Molecular Epidemiology of Mycobacterium tuberculosis in Mexico
Abstract
1. Introduction
2. Systematic Review and PRISMA Framework
3. Quantitative Synthesis and Statistical Analysis
4. Discussion
4.1. Statistical Evidence of Regional Heterogeneity
4.2. Implications for Surveillance and Control
4.3. Comparison with Global Patterns and Methodological Considerations
4.4. Methodological Appraisal of Typing Tools in Mexico
4.5. Limitations
5. Epidemiological Panorama and Risk Factors Associated with Tuberculosis in Mexico
5.1. Biological and Immunological Factors
5.2. Lifestyle Factors
5.3. Nutritional Factors
5.4. Socioeconomic Factors
6. Molecular Methods for Identifying Mycobacterium tuberculosis Strains
7. Prevalent Tuberculosis Genotypes in Mexico: Geographic Distribution and Molecular Characteristics of Predominant Strains
8. Transmission Patterns and Analysis of Vulnerable Populations
9. Role of HIV-TB Co-Infection and Diabetes Mellitus-TB in the Molecular Epidemiology of Tuberculosis
10. Application of Whole-Genome Sequencing (WGS) in the Control of Tuberculosis in Mexico
11. Factors Involved in the Molecular Diversity of Tuberculosis
12. Public Health Policies and Their Relationship with the Molecular Epidemiology of Tuberculosis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TB | Tuberculosis |
| BCG | Bacillus Calmette–Guérin |
| MDR-TB | Multidrug-resistant tuberculosis |
| XDR-TB | Extensively drug-resistant tuberculosis |
| INH | Isoniazid |
| RIF | Rifampicin |
| PZA | Pyrazinamide |
| EMB | Ethambutol |
| SM | Streptomycin |
| MIRU-VNTR | Mycobacterial Interspersed Repetitive Unit—Variable Number Tandem Repeat |
| WGS | Whole-Genome Sequencing |
| NGS | Next-Generation Sequencing |
| SNP | Single-Nucleotide Polymorphism |
| RD | Region of Difference |
| PGG | Principal Genotypic Group |
| HIV | Human Immunodeficiency Virus |
| IFN-γ | Interferon gamma |
| TNF-α | Tumor Necrosis Factor alfa |
| IL | Interleukin |
| NK | Natural Killer |
| AGEs | Advanced Glycation End products |
| NOS2 | Nitric Oxide Synthase 2 |
| IMSS | Instituto Mexicano del Seguro Social |
| NOM | Norma Oficial Mexicana |
| DOF | Diario Oficial de la Federación |
| CMTB | Complex Mycobacterium tuberculosis |
| L1–L7 | Lineages of Mycobacterium tuberculosis |
| SIT | Spoligotype International Type |
References
- Trajman, A.; Campbell, J.R.; Kunot, T.; Ruslami, R.; Amanullah, F.; Behr, M.A.; Menzies, D. Tuberculosis. Lancet 2025, 405, 850–866. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.V.; Parish, T. Microbe profile: Mycobacterium tuberculosis: Humanity’s deadly microbial foe. Microbiology 2018, 164, 437–439. [Google Scholar] [CrossRef]
- Karakousis, P.C.; Mooney, G. Respiratory Isolation for Tuberculosis: A Historical Perspective. J. Infect. Dis. 2025, 231, 3–9. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Tuberculosis Report 2024. Available online: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2024 (accessed on 13 October 2025).
- Coll, F.; McNerney, R.; Guerra-Assunção, J.A.; Glynn, J.R.; Perdigão, J.; Viveiros, M.; Portugal, I.; Pain, A.; Martin, N.; Clark, T.G. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat. Commun. 2014, 5, 4812. [Google Scholar] [CrossRef]
- Castro-Rodriguez, B.; Franco-Sotomayor, G.; Orlando, S.A.; Garcia-Bereguiain, M.Á. Molecular epidemiology of Mycobacterium tuberculosis in Ecuador: Recent advances and future challenges. J. Clin. Tuberc. Other Mycobact. Dis. 2024, 37, 100465. [Google Scholar] [CrossRef]
- Shi, J.; Zheng, D.; Zhu, Y.; Ma, X.; Wang, S.; Li, H.; Xing, J. Role of MIRU-VNTR and spoligotyping in assessing the genetic diversity of Mycobacterium tuberculosis in Henan Province, China. BMC Infect. Dis. 2018, 18, 447. [Google Scholar] [CrossRef]
- Santos-Lazaro, D.; Puyen, Z.M.; Gavilan, R.G. Estructura genética de cepas drogorresistentes de Mycobacterium tuberculosis en Perú basada en haplotipos obtenidos de un ensayo con sondas en línea. Rev. Peru. Med. Exp. Salud Publica 2021, 38, 577–586. [Google Scholar] [CrossRef]
- Madrazo-Moya, C.F.; Cancino-Muñoz, I.; Cuevas-Córdoba, B.; González-Covarrubias, V.; Barbosa-Amezcua, M.; Soberón, X.; Muñiz-Salazar, R.; Martínez-Guarneros, A.; Bäcker, C.; Zarrabal-Meza, J.; et al. Whole genomic sequencing as a tool for diagnosis of drug and multidrug-resistance tuberculosis in an endemic region in Mexico. PLoS ONE 2019, 14, e0213046. [Google Scholar] [CrossRef]
- Negrete-Paz, A.M.; Vázquez-Marrufo, G.; Rodríguez-Carlos, A.; Rivas-Santiago, B.; Vázquez-Garcidueñas, M.S. Whole-Genome Sequence-Based Diversity of Mycobacterium tuberculosis Strains Isolated from a Central Western Region of Mexico. Pathogens 2025, 14, 548. [Google Scholar] [CrossRef]
- Flores-Aréchiga, A.; Zacarías-Hernández, J.L.; Vázquez-Cortés, C.G.; Tamez-Guerra, R.S.; de la O-Cavazos, M.; Rivera-Morales, L.G.; Llaca-Díaz, J.M.; Castro-Garza, J.; Casillas-Vega, N. Molecular epidemiology and drug resistance of Mycobacterium tuberculosis in a tertiary care hospital in northeastern Mexico. J. Infect. Dev. Ctries. 2023, 17, 1753–1760. [Google Scholar] [CrossRef]
- Sánchez-Pérez, H.J.; Gordillo-Marroquín, C.; Vázquez-Marcelín, J.; Martín-Mateo, M.; Gómez-Velasco, A. Sociodemographic factors associated with the success or failure of anti-tuberculosis treatment in the Chiapas Highlands, Mexico, 2019–2022. PLoS ONE 2024, 19, e0296924. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Ponce, P.M.; Ramos-González, E.J.; Ramos-García, A.A.; Lara-Ramírez, E.E.; Soriano-Herrera, A.R.; Medellín-Luna, M.F.; Valdez-Salazar, F.; Castro-Garay, C.Y.; Núñez-Contreras, J.J.; De Donato-Capote, M.; et al. Genomic epidemiology analysis of drug-resistant Mycobacterium tuberculosis distributed in Mexico. PLoS ONE 2023, 18, e0292965. [Google Scholar] [CrossRef] [PubMed]
