Mychonastes homosphaera MHSC24 Isolated from Brackish Waters of Korea: Taxonomic, Physiological, and Biochemical Characterization
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Isolation
2.2. Morphological Identification
2.3. Molecular Identification and Sequence Analysis
2.4. Determination of Optimal Culture Conditions
2.5. Determination of Total Lipid, Carbohydrate, and Protein Contents
2.6. Microalgal Pigment Extraction and Analysis
2.7. Analyses for Fatty Acid Composition of Lipids
2.8. Microalgal Monosaccharide Extraction and Analysis
2.9. Statistical Analysis
3. Results
3.1. Morphological Characteristics
3.2. Molecular Identification and Sequence Analysis
3.3. Verification of the Optimal Cultivation Conditions of the Isolated Strain
3.4. Proximate Composition of Dried M. homosphaera Biomass
3.5. Analysis of Microalgal Pigment Profile
3.6. Fatty Acid Composition of Lipids
3.7. Analysis of the Monosaccharide Profile
4. Discussion
4.1. Morphological and Ultrastructural Traits with Pigment Accumulation
4.2. Molecular Identification and Phylogenetic Analysis
4.3. Environmental Tolerance and Cultivation Potential
4.4. Biochemical Profile and Functional Applications
4.5. Pigment Profile and Canthaxanthin Biosynthetic Potential of MHSC24
4.6. Lipid and Carbohydrate Composition and Implications for Functional Applications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, A.; Ashraf, S.S. Sustainable food and feed sources from microalgae: Food security and the circular bioeconomy. Algal Res. 2023, 74, 103185. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Sánchez-García, R.M.; García-Domínguez, I.; Rodríguez-Luna, A.; Hurtado-Fernández, E.; Santos, J. Emerging trends in sustainable biological resources and bioeconomy for food production. Appl. Sci. 2025, 15, 6555. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- An, S.M.; Cho, K.; Kim, E.S.; Ki, H.; Choi, G.; Kang, N.S. Description and characterization of the Odontella aurita OAOSH22, a marine diatom rich in eicosapentaenoic acid and fucoxanthin, isolated from Osan Harbor, Korea. Mar. Drugs 2023, 21, 563. [Google Scholar] [CrossRef]
- Osathanunkul, M.; Thanaporn, S.; Karapetsi, L.; Nteve, G.M.; Pratsinakis, E.; Stefanidou, E.; Lagiotis, G.; Avramidou, E.; Zorxzobokou, L.; Tsintzou, G.; et al. Diversity of bioactive compounds in microalgae: Key classes and functional applications. Mar. Drugs 2025, 23, 222. [Google Scholar] [CrossRef]
- Rebelo, B.A.; Farrona, S.; Ventura, M.R.; Abranches, R. Canthaxanthin, a red-hot carotenoid: Applications, synthesis, and biosynthetic evolution. Plants 2020, 9, 1039. [Google Scholar] [CrossRef]
- Gaur, V.; Bera, S. Microbial canthaxanthin: An orange-red keto carotenoid with potential pharmaceutical applications. BioTechnologia 2023, 104, 315–328. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as sources of high-quality protein for human food and protein supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Martins, J.; Cruz, D.; Vasconcelos, V. The Nagoya Protocol and its implications on the EU Atlantic area countries. J. Mar. Sci. Eng. 2020, 8, 92. [Google Scholar] [CrossRef]
- Rumin, J.; Gonçalves de Oliveira, R., Jr.; Bérard, J.-B.; Picot, L. Improving microalgae research and marketing in the European Atlantic area: Analysis of major gaps and barriers limiting sector development. Mar. Drugs 2021, 19, 319. [Google Scholar] [CrossRef]
- Hong, J.W.; Kang, N.S.; Jang, H.S.; Kim, H.J.; An, Y.R.; Yoon, M.; Kim, H.S. Biotechnological potential of Korean marine microalgal strains and its future prospectives. Ocean Polar Res. 2019, 41, 289–309. [Google Scholar]
- Simpson, P.D.; Van Valkenburg, S.D. The ultrastructure of Mychonastes ruminatus gen. et sp. nov., a new member of the Chlorophyceae isolated from brackish water. Br. Phycol. J. 1978, 13, 117–130. [Google Scholar] [CrossRef]
- Kalina, T.; Puncochárová, M. Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae). Arch. Hydrobiol. Suppl. Algol. Stud. 1987, 45, 473–521. [Google Scholar]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication; National University of Ireland Galway: Galway, Ireland, 2025; Available online: http://www.algaebase.org (accessed on 28 July 2025).
