Fluoroquinolone and Second-Line Injectable Resistance Among Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Clinical Isolates: A Molecular Study from a High-Burden Setting
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Isolates and Study Population
2.2. GenoType MTBDRplus and MTBDRsl v. 2.0 Line-Probe Assays (LPA)
2.3. Gene Sequencing
3. Results
3.1. Clinical Isolates
3.2. MTBDRsl Results
3.3. Mutations Detected by Gene Sequencing
3.4. Clinical Characterization of the Patients
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MTBC | Mycobacterium tuberculosis complex |
| DR-TB | Drug-resistant tuberculosis |
| RIF | Rifampicin |
| INH | Isoniazid |
| MDR | Multidrug-resistant |
| Pre-XDR | Pre-extensively drug-resistant |
| pDST | Phenotypic drug susceptibility testing |
| WT | Wild-type |
| MUT | mutant |
References
- World Health Organization (WHO). Global Tuberculosis Report. 2024. Available online: https://iris.who.int/bitstream/handle/10665/379339/9789240101531-eng.pdf?sequence=1 (accessed on 25 September 2025).
- Ministério da Saúde. NOTA INFORMATIVA No 9/2021-CGDR/DCCI/SVS/MS—Dispõe Sobre Atualização das Recomendações do Tratamento da Tuberculose Drogarresistente com a Disponibilização da Bedaquilina e Delamanida; Ministério da Saúde: Brasília, Brazil, 2021. [Google Scholar]
- Yadav, R.; Saini, A.; Kaur, P.; Behera, D.; Sethi, S. Diagnostic accuracy of GenoType® MTBDR sl VER 2.0 in detecting second-line drug resistance to M. tuberculosis. Int. J. Tuberc. Lung Dis. 2018, 22, 419–424. [Google Scholar] [CrossRef]
- Matsui, T.; Pinhata, J.M.W.; Rabello MCda, S.; Brandão, A.P.; Ferrazoli, L.; Leão, S.C.; Viana-Niero, C.; Oliveira, R.S.D. Frequency of first and second-line drug resistance-associated mutations among resistant Mycobacterium tuberculosis clinical isolates from São Paulo, Brazil. Mem. Inst. Oswaldo Cruz 2020, 115, e200055. [Google Scholar] [CrossRef] [PubMed]
- Pinhata, J.M.W.; Brandao, A.P.; Gallo, J.F.; Oliveira RSde Ferrazoli, L. GenoType MTBDRsl for detection of second-line drugs and ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis isolates at a high-throughput laboratory. Diagn. Microbiol. Infect. Dis. 2023, 105, 115856. [Google Scholar] [CrossRef]
- Hain Lifescience. GenoType MTBDRplus VER 2.0—Molecular Genetic Assay for Identification of the M. tuberculosis Complex and Its Resistance to Rifampicin and Isoniazid from Clinical Specimens and Cultivated Samples; Hain Lifescience: Nehren, Germany, 2015; Volume 1, Mtbdr G:1–10. [Google Scholar]
- Hain Lifescience. GenoType MTBDRsl VER 2.0—Instructions for Use; Document IFU-317A-01; Hain Lifescience: Nehren, Germany, 2015; Volume 2, pp. 8–14. [Google Scholar]
- World Health Organization (WHO). Line Probe Assays for Detection of Drug-Resistant Tuberculosis. Interpretation and Reporting Manual for Laboratory Staff and Clinicians; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Portugal, I.; Maia, S.; Moniz-Pereira, J. Discrimination of multidrug resistant Mycobacterium tuberculosis IS6110 fingerprint subclusters by rpoB gene mutation analysis. J. Clin. Microbiol. 1999, 37, 3022–3024. [Google Scholar] [CrossRef]