- Zenteno-Cuevas, R.; Cuevas-Córdoba, B.; Parissi-Crivelli, A. rpoB, katG and inhA mutations in multi-drug resistant strains of Mycobacterium tuberculosis clinical isolates from southeast Mexico. Enferm. Infecc. Microbiol. Clin. 2019, 37, 307–313. [Google Scholar] [CrossRef]
- Munro-Rojas, D.; Fernández-Morales, E.; Zarrabal-Meza, J.; Martínez-Cazares, M.T.; Parissi-Crivelli, A.; Fuentes-Domínguez, J.; Séraphin, M.N.; Lauzardo, M.; González y Merchand, J.A.; Rivera-Gutiérrez, S.; et al. Genetic diversity of drug and multidrug-resistant Mycobacterium tuberculosis circulating in Veracruz, Mexico. PLoS ONE 2018, 13, e0193626. [Google Scholar] [CrossRef]
- Hernández-Mariano, J.Á.; Cureño-Díaz, M.A.; Fernández-Sánchez, V.; Plascencia-Nieto, E.S.; Razo-Blanco-Hernández, D.M.; Vázquez-Zamora, C.; Gutiérrez-Muñoz, V.H.; Leal-Escobar, B.; Gómez-Zamora, E.; Morales-Vargas, Y.E. Prevalence and Associated Factors of Latent Tuberculosis Infection Among Healthcare Workers in a Mexican Tertiary Care Hospital. Diseases 2025, 13, 173. [Google Scholar] [CrossRef]
- Secretaría de Salud. Boletín Epidemiológico Sistema Nacional de Vigilancia Epidemiológica Sistema Único de Información (Semana 52). Available online: https://www.gob.mx/cms/uploads/attachment/file/693135/sem52.pdf (accessed on 1 June 2024).
- Molina-Torres, C.A.; Moreno-Torres, E.; Ocampo-Candiani, J.; Rendon, A.; Blackwood, K.; Kremer, K.; Rastogi, N.; Welsh, O.; Vera-Cabrera, L. Mycobacterium tuberculosis Spoligotypes in Monterrey, Mexico. J. Clin. Microbiol. 2010, 48, 448–455. [Google Scholar] [CrossRef]
- Ortega, E.; Hernández-Bazán, S.; Sánchez-Hernández, B.; Licona-Limón, I.; Fuentes-Dominguez, J. Single Nucleotide Polymorphisms in TLR4 Affect Susceptibility to Tuberculosis in Mexican Population from the State of Veracruz. J. Immunol. Res. 2020, 2020, 2965697. [Google Scholar] [CrossRef]
- Young, B.N.; Rendón, A.; Rosas-Taraco, A.; Baker, J.; Healy, M.; Gross, J.M.; Long, J.; Burgos, M.; Hunley, K.L. The Effects of Socioeconomic Status, Clinical Factors, and Genetic Ancestry on Pulmonary Tuberculosis Disease in Northeastern Mexico. PLoS ONE 2014, 9, e94303. [Google Scholar] [CrossRef]
- de Ibrahim das Neves, Y.C.; Reis, A.J.; Maio, N.X.; Vianna, J.; Perdigão, J.; Ramis, I.B.; Almeida da Silva, P.E.; Von Groll, A. Genotyping methods and their contributions to the study of tuberculosis dynamic in Latin America. J. Infect. Dev. Ctries. 2023, 17, 1373–1386. [Google Scholar] [CrossRef]
- Meehan, C.J.; Goig, G.A.; Kohl, T.A.; Verboven, L.; Dippenaar, A.; Ezewudo, M.; Farhat, M.R.; Guthrie, J.L.; Laukens, K.; Miotto, P.; et al. Whole genome sequencing of Mycobacterium tuberculosis: Current standards and open issues. Nat. Rev. Microbiol. 2019, 17, 533–545. [Google Scholar] [CrossRef]
- Driscoll, J.R. Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex. Mol. Epidemiol. Microorg. 2009, 551, 117–128. [Google Scholar] [CrossRef]
- Nikolayevskyy, V.; Trovato, A.; Broda, A.; Borroni, E.; Cirillo, D.; Drobniewski, F. MIRU-VNTR genotyping of Mycobacterium tuberculosis strains using qiaxcel technology: A multicentre evaluation study. PLoS ONE 2016, 11, e0149435. [Google Scholar] [CrossRef]
- Supply, P.; Mazars, E.; Lesjean, S.; Vincent, V.; Gicquel, B.; Locht, C. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol. Microbiol. 2000, 36, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.M.; Ip, C.L.C.; Harrell, R.H.; Evans, J.T.; Kapatai, G.; Dedicoat, M.J.; Eyre, D.W.; Wilson, D.J.; Hawkey, P.M.; Crook, D.W.; et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: A retrospective observational study. Lancet Infect. Dis. 2013, 13, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Rendón-Bautista, L.A.; Álvarez-Maya, I.; Sandoval-Díaz, M.; Villanueva-Arias, J.C.; Ayala-Chavira, N.; Zenteno-Cuevas, R. Characterization of genetic diversity and clonal complexes by whole genome sequencing of Mycobacterium tuberculosis isolates from Jalisco, Mexico. Tuberculosis 2021, 129, 102106. [Google Scholar] [CrossRef]
- López-Rocha, E.; Juárez-Álvarez, J.; Riego-Ruiz, L.; Enciso-Moreno, L.; Ortega-Aguilar, F.; Hernández-Nieto, J.; Enciso-Moreno, J.A.; López-Revilla, R. Genetic diversity of the Mycobacterium tuberculosis complex in San Luis Potosí, México. BMC Res. Notes 2013, 6, 172. [Google Scholar] [CrossRef]
- Vera-Cabrera, L.; Ramos-Alvarez, J.; Molina-Torres, C.A.; Rivera-Morales, L.G.; Rendón, A.; Quiñones-Falconi, F.; Ocampo-Candiani, J. Comparative Mycobacterium tuberculosis spoligotype distribution in Mexico. J. Clin. Microbiol. 2014, 52, 3049–3052. [Google Scholar] [CrossRef]
- Fernández-Morales, E.A.; Bermudez, G.; Montero, H.; Luzania-Valerio, M.; Zenteno-Cuevas, R. Whole genome characterization, and geographical distribution of M. tuberculosis in central region of Veracruz, Mexico. Braz. J. Infect. Dis. 2022, 26, 102357. [Google Scholar] [CrossRef]
- Flores-López, C.A.; Zenteno-Cuevas, R.; Laniado-Laborín, R.; Reynaud, Y.; García-Ortiz, R.A.; González-Y-Merchand, J.A.; Rivera, S.; Vázquez-Chacón, C.A.; Vaughan, G.; Martínez-Guarneros, J.A.; et al. Molecular epidemiology of Mycobacterium tuberculosis in Baja California, Mexico: A result of human migration? Infect. Genet. Evol. 2017, 55, 378–383. [Google Scholar] [CrossRef]
- Cano, G. Trascendencia de la Vacunación con BCG en México. Available online: https://pubmed.ncbi.nlm.nih.gov/1209449/ (accessed on 13 October 2025).