- Fujimoto, N.; Matsuo, E.; Murata, M.; Nakahara, H. Evaluation of the small-eukaryote community composition in a mesotrophic lake by sequencing the 18S rRNA genes. Jpn. J. Water Treat. Biol. 2014, 50, 85–94. [Google Scholar] [CrossRef]
- Shi, X.; Li, S.; Fan, F.; Zhang, M.; Yang, Z.; Yang, Y. Mychonastes dominates the photosynthetic picoeukaryotes in Lake Poyang, a river-connected lake. FEMS Microbiol. Ecol. 2019, 95, fiy211. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, V.M. Soil and Aerophilic Green Algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales); Nauka: St. Petersburg, Russia, 1998; pp. 1–352. ISBN 978-502-026-094-8/502-026-094-0. [Google Scholar]
- Neustupa, J. Soil algae from marlstone-substratum based biotopes in the Nature Park Džbán (Central Bohemia, Czech Republic) with special attention to the natural treeless localities. Algol. Stud. 2001, 101, 109–120. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, J.H.; Fan, Y.; Ren, X.H.; Hu, G.R.; Li, F.L. Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol. Biofuels 2011, 4, 47. [Google Scholar] [CrossRef]
- Saadaoui, I.; Cherif, M.; Rasheed, R.; Bounnit, T.; Al Jabri, H.; Sayadi, S.; Hamadou, R.B.; Manning, S.R. Mychonastes homosphaera (Chlorophyceae): A promising feedstock for high quality feed production in the arid environment. Algal Res. 2020, 51, 102021. [Google Scholar] [CrossRef]
- Lee, S.; Hong, E.; Yim, K.J.; Jung, J.Y.; Choi, Y.S.; Lee, C.S.; Jang, H.J.; Kim, Z.H. Mychonastes sp. 247 induces apoptosis of A549 human lung cancer cells by promoting STRA6-mediated reactive oxygen species production. Nat. Prod. Commun. 2023, 18, 7. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, S.; Zhang, L.; Li, Y.; Guo, J.; Ji, S.; Hao, C. Physiological response and carbon dioxide sequestration mechanisms during photosynthesis in Mychonastes rotundus. J. Clean. Prod. 2024, 474, 143557. [Google Scholar] [CrossRef]
- Lee, H.; Nguyen, D.-V.; Wu, D.; de Saeger, J.; Park, M.; Lee, S.D.; Yu, Y.; Lee, J.; Lee, C.; Han, T.; et al. A rapid and multi-endpoint ecotoxicological test using Mychonastes afer for efficient screening of metals and herbicides. Ecotoxicol. Environ. Saf. 2024, 281, 116652. [Google Scholar] [CrossRef]
- Hanagata, N.; Malinsky-Rushansky, N.; Dubinsky, Z. Eukaryotic picoplankton, Mychonastes homosphaera (Chlorophyceae, Chlorophyta), in Lake Kinneret, Israel. Phycol. Res. 1999, 47, 263–269. [Google Scholar] [CrossRef]
- Nozaki, H.; Matsuzaki, R.; Mori, F.; Sato, M.; Yamaguchi, H.; Higashiyama, T.; Kawachi, M.; Tanabe, Y. Description of four new species of Mychonastes (Chlorophyceae) from Japanese freshwater habitats based on molecular and morphological data. Phycol. Res. 2025, 73, 35–48. [Google Scholar] [CrossRef]
- Stoyneva-Gärtner, M.P.; Androv, M.I.; Uzunov, B.A.; Ivanov, K.R.; Gärtner, G. Epilithic algae from seven megaliths in the vicinity of Topolovgrad (Haskovo District, Southeast Bulgaria). Life 2025, 15, 1451. [Google Scholar] [CrossRef] [PubMed]
- Bombin, S.; Wysor, B.; Lopez-Bautista, J.M. Assessment of littoral algal diversity from the northern Gulf of Mexico using environmental DNA metabarcoding. J. Phycol. 2021, 57, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Compère, P. Algues récoltées par J. Léonard dans le désert de Libye. Bull. Jard. Bot. Natl. Belg. 1986, 56, 9–50. [Google Scholar] [CrossRef]