- Machado, D.; Perdigão, J.; Ramos, J.; Couto, I.; Portugal, I.; Ritter, C.; Boettger, E.C.; Viveiros, M. High-level resistance to isoniazid and ethionamide in multidrugresistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations. J. Antimicrob. Chemother. 2013, 68, 1728–1732. [Google Scholar] [CrossRef]
- Coll, P.; Aragón, L.M.; Alcaide, F.; Espasa, M.; Garrigó, M.; González, J.; Manterola, J.M.; Orús, P.; Salvadó, M. Molecular analysis of isoniazid and rifampin resistance in Mycobacterium tuberculosis isolates recovered from Barcelona. Microb. Drug Resist. 2005, 11, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Pinhata, J.M.W.; Brandao, A.P.; Mendes, F.F.; Rabello, M.C.d.S.; Ferrazoli, L.; de Oliveira, R.S. Correlating genetic mutations with isoniazid phenotypic levels of resistance in Mycobacterium tuberculosis isolates from patients with drug-resistant tuberculosis in a high burden setting. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2551–2561. [Google Scholar] [CrossRef]
- Brandao, A.P.; Pinhata, J.M.W.; Simonsen, V.; Oliveira, R.S.; Ghisi, K.T.; Rabello, M.C.S.; Fukasava, S.; Ferrazoli, L. Transmission of Mycobacterium tuberculosis presenting unusually high discordance between genotypic and phenotypic resistance to rifampicin in an endemic tuberculosis setting. Tuberculosis 2020, 125, 102004. [Google Scholar] [CrossRef] [PubMed]
- Farhat, M.R.; Jacobson, K.R.; Franke, M.F.; Kaur, D.; Sloutsky, A.; Mitnick, C.D.; Murray, M. Gyrase Mutations Are Associated with Variable Levels of Fluoroquinolone Resistance in Mycobacterium tuberculosis. J. Clin. Microbiol. 2016, 54, 727–733. [Google Scholar] [CrossRef]
- Maruri, F.; Sterling, T.R.; Kaiga, A.W.; Blackman, A.; van der Heijden, Y.F.; Mayer, C.; Cambau, E.; Aubry, A. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J. Antimicrob. Chemother. 2012, 67, 819–831. [Google Scholar] [CrossRef]
- Nieto Ramirez, L.M.; Ferro, B.E.; Diaz, G.; Anthony, R.M.; de Beer, J.; van Soolingen, D. Genetic profiling of Mycobacterium tuberculosis revealed “modern” Beijing strains linked to MDR-TB from Southwestern Colombia. PLoS ONE. 2020, 15, e0224908. [Google Scholar] [CrossRef]
- Utpatel, C.; Zavaleta, M.; Rojas-Bolivar, D.; Mühlbach, A.; Picoy, J.; Portugal, W.; Esteve-Solé, A.; Alsina, L.; Miotto, P.; Bartholomeu, D.C.; et al. Prison as a driver of recent transmissions of multidrug-resistant tuberculosis in Callao, Peru: A cross-sectional study. Lancet Reg. Health Am. 2024, 31, 100674. [Google Scholar] [CrossRef]