- Cruz-Hervert, L.P.; García-García, L.; Ferreyra-Reyes, L.; Bobadilla-del-Valle, M.; Cano-Arellano, B.; Canizales-Quintero, S.; Ferreira-Guerrero, E.; Báez-Saldaña, R.; Téllez-Vázquez, N.; Nava-Mercado, A.; et al. Tuberculosis in ageing: High rates, complex diagnosis and poor clinical outcomes. Age Ageing 2012, 41, 488–495. [Google Scholar] [CrossRef]
- Rossato, D.; Muñoz-Torrico, M.; Duarte, R.; Galvão, T.; Bonini, E.H.; Arbex, F.F.; Arbex, M.A.; Augusto, V.M.; Rabahi, M.F.; Mello, F.C.Q. Risk factors for tuberculosis: Diabetes, smoking, alcohol use, and the use of other drugs. J. Bras. de Pneumol. 2018, 44, 145–152. [Google Scholar] [CrossRef]
- de México, G. Día Mundial de la Tuberculosis|24 de Marzo|Instituto de Salud Para el Bienestar|Gobierno|Gob.mx. Available online: https://www.gob.mx/insabi/articulos/dia-mundial-de-la-tuberculosis-24-de-marzo?idiom=es (accessed on 13 October 2025).
- Dommarco, J.R.; Gutiérrez, T.B.; Oropeza, C. Síntesis Sobre Políticas de Salud Propuestas Basadas en Evidencia. 2021. Available online: https://www.insp.mx/resources/images/stories/2022/docs/220118_Sintesis_sobre_politicas_de_salud.pdf (accessed on 13 October 2025).
- Secretaria de Salud. Secretaria de Salud. Boletín Epidemiológico. 2023. Available online: https://www.gob.mx/cms/uploads/attachment/file/879365/sem52.pdf (accessed on 6 October 2024).
- Gunsaru, V.; Henrion, M.Y.R.; McQuaid, C.F. The impact of the COVID-19 pandemic on tuberculosis treatment outcomes in 49 high burden countries. BMC Med. 2024, 22, 312, Erratum in BMC Med. 2024, 22, 316. https://doi.org/10.1186/s12916-024-03551-4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Byng-Maddick, R.; Noursadeghi, M. Does tuberculosis threaten our ageing populations? BMC Infect. Dis. 2016, 16, 119. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J. Patrones inmunopatológicos de la tuberculosis en pacientes con compromiso de la respuesta inmune celular. MedUNAB 2006, 9, 221–229. [Google Scholar]
- Lawn, S.D.; Butera, S.T.; Shinnick, T.M. Tuberculosis Unleashed: The Impact of Human Immunodeficiency Virus Infection on the Host Granulomatous Response to Mycobacterium tuberculosis. 2002. Available online: www.elsevier.com/locate/micinf (accessed on 17 September 2025).
- McGloughlin, S.; Padiglione, A.A. Host defence mechanisms and immunodeficiency disorders. In Oh’s Intensive Care Manual, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 703–709.e1. [Google Scholar] [CrossRef]
- Restrepo, B.I.; Fisher-Hoch, S.P.; Pino, P.A.; Salinas, A.; Rahbar, M.H.; Mora, F.; Cortes-Penfield, N.; McCormick, J.B. Tuberculosis in poorly controlled type 2 diabetes: Altered cytokine expression in peripheral white blood cells. Clin. Infect. Dis. 2008, 47, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Pizzol, D.; Di Gennaro, F.; Chhaganlal, K.D.; Fabrizio, C.; Monno, L.; Putoto, G.; Saracino, A. Tuberculosis and diabetes: Current state and future perspectives. Trop. Med. Int. Health 2016, 21, 694–702. [Google Scholar] [CrossRef]
- Basto-Abreu, A.; López-Olmedo, N.; Rojas-Martínez, R.; Aguilar-Salinas, C.A.; Moreno-Banda, G.L.; Carnalla, M.; Rivera, J.A.; Romero-Martínez, M.; Barquera, S.; Barrientos-Gutiérrez, T. Prevalence of prediabetes and diabetes in Mexico: Ensanut 2022. Salud Publica Mex. 2023, 65, s163–s168. [Google Scholar] [CrossRef]
- Delgado-Sánchez, G.; García-García, L.; Castellanos-Joya, M.; Cruz-Hervert, P.; Ferreyra-Reyes, L.; Ferreira-Guerrero, E.; Hernández, A.; Ortega-Baeza, V.M.; Montero-Campos, R.; Sulca, J.A.; et al. Association of pulmonary tuberculosis and diabetes in Mexico: Analysis of the National Tuberculosis Registry 2000–2012. PLoS ONE 2015, 10, e0129312. [Google Scholar] [CrossRef]
- OPS. Boletín de la OPS en México No. 1. 2023. Available online: https://iris.paho.org/handle/10665.2/60188 (accessed on 19 October 2025).