- Floder, S.; Burns, C.W. The influence of fluctuating light on diversity and species number of nutrient-limited phytoplankton1. J. Phycol. 2005, 41, 950–956. [Google Scholar] [CrossRef]
- Andreeva, V.M.; Kurbatova, L.E. Terrestrial and aerophilic nonmotile green microalgae (Chlorophyta) from regions of investigation of Russian Antarctic expedition. Nov. Sist. Nizsh. Rast. 2014, 46, 12–26. [Google Scholar] [CrossRef]
- Zarzo, D.; Campos, E.; Prats, D.; Hernandez, P.; Garcia, A. Microalgae production for nutrient removal in desalination brines. IDA J. Desalin. Water Reuse 2014, 6, 61–68. [Google Scholar] [CrossRef]
- Wu, L.; Xu, L.; Hu, C. Screening and characterization of oleaginous microalgal species from northern Xinjiang. J. Microbiol. Biotechnol. 2015, 25, 910–917. [Google Scholar] [CrossRef]
- Grama, B.S.; Chader, S.; Khelifi, D.; Stenuit, B.; Jeffryes, C.; Agathos, S.N. Characterization of fatty acid and carotenoid production in an Acutoclesmus microalga isolated from the Algerian Sahara. Biomass Bioenergy 2014, 69, 265–275. [Google Scholar] [CrossRef]
- Granéli, E.; Flynn, K. Chemical and physical factors influencing toxin content. In Ecology of Harmful Algae; Granéli, E., Turner, J.T., Eds.; Springer: New York, NY, USA, 2006; Volume 189, pp. 229–241. ISBN 978-3-540-32209-2. [Google Scholar]
- Kang, N.S.; An, S.M.; Jo, C.R.; Ki, H.; Kim, S.Y.; Jeong, H.G.; Choi, G.; Hong, J.W.; Cho, K. Taxonomic, physiological, and biochemical characterization of Asterarcys quadricellularis AQYS21 as a promising sustainable feedstock for biofuels and ω-3 fatty acids. Plants 2024, 13, 3008. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.R.; Cho, K.; An, S.M.; Do, J.M.; Hong, J.W.; Kim, J.H.; Kim, S.Y.; Jeong, H.G.; Kang, N.S. Taxonomical, physiological, and biochemical characteristics of Dunaliella salina DSTA20 from hypersaline environments of Taean Salt Pond, Republic of Korea. Microorganisms 2024, 12, 2467. [Google Scholar] [CrossRef] [PubMed]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Kang, N.S.; Jeong, H.J.; Moestrup, Ø.; Shin, W.; Nam, S.W.; Park, J.Y.; de Salas, M.F.; Kim, K.W.; Noh, J.H. Description of a new planktonic mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. from the coastal waters off western Korea: Morphology, pigments, and ribosomal DNA gene sequence. J. Eukaryot. Microbiol. 2010, 57, 121–144. [Google Scholar] [CrossRef]
- Edler, D.; Klein, J.; Antonelli, A.; Silvestro, D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 2021, 12, 373–377. [Google Scholar] [CrossRef]
- Heo, J.; Cho, D.H.; Ramanan, R.; Oh, H.M.; Kim, H.S. PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO2 sequestration. Biochem. Eng. J. 2015, 103, 193–197. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein-Beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- Kim, E.S.; Ki, H.; Lee, C.H.; An, S.M.; Kang, N.S.; Choi, G.; Hong, J.W.; Pan, C.H.; Park, B.S.; Cho, K. Enhancing carotenoid production and exploring the potential use of microalga Desmodesmus cf. pleiomorphus DSHM22 as a biodiesel feedstock through photoheterotrophic cultivation. Biomass Bioenergy 2023, 177, 106939. [Google Scholar] [CrossRef]
