.81 a ± 0.20 | 4.67 a ± 0.20 | 4.97 a ± 0.01 | 5.00 a ± 0.03 |
| HDM-LH | 4.88 a ± 0.13 | 4.83 a ± 0.11 | 4.76 a ± 0.21 | 4.98 a ± 0.01 | 5.00 a ± 0.01 |
| 4th week | |||||
| LDM | 4.78 a ± 0.09 | 4.68 a ± 0.12 | 4.49 b ± 0.11 | 4.63 b ± 0.18 | 4.79 a ± 0.13 |
| LDM-LH | 4.77 a ± 0.08 | 4.69 a ± 0.08 | 4.48 a,b ± 0.21 | 4.55 b ± 0.11 | 4.80 a ± 0.20 |
| HDM | 4.80 a ± 0.11 | 4.70 a ± 0.30 | 4.67 a ± 0.08 | 4.91 a ± 0.04 | 4.97 a ± 0.05 |
| HDM-LH | 4.85 a ± 0.07 | 4.69 a ± 0.20 | 4.77 a ± 0.10 | 4.99 a ± 0.10 | 4.98 a ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziarno, M.; Zaręba, D.; Ścibisz, I.; Kozłowska, M. Effect of Enzymatic Lactose Hydrolysis on the Quality and Texture of Full-Fat Curd Cheese Produced Without Whey Separation. Microorganisms 2025, 13, 2471. https://doi.org/10.3390/microorganisms13112471
Ziarno M, Zaręba D, Ścibisz I, Kozłowska M. Effect of Enzymatic Lactose Hydrolysis on the Quality and Texture of Full-Fat Curd Cheese Produced Without Whey Separation. Microorganisms. 2025; 13(11):2471. https://doi.org/10.3390/microorganisms13112471
Chicago/Turabian StyleZiarno, Małgorzata, Dorota Zaręba, Iwona Ścibisz, and Mariola Kozłowska. 2025. "Effect of Enzymatic Lactose Hydrolysis on the Quality and Texture of Full-Fat Curd Cheese Produced Without Whey Separation" Microorganisms 13, no. 11: 2471. https://doi.org/10.3390/microorganisms13112471
APA StyleZiarno, M., Zaręba, D., Ścibisz, I., & Kozłowska, M. (2025). Effect of Enzymatic Lactose Hydrolysis on the Quality and Texture of Full-Fat Curd Cheese Produced Without Whey Separation. Microorganisms, 13(11), 2471. https://doi.org/10.3390/microorganisms13112471