- Wen, C.-P.; Chan, T.-C.; Chan, H.-T.; Tsai, M.-K.; Cheng, T.-Y.; Tsai, S.-P. The Reduction of Tuberculosis Risks by Smoking Cessation. 2010. Available online: http://www.biomedcentral.com/1471-2334/10/156 (accessed on 2 October 2025).
- Slama, K.; Chiang, C.-Y.; Enarson, D.A.; Hassmiller, K.; Fanning, A.; Gupta, P.; Ray, C. Tobacco and Tuberculosis: A Qualitative Systematic Review and Meta-Analysis. Available online: https://www.researchgate.net/publication/5900721_Tobacco_and_tuberculosis_A_qualitative_systematic_review_and_meta-analysis (accessed on 7 October 2024).
- Wigger, G.W.; Bouton, T.C.; Jacobson, K.R.; Auld, S.C.; Yeligar, S.M.; Staitieh, B.S. The Impact of Alcohol Use Disorder on Tuberculosis: A Review of the Epidemiology and Potential Immunologic Mechanisms. Front. Immunol. 2022, 13, 864817. [Google Scholar] [CrossRef]
- Rehm, J.; Samokhvalov, A.V.; Neuman, M.G.; Room, R.; Parry, C.; Lönnroth, K.; Patra, J.; Poznyak, V.; Popova, S. The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review. BMC Public Health 2009, 9, 450. [Google Scholar] [CrossRef]
- Price, M.E.; Case, A.J.; Pavlik, J.A.; DeVasure, J.M.; Wyatt, T.A.; Zimmerman, M.C.; Sisson, J.H. S-nitrosation of protein phosphatase 1 mediates alcohol-induced ciliary dysfunction. Sci. Rep. 2018, 8, 9701. [Google Scholar] [CrossRef]
- Kiboi, N.G.; Nebere, S.N. Immunological Interactions of Tuberculosis with Drugs and Substance Use: A Systematic Review and Update. J. Pulm. Respir. Med. 2016, 6, 326. Available online: https://www.researchgate.net/publication/306192799_Immunological_Interactions_of_Tuberculosis_with_Drugs_and_Substance_Use_A_Systematic_Review_and_Update (accessed on 21 October 2024). [CrossRef]
- Franco, J.V.A.; Bongaerts, B.; Metzendorf, M.-I.; Risso, A.; Guo, Y.; Peña Silva, L.; Boeckmann, M.; Schlesinger, S.; Damen, J.A.A.; Richter, B.; et al. Undernutrition as a risk factor for tuberculosis disease. Cochrane Database Syst. Rev. 2024, 6, CD015890. [Google Scholar] [CrossRef]
- Sinha, P.; Davis, J.; Saag, L.; Wanke, C.; Salgame, P.; Mesick, J.; Horsburgh, C.R.; Hochberg, N.S. Undernutrition and Tuberculosis: Public Health Implications. J. Infect. Dis. 2019, 219, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Nguyen, D.T.; Graviss, E.A. Homelessness and Mortality Among Persons With Tuberculosis in Texas, 2010–2017. Public Health Rep. 2019, 134, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Rashak, H.A.; Sánchez-Pérez, H.J.; Abdelbary, B.E.; Bencomo-Alerm, A.; Enriquez-Ríos, N.; Gómez-Velasco, A.; Colorado, A.; Castellanos-Joya, M.; Rahbar, M.H.; Restrepo, B.I. Diabetes, undernutrition, migration and indigenous communities: Tuberculosis in Chiapas, Mexico. Epidemiol. Infect. 2019, 147, e71. [Google Scholar] [CrossRef]
- Blanco-Guillot, F.; Castañeda-Cediel, M.L.; Cruz-Hervert, P.; Ferreyra-Reyes, L.; Delgado-Sánchez, G.; Ferreira-Guerrero, E.; Montero-Campos, R.; Bobadilla-del-Valle, M.; Martínez-Gamboa, R.A.; Torres-González, P.; et al. Genotyping and spatial analysis of pulmonary tuberculosis and diabetes cases in the state of Veracruz, Mexico. PLoS ONE 2018, 13, e0193911. [Google Scholar] [CrossRef]
- Molina-Moya, B.; Agonafir, M.; Blanco, S.; Dacombe, R.; Gomgnimbou, M.K.; Spinasse, L.; Gomes-Fernandes, M.; Datiko, D.G.; Edwards, T.; Cuevas, L.E.; et al. Microbead-based spoligotyping of Mycobacterium tuberculosis from Ziehl-Neelsen-stained microscopy preparations in Ethiopia. Sci. Rep. 2018, 8, 3987. [Google Scholar] [CrossRef]
- Napier, G.; Couvin, D.; Refrégier, G.; Guyeux, C.; Meehan, C.J.; Sola, C.; Campino, S.; Phelan, J.; Clark, T.G. Comparison of in silico predicted Mycobacterium tuberculosis spoligotypes and lineages from whole genome sequencing data. Sci. Rep. 2023, 13, 11368. [Google Scholar] [CrossRef]
- Xia, Z.; Su, B.; Tu, C.; Sun, S.; Tan, Y.; Xu, Y.; Li, Q. Single-tube protocol for culture-independent spoligotyping of Mycobacterium tuberculosis based on MeltArray. J. Clin. Microbiol. 2024, 62, e0118323. [Google Scholar] [CrossRef]