- Rigouts, L.; Coeck, N.; Gumusboga, M.; de Rijk, W.B.; Aung, K.J.M.; Hossain, M.; Fissette, K.; Rieder, H.L.; Meehan, C.J.; de Jong, B.C.; et al. Specific gyrA gene mutations predict poor treatment outcome in MDR-TB. J. Antimicrob. Chemother. 2016, 71, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Farhat, M.R.; Jacobson, K.R.; Franke, M.F.; Kaur, D.; Murray, M.; Mitnick, C.D. Fluoroquinolone Resistance Mutation Detection Is Equivalent to Culture-Based Drug Sensitivity Testing for Predicting Multidrug-Resistant Tuberculosis Treatment Outcome: A Retrospective Cohort Study. Clin. Infect. Dis. 2017, 65, 1364–1370. [Google Scholar] [CrossRef]
- Uddin, M.K.M.; Ather, M.F.; Nasrin, R.; Rahman, T.; Islam, A.S.M.I.; Rahman, S.M.M.; Ahmed, S.; Banu, S. Correlation of gyr Mutations with the Minimum Inhibitory Concentrations of Fluoroquinolones among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Bangladesh. Pathogens 2021, 10, 1422. [Google Scholar] [CrossRef]
- Dixit, R.; Mohan, E.; Gupta, A.; Gupta, P.S.; Patni, T.; Goyal, M.; Meena, R.K. Fluoroquinolone resistance mutations among Mycobacterium tuberculosis and their interconnection with treatment outcome. Int. J. Mycobacteriol. 2023, 12, 294–298. [Google Scholar] [CrossRef]
- Nehru, V.J.; Jose Vandakunnel, M.; Brammacharry, U.; Ramachandra, V.; Pradhabane, G.; Mani, B.R.; Vn, A.D. Risk assessment and transmission of fluoroquinolone resistance in drug-resistant pulmonary tuberculosis: A retrospective genomic epidemiology study. Sci. Rep. 2024, 14, 19719. [Google Scholar] [CrossRef] [PubMed]
- Georghiou, S.B.; Seifert, M.; Catanzaro, D.G.; Garfein, R.S.; Rodwell, T.C. Increased Tuberculosis Patient Mortality Associated with Mycobacterium tuberculosis Mutations Conferring Resistance to Second-Line Antituberculous Drugs. J. Clin. Microbiol. 2017, 55, 1928–1937. [Google Scholar] [CrossRef] [PubMed]
- Sirgel, F.A.; Warren, R.M.; Streicher, E.M.; Victor, T.C.; van Helden, P.D.; Böttger, E.C. gyrA mutations and phenotypic susceptibility levels to ofloxacin and moxifloxacin in clinical isolates of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2012, 67, 1088–1093. [Google Scholar] [CrossRef]
- Seifert, M.; Georghiou, S.B.; Catanzaro, D.; Rodrigues, C.; Crudu, V.; Victor, T.C.; Garfein, R.S.; Catanzaro, A.; Rodwell, T.C. MTBDR plus and MTBDR sl Assays: Absence of Wild-Type Probe Hybridization and Implications for Detection of Drug-Resistant Tuberculosis. J. Clin. Microbiol. 2016, 54, 912–918. [Google Scholar] [CrossRef]
- WHO. WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment—Drug-Resistant Tuberculosis Treatment; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Ahmad, N.; Javaid, A.; Sulaiman, S.A.S.; Ming, L.C.; Ahmad, I.; Khan, A.H. Resistance patterns, prevalence, and predictors of fluoroquinolones resistance in multidrug resistant tuberculosis patients. Braz. J. Infect. Dis. 2016, 20, 41–47. [Google Scholar] [CrossRef]