- Yang, H.W.; Song, J.Y.; Cho, S.M.; Kwon, H.C.; Pan, C.H.; Park, Y.I. Genomic survey of salt acclimation-related genes in the halophilic cyanobacterium Euhalothece sp. Z-M001. Sci. Rep. 2020, 10, 676. [Google Scholar] [CrossRef]
- Oliveira, O.; Gianesella, S.; Silva, V.; Mata, T.; Caetano, N. Lipid and carbohydrate profile of a microalga isolated from wastewater. Energy Procedia 2017, 136, 468–473. [Google Scholar] [CrossRef]
- Kang, N.S.; Lee, J.A.; Jang, H.S.; Kim, K.M.; Kim, E.S.; Yoon, M.; Hong, J.W. First record of a marine microalgal species, Chlorella gloriosa (Trebouxiophyceae) isolated from the Dokdo Islands, Korea. Korean J. Environ. Biol. 2019, 37, 526–534. [Google Scholar] [CrossRef]
- Brown, M.R. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 1991, 145, 79–99. [Google Scholar] [CrossRef]
- Mai, T.; Nguyen, P.; Vo, T.; Huynh, H.; Tran, S.; Nim, T.; Tran, D.; Nguyen, H.; Bui, P. Accumulation of lipid in Dunaliella salina under nutrient starvation condition. Am. J. Food Nutr. 2017, 5, 58–61. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Shoparwe, N.F.; Yusoff, A.H.; Rahim, A.A.; Chang, C.S.; Tan, J.S.; Oslan, S.N.; Arumugam, K.; Ariff, A.B.; Sulaiman, A.Z.; et al. A review on Haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules 2021, 11, 256. [Google Scholar] [CrossRef]
- Patova, E.; Novakovskaya, I.; Martynenko, N.; Gusev, E.; Kulikovskiy, M. Mychonastes frigidus sp. nov. (Sphaeropleales/Chlorophyceae), a new species described from a mountain stream in the subpolar Urals (Russia). Fottea 2021, 21, 8–15. [Google Scholar] [CrossRef]
- Ambati, R.R.; Gogisetty, D.; Aswathanarayana, R.G.; Ravi, S.; Bikkina, P.N.; Bo, L.; Yuepeng, S. Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Crit. Rev. Food Sci. Nutr. 2019, 59, 1880–1902. [Google Scholar] [CrossRef]
- Orosa, M.; Torres, E.; Fidalgo, P.; Abalde, J. Production and analysis of secondary carotenoids in green algae. J. Appl. Phycol. 2000, 12, 553–556. [Google Scholar] [CrossRef]
- Shi, T.Q.; Wang, L.R.; Zhang, Z.X.; Sun, X.M.; Huang, H. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae. Front. Bioeng. Biotechnol. 2020, 8, 610. [Google Scholar] [CrossRef]
- Davidi, L.; Shimoni, E.; Khozin-Goldberg, I.; Zamir, A.; Pick, U. Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. Plant Physiol. 2014, 164, 2139–2156. [Google Scholar] [CrossRef]
- Terlova, E.F.; Holzinger, A.; Lewis, L.A. Terrestrial green algae show higher tolerance to dehydration than do their aquatic sister-species. Microb. Ecol. 2021, 82, 770–782. [Google Scholar] [CrossRef]
- Krienitz, L.; Bock, C.; Dadheech, P.K.; Pröschold, T. Taxonomic reassessment of the genus Mychonastes (Chlorophyceae, Chlorophyta) including the description of eight new species. Phycologia 2011, 50, 89–106. [Google Scholar] [CrossRef]
- Malinsky-Rushansky, N.; Berman, T.; Berner, T.; Yacobi, Y.Z.; Dubinsky, Z. Physiological characteristics of picophytoplankton, isolated from Lake Kinneret: Response to light and temperature. J. Plankton Res. 2002, 24, 1173–1183. [Google Scholar] [CrossRef]