- Bakuła, Z.; Dziurzyński, M.; Decewicz, P.; Bakonytė, D.; Vasiliauskaitė, L.; Nakčerienė, B.; Krenke, R.; Stakėnas, P.; Jagielski, T. Spoligotyping of Mycobacterium tuberculosis—Comparing in vitro and in silico approaches. Infect. Genet. Evol. 2023, 115, 105508. [Google Scholar] [CrossRef]
- Xia, X. Horizontal Gene Transfer and Drug Resistance Involving Mycobacterium tuberculosis. Antibiotics 2023, 12, 1367. [Google Scholar] [CrossRef]
- Maghradze, N.; Jugheli, L.; Borrell, S.; Tukvadze, N.; Kempker, R.R.; Blumberg, H.M.; Gagneux, S. Developing customized stepwise MIRU-VNTR typing for tuberculosis surveillance in Georgia. PLoS ONE 2022, 17, e0264472. [Google Scholar] [CrossRef] [PubMed]
- Micheni, L.N.; Kassaza, K.; Kinyi, H.; Ntulume, I.; Bazira, J. Detection of Mycobacterium tuberculosis multiple strains in sputum samples from patients with pulmonary tuberculosis in south western Uganda using MIRU-VNTR. Sci. Rep. 2022, 12, 1656. [Google Scholar] [CrossRef] [PubMed]
- Bagger, F.O.; Borgwardt, L.; Jespersen, A.S.; Hansen, A.R.; Bertelsen, B.; Kodama, M.; Nielsen, F.C. Whole genome sequencing in clinical practice. BMC Med. Genom. 2024, 17, 39. [Google Scholar] [CrossRef] [PubMed]
- Coll, P.; de Viedma, D.G. Epidemiología molecular de la tuberculosis. Enferm. Infecc. Microbiol. Clin. 2018, 36, 233–240. [Google Scholar] [CrossRef]
- Brites, D.; Gagneux, S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol. Rev. 2015, 264, 6. [Google Scholar] [CrossRef]
- Hershberg, R.; Lipatov, M.; Small, P.M.; Sheffer, H.; Niemann, S.; Homolka, S.; Roach, J.C.; Kremer, K.; Petrov, D.A.; Feldman, M.W.; et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol. 2008, 6, 2658–2671. [Google Scholar] [CrossRef]
- Cristina, G.M.; Brisse, S.; Brosch, R.; Fabre, M.; Omaïs, B.; Marmiesse, M.; Supply, P.; Vincent, V. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 2005, 1, e5. [Google Scholar] [CrossRef]
- Ramachandran, S.; Deshpande, O.; Roseman, C.C.; Rosenberg, N.A.; Feldman, M.W.; Cavalli-Sforza, L.L. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl. Acad. Sci. USA 2005, 102, 15942. [Google Scholar] [CrossRef]
- Molina-Torres, C.A.; Quinn, F.D.; Castro-Garza, J.; Gómez-Velasco, A.; Ocampo-Candiani, J.; Bencomo-Alerm, A.; Sánchez-Pérez, H.J.; Muñoz-Jiménez, S.; Rendón, A.; Ansari, A.; et al. Genetic Diversity of Mycobacterium tuberculosis Isolates from an Amerindian Population in Chiapas, México. Front. Cell. Infect. Microbiol. 2022, 12, 875909. [Google Scholar] [CrossRef]
- Lopez-Alvarez, R.; Badillo-Lopez, C.; Cerna-Cortes, J.F.; Castillo-Ramirez, I.; Rivera-Gutierrez, S.; Helguera-Repetto, A.C.; Aguilar, D.; Hernandez-Pando, R.; Samper, S.; Gonzalez-y-Merchand, J.A. First insights into the genetic diversity of Mycobacterium tuberculosis isolates from HIV-infected Mexican patients and mutations causing multidrug resistance. BMC Microbiol. 2010, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Secretaría de Salud. Boletín Epidemiológico Sistema Nacional de Vigilancia Epidemiológica Sistema Único de Información (Semana 47). Available online: https://www.gob.mx/salud/documentos/boletinepidemiologico-sistema-nacional-de-vigilancia-epidemiologica-sistema-unico-de-informacion-355523 (accessed on 1 December 2024).
- Lopez-Avalos, G.; Gonzalez-Palomar, G.; Lopez-Rodriguez, M.; Vazquez-Chacon, C.A.; Mora-Aguilera, G.; Gonzalez-Barrios, J.A.; Villanueva-Arias, J.C.; Sandoval-Diaz, M.; Miranda-Hernández, U.; Alvarez-Maya, I. Genetic diversity of Mycobacterium tuberculosis and transmission associated with first-line drug resistance: A first analysis in Jalisco, Mexico. J. Glob. Antimicrob. Resist. 2017, 11, 90–97. [Google Scholar] [CrossRef]
- Nava-Aguilera, E.; López-Vidal, Y.; Harris, E.; Morales-Pérez, A.; Mitchell, S.; Flores-Moreno, M.; Villegas-Arrizón, A.; Legorreta-Soberanis, J.; Ledogar, R.; Andersson, N. Clustering of Mycobacterium tuberculosis Cases in Acapulco: Spoligotyping and Risk Factors. Clin. Dev. Immunol. 2011, 2011, 408375. [Google Scholar] [CrossRef] [PubMed]
- de Salud, S. Situación Actual de la Tuberculosis en México 2014 año de la Detección Tratamiento y Curación Delos Enfermos de Tuberculosis. Available online: https://www.gob.mx/salud/documentos/situacion-actual-de-la-tuberculosis-en-mexico (accessed on 6 October 2024).