- Kim, H.; Mok, J.H.; Kang, B.; Lee, T.; Lee, H.-K.; Jang, H.J.; Cho, Y.J.; Jeon, D. Trend of multidrug and fluoroquinolone resistance in Mycobacterium tuberculosis isolates from 2010 to 2014 in Korea: A multicenter study. Korean J. Intern. Med. 2019, 34, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Sharma, S.K.; Singh, B.K.; Mittal, A.; Kumar, P. High degree of fluoroquinolone resistance among pulmonary tuberculosis patients in New Delhi, India. Indian. J. Med. Res. 2019, 149, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Ferran, E.; Chan, C.; Sheikh, N.; Dedicoat, M.; Alexander, E.; Gibertoni-Cruz, A.; Brown, J.; Robinson, E.; Lipman, M. Population-Level Frequency of Fluoroquinolone Resistance by Whole-Genome Sequencing Drug Predictions in Mycobacterium tuberculosis Complex Isolates in England from 2017 Through 2023. Clin. Infect. Dis. 2025, 80, 660–662. [Google Scholar] [CrossRef] [PubMed]


| MTBDRsl Results | |||||||
|---|---|---|---|---|---|---|---|
| No. (%) Isolates with No Mutations | No. (%) Isolates with Mutations FQ Resistance | No. (%) Isolates with Mutations Injectables Resistance | No. (%) Isolates with Mutations FQ + Injectables Resistance | ||||
| First-Line Drug Resistance | Wild-Type | gyrA | gyrB | gyrA + gyrB | rrs | gyrA + rrs | Total |
| Isoniazid | 281 (48.28) | 1 (2.8) | 1 (50) | 1 (100) | 0 | 0 | 284 (45.6) |
| Rifampicin | 149 (25.60) | 3 (8.6) | 1 (50) | 0 | 1 (50) | 0 | 154 (24.7) |
| MDR | 152 (26.12) | 31 (88.6) | 0 | 0 | 1 (50) | 1 (100) | 185 (29.7) |
| Total | 582 (100) | 35 (100) | 2 (100) | 1 (100) | 2 (100) | 1 (100) | 623 (100) |
| Mutations Detected by MTBDRsl/Sequencing | MTBDRplus or MGIT Result | Mutations Detected by MTBDRplus/Sequencing | No. Isolates | Frequency (%) |
|---|---|---|---|---|
| gyrA | ||||
| mut1 [A90V] a N = 7 | MDR | rpoB H445Y/inhA C-15T | 1 | 2.9 |
| rpoB S450L/katG S315T1 | 5 | 14.3 | ||
| Not performed (MGIT result) # | 1 | 2.9 | ||
| mut2 [S91P] a N = 11 | MDR | rpoB H445Y/katG S315T1/inhA C-15T | 1 | 2.9 |
| rpoB S450L/katG S315T1 | 1 | 2.9 | ||
| rpoB S450L/inhA C-15T | 9 | 25.7 | ||
| mut3b [D94N/Y] b N = 3 | RIF-R | rpoB H445N (1333 c > a) | 1 | 2.9 |
| MDR | rpoB H445D/katG S315T1 | 2 | 5.7 | |
| mut3c [D94G] b N = 8 | RIF-R | rpoB S450L | 1 | 2.9 |
| rpoB H445N (1333 c > a) | 1 | 2.9 | ||
| MDR | rpoB D435V/katG S315T1 | 1 | 2.9 | |
| rpoB M434I (1302 g > a) + H445N (1333 c > a)/katG S315T1/inhA C-15T | 1 | 2.9 | ||
| rpoB H445C (1333 ca > tg)/katG S315T1 | 1 | 2.9 | ||
| rpoB S450L/katG S315N (944 g > a) + A379T (1135 g > a)/inhA C-15T | 3 | 8.6 | ||
| wt3 + mut3c [WT + D94G] b N = 2 | INH-R | inhA C-15T | 1 | 2.9 |
| MDR | rpoB S450L/katG S315T1 | 1 | 2.9 | |
| mut3b + mut3c [D94N/Y + D94G] b N = 2 | MDR | rpoB WT8 + S450L/katG WT + S315T1 | 1 | 2.9 |
| rpoB S450L/katG S315N (944 g > a) + A379T (1135 g > a)/inhA C-15T | 1 | 2.9 | ||
| mut3d [D94H] b | MDR | rpoB S450L/katG S315T1 | 1 | 2.9 |
| wt1 absent [G88C by sequencing] *a | MDR | rpoB S450L/katG S315T1 | 1 | 2.9 |
| Total gyrA | - | - | 35 | 100.0 |
| gyrB | ||||
| wt absent a [WT by sequencing] * N = 2 | RIF-R | rpoB L452P (1355 t > c) | 1 | 50.0 |
| INH-R | inhA C-15T | 1 | 50.0 | |
| gyrA + gyrB | ||||
| mut3b [D94N/Y] b + wt neg a [WT by sequencing] * | INH-R | Not performed (MGIT result) # | 1 | 100.0 |
| rrs mutation | ||||