- Bhatnagar, P.; Gururani, P.; Singh, N.; Gautam, P.; Vlaskin, M.S.; Kumar, V. Review on microalgae protein and its current and future utilisation in the food industry. Int. J. Food Sci. Technol. 2024, 59, 473–480. [Google Scholar] [CrossRef]
- Mota, M.F.S.; Souza, M.F.; Bon, E.P.S.; Rodrigues, M.A.; Freitas, S.P. Colorimetric protein determination in microalgae (Chlorophyta): Association of milling and SDS treatment for total protein extraction. J. Phycol. 2018, 54, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Daroch, M.; Liu, L.; Qiu, G.; Geng, S.; Wang, G. Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresour. Technol. 2013, 127, 422–428. [Google Scholar] [CrossRef]
- Becker, E.W. Microalgae for human and animal nutrition. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd ed.; Richmond, A., Hu, Q., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 461–503, Print ISBN: 978-047-067-389-8, Online ISBN: 978-111-856-716-6. [Google Scholar]
- Prates, J.A.M. Unlocking the functional and nutritional potential of microalgae proteins in food systems: A narrative review. Foods 2025, 14, 1524. [Google Scholar] [CrossRef]
- Srimongkol, P.; Sangtanoo, P.; Songserm, P.; Watsuntorn, W.; Karnchanatat, A. Microalgae-based wastewater treatment for developing economic and environmental sustainability: Current status and future prospects. Front. Bioeng. Biotechnol. 2022, 10, 904046. [Google Scholar] [CrossRef]
- Zwander, S.; Chaturvedi, P.; Ghatak, A.; Weckwerth, W.; Marko, D.; Castejón, N. Integrating eco-friendly approaches to produce protein extracts and hydrolysates with antioxidant properties from Microchloropsis gaditana. Algal Res. 2024, 77, 103368. [Google Scholar] [CrossRef]
- Masoumifeshani, B.; Abedian Kenari, A.; Sottorff, I.; Crüsemann, M.; Amiri Moghaddam, J. Identification and evaluation of antioxidant and anti-aging peptide fractions from enzymatically hydrolyzed proteins of Spirulina platensis and Chlorella vulgaris. Mar. Drugs 2025, 23, 162. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Hu, Z.; Liu, S.; Luo, S.; He, R.; Yang, X.; Li, S.; Yang, X.; An, Y.; Lu, Y. Utilization of microalgae and duckweed as sustainable protein sources for food and feed: Nutritional potential and functional applications. J. Agric. Food Chem. 2025, 73, 4466–4482. [Google Scholar] [CrossRef] [PubMed]
- Aburai, N.; Ohkubo, S.; Miyashita, H.; Abe, K. Composition of carotenoids and identification of aerial microalgae isolated from the surface of rocks in mountainous districts of Japan. Algal Res. 2013, 2, 237–243. [Google Scholar] [CrossRef]
- Pereira, H.; Custódio, L.; Rodrigues, M.J.; de Sousa, C.B.; Oliveira, M.; Barreira, L.; Neng, N.D.R.; Nogueira, J.M.F.; Alrokayan, S.A.; Mouffouk, F.; et al. Biological activities and chemical composition of methanolic extracts of selected autochthonous microalgae strains from the Red Sea. Mar. Drugs 2015, 13, 3531–3549. [Google Scholar] [CrossRef]
- Chaemsuea, A.; Kusolkumbot, P.; Watthammawut, A.; Niyompanich, S. Effect of magnesium chloride on microalgal biomass and canthaxanthin accumulation in Chromochloris zofingiensis. In Proceedings of the RSU International Research Conference, Rangsit University, Pathum Thani, Thailand, 29 April 2022; pp. 460–466. [Google Scholar] [CrossRef]