- Brynildsrud, O.B.; Pepperell, C.S.; Suffys, P.; Grandjean, L.; Monteserin, J.; Debech, N.; Bohlin, J.; Alfsnes, K.; Pettersson, J.O.-H.; Kirkeleite, I.; et al. Global expansion of Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation. Sci. Adv. 2018, 4, eaat5869. [Google Scholar] [CrossRef]
- Rindi, L.; Lari, N.; Garzelli, C. Large Sequence Polymorphisms of the Euro-American lineage of Mycobacterium tuberculosis: A phylogenetic reconstruction and evidence for convergent evolution in the DR locus. Infect. Genet. Evol. 2012, 12, 1551–1557. [Google Scholar] [CrossRef]
- Anderson, J.; Jarlsberg, L.G.; Grindsdale, J.; Osmond, D.; Kawamura, M.; Hopewell, P.C.; Kato-Maeda, M. Sublineages of lineage 4 (Euro-American) Mycobacterium tuberculosis differ in genotypic clustering. Int. J. Tuberc. Lung Dis. 2013, 17, 885–891. [Google Scholar] [CrossRef]
- Dou, H.Y.; Lin, C.-H.; Chen, Y.-Y.; Yang, S.-J.; Chang, J.-R.; Wu, K.-M.; Chen, Y.-T.; Chin, P.-J.; Liu, Y.-M.; Su, I.-J.; et al. Lineage-specific SNPs for genotyping of Mycobacterium tuberculosis clinical isolates. Sci. Rep. 2017, 7, 1425. [Google Scholar] [CrossRef]
- Rindi, L.; Medici, C.; Bimbi, N.; Buzzigoli, A.; Lari, N.; Garzelli, C. Genomic variability of Mycobacterium tuberculosis strains of the Euro-American lineage based on large sequence deletions and 15-locus MIRU-VNTR polymorphism. PLoS ONE 2014, 9, e107150, Erratum in PLoS ONE 2014, 9, e114676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krishnan, N.; Malaga, W.; Constant, P.; Caws, M.; Chau, T.T.H.; Salmons, J.; Lan, N.T.N.; Bang, N.D.; Daffé, M.; Young, D.B.; et al. Mycobacterium tuberculosis Lineage Influences Innate Immune Response and Virulence and Is Associated with Distinct Cell Envelope Lipid Profiles. PLoS ONE 2011, 6, e23870. [Google Scholar] [CrossRef]
- Sarkar, R.; Lenders, L.; Wilkinson, K.A.; Wilkinson, R.J.; Nicol, M.P. Modern lineages of Mycobacterium tuberculosis exhibit lineage-specific patterns of growth and cytokine induction in human monocyte-derived macrophages. PLoS ONE 2012, 7, e43170. [Google Scholar] [CrossRef]
- Coleman, M.; Martinez, L.; Theron, G.; Wood, R.; Marais, B. Mycobacterium tuberculosis Transmission in High-Incidence Settings—New Paradigms and Insights. Pathogens 2022, 11, 1228. [Google Scholar] [CrossRef] [PubMed]
- Dinkele, R.; Gessner, S.; McKerry, A.; Leonard, B.; Leukes, J.; Seldon, R.; Warner, D.F.; Wood, R. Aerosolization of Mycobacterium tuberculosis by Tidal Breathing. Am. J. Respir. Crit. Care Med. 2022, 206, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Gralton, J.; Tovey, E.; McLaws, M.L.; Rawlinson, W.D. The role of particle size in aerosolised pathogen transmission: A review. J. Infect. 2011, 62, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wurie, F.B.; Lawn, S.D.; Booth, H.; Sonnenberg, P.; Hayward, A.C. Bioaerosol production by patients with tuberculosis during normal tidal breathing: Implications for transmission risk. Thorax 2016, 71, 549–554. [Google Scholar] [CrossRef]
- Patterson, B.; Wood, R. Is cough really necessary for TB transmission? Tuberculosis 2019, 117, 31–35. [Google Scholar] [CrossRef]
- Churchyard, G.; Kim, P.; Shah, N.S.; Rustomjee, R.; Gandhi, N.; Mathema, B.; Dowdy, D.; Kasmar, A.; Cardenas, V. What We Know About Tuberculosis Transmission: An Overview. J. Infect. Dis. 2017, 216 (Suppl. 6), S629. [Google Scholar] [CrossRef]
- Khan, P.Y.; Yates, T.A.; Osman, M.; Warren, R.M.; van der Heijden, Y.; Padayatchi, N.; Nardell, E.A.; Moore, D.; Mathema, B.; Gandhi, N.; et al. Transmission of drug-resistant tuberculosis in HIV-endemic settings. Lancet Infect. Dis. 2019, 19, e77–e88, Erratum in Lancet Infect. Dis. 2019, 19, e148. https://doi.org/10.1016/S1473-3099(19)30103-3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mathema, B.; Andrews, J.R.; Cohen, T.; Borgdorff, M.W.; Behr, M.; Glynn, J.R.; Rustomjee, R.; Silk, B.J.; Wood, R. Drivers of Tuberculosis Transmission. J. Infect. Dis. 2017, 216 (Suppl. 6), S644. [Google Scholar] [CrossRef]
- Theron, G.; Limberis, J.; Venter, R.; Smith, L.; Pietersen, E.; Esmail, A.; Calligaro, G.; te Riele, J.; de Kock, M.; van Helden, P.; et al. Bacterial and host determinants of cough aerosol culture-positivity in patients with drug-resistant versus drug-susceptible tuberculosis. Nat. Med. 2020, 26, 1435. [Google Scholar] [CrossRef]
- Guillén-Nepita, A.L.; Vázquez-Marrufo, G.; Cruz-Hernández, A.; García-Oliva, F.; Zepeda-Gurrola, R.C.; Vázquez-Garcidueñas, M.S. Detailed epidemiological analysis as a strategy for evaluating the actual behavior of tuberculosis in an apparently low-incidence region. Pathog. Glob. Health 2020, 114, 393–404. [Google Scholar] [CrossRef]
- Rajagopalan, S.; King, M.L. Tuberculosis and Aging: A Global Health Problem. Clin. Infect. Dis. 2001, 33, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Hoerter, A.; Arnett, E.; Schlesinger, L.S.; Pienaar, E. Systems biology approaches to investigate the role of granulomas in TB-HIV coinfection. Front. Immunol. 2022, 13, 1014515. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Andersson, A.-M.; Ellegård, R.; Lindestam Arlehamn, C.S.; Sette, A.; Larsson, M.; Stendahl, O.; Blomgran, R. HIV Interferes with Mycobacterium tuberculosis Antigen Presentation in Human Dendritic Cells. Am. J. Pathol. 2016, 186, 3083–3093. [Google Scholar] [CrossRef] [PubMed]