| mut1 [a1401g] | MDR | rpoB WT7 + H445Y/katG S315T1 | 1 | 50.0 |
| wt1 absent [WT by sequencing] * | RIF-R | rpoB H445N | 1 | 50.0 |
| gyrA + rrs | ||||
| mut3c [D94G ] b + mut1 [a1401g] | MDR | rpoB D435V/katG S315T1 | 1 | 100.0 |
| Characteristics | No. Total (%) n = 38 | No. MDR (%) n = 33 | ||
|---|---|---|---|---|
| Age * | 36.5 ± 12 (range 19–63) | 34 ± 11 (range 19–63) | ||
| Sex | ||||
| Male | 26 | (68.4) | 21 | (63.6) |
| Female | 12 | (31.6) | 12 | (36.4) |
| Clinical presentation | ||||
| Pulmonary | 35 | (92.1) | 30 | (90.1) |
| Pulmonary and extrapulmonary | 2 | (5.3) | 2 | (6.1) |
| Extrapulmonary | 1 | (2.6) | 1 | (3.0) |
| HIV status | ||||
| Negative | 33 | (86.8) | 28 | (84.8) |
| Positive | 5 | (13.2) | 5 | (15.2) |
| Type of TB case | ||||
| New | 20 | (52.6) | 16 | (48.5) |
| Retreatment | 12 | (31.6) | 12 | (36.4) |
| Relapse | 6 | (15.8) | 5 | (15.2) |
| FQ/injectables resistance (gene mutated) | ||||
| FQ (gyrA) | 36 | (94.7) | 31 # | (93.9) |
| Injectables (rrs) | 1 | (2.6) | 1 | (3.0) |
| FQ + injectables (gyrA + rrs) | 1 | (2.6) | 1 # | (3.0) |
| Outcome | ||||
| Cure/Treatment completed | 23 | (60.5) | 20 | (60.6) |
| Death from TB | 6 | (15.8) | 5 | (15.2) |
| Death from other causes | 3 | (7.9) | 3 | (9.1) |
| Loss of follow up | 5 | (13.2) | 4 | (12.1) |
| Failure | 1 | (2.6) | 1 | (3.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, R.S.; Brandao, A.P.; Ferreira, F.M.d.A.; Costa, S.M.d.; Silva, V.L.M.; Ferrazoli, L.; Chimara, E.; Pinhata, J.M.W. Fluoroquinolone and Second-Line Injectable Resistance Among Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Clinical Isolates: A Molecular Study from a High-Burden Setting. Microorganisms 2025, 13, 2470. https://doi.org/10.3390/microorganisms13112470
Oliveira RS, Brandao AP, Ferreira FMdA, Costa SMd, Silva VLM, Ferrazoli L, Chimara E, Pinhata JMW. Fluoroquinolone and Second-Line Injectable Resistance Among Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Clinical Isolates: A Molecular Study from a High-Burden Setting. Microorganisms. 2025; 13(11):2470. https://doi.org/10.3390/microorganisms13112470
Chicago/Turabian StyleOliveira, Rosângela Siqueira, Angela Pires Brandao, Fabiane Maria de Almeida Ferreira, Sonia Maria da Costa, Vera Lucia Maria Silva, Lucilaine Ferrazoli, Erica Chimara, and Juliana Maira Watanabe Pinhata. 2025. "Fluoroquinolone and Second-Line Injectable Resistance Among Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Clinical Isolates: A Molecular Study from a High-Burden Setting" Microorganisms 13, no. 11: 2470. https://doi.org/10.3390/microorganisms13112470
APA StyleOliveira, R. S., Brandao, A. P., Ferreira, F. M. d. A., Costa, S. M. d., Silva, V. L. M., Ferrazoli, L., Chimara, E., & Pinhata, J. M. W. (2025). Fluoroquinolone and Second-Line Injectable Resistance Among Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Clinical Isolates: A Molecular Study from a High-Burden Setting. Microorganisms, 13(11), 2470. https://doi.org/10.3390/microorganisms13112470