- Banskota, A.H.; Sperker, S.; Stefanova, R.; McGinn, P.J.; O’Leary, S.J.B. Antioxidant properties and lipid composition of selected microalgae. J. Appl. Phycol. 2019, 31, 309–318. [Google Scholar] [CrossRef]
- Lorquin, J.; Molouba, F.; Dreyfus, B.L. Identification of the carotenoid pigment canthaxanthin from photosynthetic Bradyrhizobium strains. Appl. Environ. Microbiol. 1997, 63, 1151–1154. [Google Scholar] [CrossRef]
- Haxo, F. Carotenoids of the mushroom Cantharellus cinnabarinus. Bot. Gaz. 1950, 112, 228–232. [Google Scholar] [CrossRef]
- Enfissi, E.M.A.; Nogueira, M.; D’Ambrosio, C.; Stigliani, A.L.; Giorio, G.; Misawa, N.; Fraser, P.D. The road to astaxanthin production in tomato fruit reveals plastid and metabolic adaptation resulting in an unintended high lycopene genotype with delayed over-ripening properties. Plant Biotechnol. J. 2019, 17, 1501–1513. [Google Scholar] [CrossRef]
- Kurniawan, R.; Nurkolis, F.; Taslim, N.A.; Subali, D.; Surya, R.; Gunawan, W.B.; Alisaputra, D.; Mayulu, N.; Salindeho, N.; Kim, B. Carotenoids composition of green algae Caulerpa racemosa and their antidiabetic, anti-obesity, antioxidant, and anti-Inflammatory properties. Molecules 2023, 28, 3267. [Google Scholar] [CrossRef]
- Canini, D.; Martini, F.; Cazzaniga, S.; Miotti, T.; Pacenza, B.; D’Adamo, S.; Ballottari, M. Genetic engineering of Nannochloropsis oceanica to produce canthaxanthin and ketocarotenoids. Microb. Cell Fact. 2024, 23, 322. [Google Scholar] [CrossRef]
- Bouzidi, N.E.; Grama, S.B.; Khelef, A.E.; Yang, D.; Li, J. Inhibition of antioxidant enzyme activities enhances carotenogenesis in microalga Dactylococcus dissociatus MT1. Front. Bioeng. Biotechnol. 2022, 10, 1014604. [Google Scholar] [CrossRef] [PubMed]
- Promdonkoy, P.; Watcharawipas, A.; Bubphasawan, S.; Sansatchanon, K.; Suwanakitti, N.; Kocharin, K.; Runguphan, W. Metabolic engineering of Saccharomyces cerevisiae for production of canthaxanthin, zeaxanthin, and astaxanthin. J. Fungi 2024, 10, 433. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Tao, L. Engineering Escherichia coli for canthaxanthin and astaxanthin biosynthesis. In Microbial Carotenoids from Bacteria and Microalgae: Methods and Protocols; Barredo, J., Ed.; Humana Press: New York, NY, USA, 2012; pp. 143–158. [Google Scholar]
- Li, Y.; Huang, J.; Sandmann, G.; Chen, F. High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (chlorophyceae). J. Phycol. 2009, 45, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Ki, H.; Kim, E.S.; An, S.M.; Kang, N.S.; Bae, S.S.; Choi, G.; Pan, C.H.; Kim, K.Y.; Patil, J.G.; Cho, K. Enhanced carotenoid production, biodiesel quality, and harvesting efficiency in microalga Graesiella emersonii via heterotrophic cultivation strategy. Algal Res. 2024, 78, 103437. [Google Scholar] [CrossRef]
- Global Market Insights. Canthaxanthin Market Size—By Source (Synthetic, Natural), By Application (Dietary Supplement, Personal Care, Pharmaceuticals, Food & Beverages, Animal Feed {Aquaculture, Livestock, Pets}), Growth Prospects, Regional Outlook & Forecast, 2024–2032. Available online: https://www.gminsights.com/industry-analysis/canthaxanthin-market (accessed on 2 July 2025).