- Windels, E.M.; Wampande, E.M.; Joloba, M.L.; Boom, W.H.; Goig, G.A.; Cox, H.; Hella, J.; Borrell, S.; Gagneux, S.; Brites, D.; et al. HIV co-infection is associated with reduced Mycobacterium tuberculosis transmissibility in sub-Saharan Africa. PLoS Pathog. 2024, 20, e1011675. [Google Scholar] [CrossRef]
- Koch, A.S.; Brites, D.; Stucki, D.; Evans, J.C.; Seldon, R.; Heekes, A.; Mulder, N.; Nicol, M.; Oni, T.; Mizrahi, V.; et al. The Influence of HIV on the Evolution of Mycobacterium tuberculosis. Mol. Biol. Evol. 2017, 34, 1654–1668. [Google Scholar] [CrossRef]
- Loiseau, C.; Brites, D.; Reinhard, M.; Zürcher, K.; Borrell, S.; Ballif, M.; Fenner, L.; Cox, H.; Rutaihwa, L.K.; Wilkinson, R.J.; et al. HIV Coinfection Is Associated with low-fitness rpoB variants in rifampicin-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2020, 64, e00782-20. [Google Scholar] [CrossRef]
- Cortés-Torres, N.; González-y-Merchand, J.A.; González-Bonilla, C.; García-Elorriaga, G. Molecular Analysis of Mycobacteria Isolated in Mexican Patients with Different Immunodeficiencies in a Tertiary Care Hospital. Arch. Med. Res. 2013, 44, 562–569. [Google Scholar] [CrossRef]
- Prada-Medina, C.A.; Brites, D.; Reinhard, M.; Zürcher, K.; Borrell, S.; Ballif, M.; Fenner, L.; Cox, H.; Rutaihwa, L.K.; Wilkinson, R.J. Systems Immunology of Diabetes-Tuberculosis Comorbidity Reveals Signatures of Disease Complications. Sci. Rep. 2017, 7, 1999. [Google Scholar] [CrossRef]
- Lee, P.H.; Fu, H.; Lee, M.R.; Magee, M.; Lin, H.H. Tuberculosis and diabetes in low and moderate tuberculosis incidence countries. Int. J. Tuberc. Lung Dis. 2018, 22, 7–16. [Google Scholar] [CrossRef]
- Mendoza-Almanza, G.; Rivas-Santiago, C.E.; Bustamante, M.S.; López-Hernández, Y. Diabetes and tuberculosis in Mexico: Results from epidemiological studies. Int. J. Diabetes Dev. Ctries. 2018, 38, 146–152. [Google Scholar] [CrossRef]
- Queiroz, A.T.L.; Vinhaes, C.L.; Fukutani, E.R.; Gupte, A.N.; Kumar, N.P.; Fukutani, K.F.; Arriaga, M.B.; Sterling, T.R.; Babu, S.; Gaikwad, S. A multi-center, prospective cohort study of whole blood gene expression in the tuberculosis-diabetes interaction. Sci. Rep. 2023, 13, 7769. [Google Scholar] [CrossRef] [PubMed]
- Awad, S.F.; Dargham, S.R.; Omori, R.; Pearson, F.; Critchley, J.A.; Abu-Raddad, L.J. Analytical Exploration of Potential Pathways by which Diabetes Mellitus Impacts Tuberculosis Epidemiology. Sci. Rep. 2019, 9, 8494. [Google Scholar] [CrossRef]
- Flores-Treviño, S.; Morfín-Otero, R.; Rodríguez-Noriega, E.; González-Díaz, E.; Pérez-Gómez, H.R.; Bocanegra-García, V.; Vera-Cabrera, L.; Garza-González, E. Genetic diversity of Mycobacterium tuberculosis from Guadalajara, Mexico and identification of a rare multidrug resistant Beijing genotype. PLoS ONE 2015, 10, e0118095. [Google Scholar] [CrossRef]
- Juarez-Eusebio, D.M.; Munro-Rojas, D.; Muñiz-Salazar, R.; Laniado-Laborín, R.; Martinez-Guarneros, J.A.; Flores-López, C.A.; Zenteno-Cuevas, R. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolates from high prevalence tuberculosis states in Mexico. Infect. Genet. Evol. 2017, 55, 384–391. [Google Scholar] [CrossRef]
- Rosas-Diaz, M.; Palacios-Reyes, C.; Godinez-Aguilar, R.; Escalante-Bautista, D.; Alfaro Hernández, L.; Juarez-Islas, A.P.; Segundo-Ibañez, P.; Salas-Cuevas, G.; Olvera-Serrano, Á.; Hernandez-Martinez, J.C. New Tool Against Tuberculosis: The Potential of the LAMP Lateral Flow Assay in Resource-Limited Settings. Curr. Issues Mol. Biol. 2025, 47, 585. [Google Scholar] [CrossRef]
- Kanabalan, R.D.; Lee, L.J.; Lee, T.Y.; Chong, P.P.; Hassan, L.; Ismail, R.; Chin, V.K. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol. Res. 2021, 246, 126674. [Google Scholar] [CrossRef]
- Peters, J.S.; Ismail, N.; Dippenaar, A.; Ma, S.; Sherman, D.R.; Warren, R.M.; Kana, B.D. Genetic Diversity in Mycobacterium tuberculosis Clinical Isolates and Resulting Outcomes of Tuberculosis Infection and Disease. Annu. Rev. Genet. 2020, 54, 511–537. [Google Scholar] [CrossRef]
- World Health Organization. Implementación de la Estrategia Ein de la TB: Aspectos Esenciales. 2016. Available online: www.who.int/about/licensing (accessed on 6 August 2024).
- de Salud, S. Guía Práctica Para la Atención de la Tuberculosis en Niñas, Niños y Adolescentes Ciudad de México. 2014. Available online: www.gob.mx/salud/cenaprece (accessed on 18 October 2024).
- DOF. DOF—Diario Oficial de la Federación. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5270654&fecha=28/09/2012#gsc.tab=0 (accessed on 29 August 2025).
- Secretaria de Salud. Norma Oficial Mexicana NOM-006-SSA2-2013, Para la Prevención y Control de la Tuberculosis. Available online: https://www.gob.mx/cms/uploads/attachment/file/10390/NOM-006-SSA2-2013.pdf (accessed on 29 August 2025).
- García-Alvarado, E.; César-Pérez, V. Medidas de bioseguridad, precauciones estándar y sistemas de aislamiento. Rev. Enferm. IMSS 2002, 10, 27–30. Available online: https://www.medigraphic.com/pdfs/enfermeriaimss/eim-2002/eim021g.pdf (accessed on 19 October 2025).
- Matteelli, A.; Matteelli, A.; Rendon, A.; Tiberi, S.; Al-Abri, S.; Voniatis, C.; Carvalho, A.C.C.; Centis, R.; D’Ambrosio, L.; Visca, D.; et al. Tuberculosis elimination: Where are we now? Eur. Respir. Rev. 2018, 27, 180035. [Google Scholar] [CrossRef]
- Zacarías-Hernández, J.L.; Flores-Aréchiga, A.; Tamez-Guerra, R.S.; Rivera-Morales, L.G.; Castro-Garza, J.; Becerril-Montes, P.; Vázquez-Cortés, C.G.; De la O-Cavazos, M.; Vázquez-Guillén, J.M.; Rodríguez-Padilla, C. Geographical location and genotyping analysis of pulmonary tuberculosis in the state of Nuevo Leon, Mexico. Sci. Rep. 2025, 15, 7098. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F. Mycobacteriophages: Windows into Tuberculosis. PLoS Pathog. 2014, 10, e1003953. [Google Scholar] [CrossRef]
- Hosseiniporgham, S.; Sechi, L.A. A Review on Mycobacteriophages: From Classification to Applications. Pathogens 2022, 11, 777. [Google Scholar] [CrossRef]


| Drug | Genes Involved | Mutations Reported in Mexico |
|---|---|---|
| Isoniazid (INH) | katG, inhA, fabG1, oxyR-ahpC | katG315S/T; mutation on the promoter inhA y oxyR-ahpC |
| Rifampicin (RIF) | rpoB | RRDR mutations: codons 531 (S531L), 526, 516 |
| Pyrazinamide (PZA) | pncA, rpsA | Heterogeneous mutations in pncA |
| Ethambutol (EMB) | embB | Mutation in codon 306 |
| Streptomycin (SM) | rpsL, rrs, gidB | rpsL (K43R, K88R); mutations in rrs; polymorphisms in gidB |
| Lineage | Identification Characteristics | Sub-Linage | |
|---|---|---|---|
| Indo-Oceanic L1 | RD239 | 1.1 | 1.1.1 1.1.2 1.1.3 |
| 1.2 | 1.2.1 1.2.2 | ||
| East Asia L2 | RD105 (Beijing) RD142 (2.2.1.2) RD150 (2.2.1.1) RD181 RD207 | 2.1 | |
| 2.2 | 2.2.1 2.2.1.1 2.2.2.2 | ||
| East Africa-India L3 | RD750 (CAS) | 3.1 | 3.1.1 3.1.2.1 3.1.2.2 |
| Euro-American L4 | RD182 (4.1.2.1) RD 183 (4.1.1.1) RD193 (4.1.1.3) RD115 RD174 RD761 (4.3.2.1) RD726 (4.6.2) RD724 (4.6.1) RD219 (4.8) | 4.1 | 4.1.1.1 (X-Type) 4.1.1.2 (X-Type) 4.1.1.3 (X-Type) 4.1.2 4.1.2.1 (Haarlem) |
| 4.2 | 4.2.1 (Ural) 4.2.2.1 (TUR) | ||
| 4.3 (LAM) | 4.3.1 4.3.2 4.3.2.1 4.3.3 4.3.4.1 4.3.4.2 4.3.4.2.1 | ||
| 4.4 (S-Type) | |||
| 4.5 | |||
| 4.6 | |||
| 4.6.1 | 4.6.1 4.6.2 (Cameroon) | ||
| 4.7 | |||
| 4.8 | |||
| 4.9 | |||
| West Africa (M. Africanum I) L5 | RD711 | 5.1 | |
| 5.2 | |||
| 5.3 | |||
| West Africa (M. Africanum II) L6 | BOVIS RD702 | 6.1 | |
| 6.2 | |||
| 6.3 | |||
| L7 | RD702 | --- | |
| Strain | Sub Lineage | Resistance Gene | States of Origin |
|---|---|---|---|
| 4.1.1.3 | (X-type) | INH, RIF, STR, PZA, EMB | Veracruz, Estado de México, Puebla, Guerrero, Tabasco. |
| 4.1.2.1 | (Haarlem) | INH, RIF | Nuevo León, Baja California, Jalisco |
| 4.3.3 | (LAM) | INH, STR | Baja California, Sinaloa |
| 4.4 | (S) | PZA | Veracruz, Chiapas |
| 4.3 | (Ancestral LAM) | EMB | Chihuahua, Michoacán |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Martínez, L.M.; Chavelas-Reyes, J.L.; Medina-Ramírez, C.F.; Fuentes-Chávez, E.; Muñoz-Troncoso, Z.S.; Estrada-Vega, Á.G.; Rodríguez-Díaz, E.; Torres-Morales, D.; Moreno-Treviño, M.G.; Rodríguez-González, J.G. Molecular Epidemiology of Mycobacterium tuberculosis in Mexico. Microorganisms 2025, 13, 2453. https://doi.org/10.3390/microorganisms13112453
Rodríguez-Martínez LM, Chavelas-Reyes JL, Medina-Ramírez CF, Fuentes-Chávez E, Muñoz-Troncoso ZS, Estrada-Vega ÁG, Rodríguez-Díaz E, Torres-Morales D, Moreno-Treviño MG, Rodríguez-González JG. Molecular Epidemiology of Mycobacterium tuberculosis in Mexico. Microorganisms. 2025; 13(11):2453. https://doi.org/10.3390/microorganisms13112453
Chicago/Turabian StyleRodríguez-Martínez, Luis M., Jose L. Chavelas-Reyes, Carlo F. Medina-Ramírez, Eli Fuentes-Chávez, Zurisaday S. Muñoz-Troncoso, Ángeles G. Estrada-Vega, Enrique Rodríguez-Díaz, Diego Torres-Morales, María G. Moreno-Treviño, and Josefina G. Rodríguez-González. 2025. "Molecular Epidemiology of Mycobacterium tuberculosis in Mexico" Microorganisms 13, no. 11: 2453. https://doi.org/10.3390/microorganisms13112453
APA StyleRodríguez-Martínez, L. M., Chavelas-Reyes, J. L., Medina-Ramírez, C. F., Fuentes-Chávez, E., Muñoz-Troncoso, Z. S., Estrada-Vega, Á. G., Rodríguez-Díaz, E., Torres-Morales, D., Moreno-Treviño, M. G., & Rodríguez-González, J. G. (2025). Molecular Epidemiology of Mycobacterium tuberculosis in Mexico. Microorganisms, 13(11), 2453. https://doi.org/10.3390/microorganisms13112453