- Farag, M.A.; Gad, M.Z. Omega-9 fatty acids: Potential roles in inflammation and cancer management. J. Genet. Eng. Biotechnol. 2022, 20, 48. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Templeton, D.W.; Quinn, M.; Van Wychen, S.; Hyman, D.; Laurens, L.M. Separation and quantification of microalgal carbohydrates. J. Chromatogr. A 2012, 1270, 225–234. [Google Scholar] [CrossRef]
Species | Strain | Marker Gene | Amplicon Length (bp) | GBAN |
---|---|---|---|---|
M. homosphaera | MHSC24 | SSU | 1619 | PV432769 |
ITS1-5.8S-ITS2 | 739 | PV432770 | ||
LSU | 827 | PV432771 | ||
rbcL | 376 | PV430742 | ||
tufA | 873 | PV430743 |
Characteristics | MHSC24 | CCAP 211/8e | ND |
---|---|---|---|
Strain locality | Korea | Sweden | Israel |
Habitat | Brackish water | Freshwater | Freshwater |
Cell shape | Spherical to ovoid (young & mature) | Spherical to ellipsoidal | Spherical to ovoid (mature) |
Young cell size (μm) | 1.43–2.67 (2.10 ± 0.08, spherical) 1.25–2.75(1.93 ± 0.08) × 1.00–2.38(1.61 ± 0.07, ovoid) | ND | 1.0–2.5 (spherical) 1.0–2.5 × 1.5–3.0 (ovoid) |
Mature cell size (μm) | 2.78–4.02 (3.46 ± 0.07, spherical) 2.63–3.88 (3.04 ± 0.07) × 2.38–3.63 (2.76 ± 0.07, ovoid) | 1.5–5.7 (spherical) | 1.5–4.5 (spherical) 1.5–3.5 × 2.0–4.5 (ovoid) |
Chloroplast | Parietal, cup-shaped; no pyrenoid | Parietal, cup-shaped; no pyrenoid | Parietal, cup or mantel shaped; no pyrenoid |
Nucleus | Single, lateral | Single, near-central * | Single, lateral |
Reproduction | Autosporic, 2–4 (rarely 6) autospores | Autosporic, 2–4 (occasionally 8–16) autospores | Autosporic, 2–8 (<16) autospores |
Cell wall | Double-layered; irregular ribs/undulations | Double-layered; irregular network of ribs | Double-layered; irregular network of ribs |
Plastoglobules | Present in chloroplast | ND | Present in chloroplast |
Lipid globules | Present in cytoplasm | ND | Present in cytoplasm |
References | This study | [13] | [24] |
Marker Gene | Collection Location | Strain Habitat (Isolation Source) | Strain Name | GenBank Accession No. | M. homosphaera MHSC24 * |
---|---|---|---|---|---|
SSU | Czech Republic | Freshwater | CCALA 380 | GU799582 | 0 (0) |
Sweden | Freshwater | CAUP H6501 | GU799581 | 0 (0) | |
Israel | Freshwater | ND | AB025423 | 0 (0) | |
Germany | Freshwater | CCAP 205/1 | GQ477054 | 1 (0.1) | |
ITS1-5.8S-ITS2 | Japan | Freshwater | NIES-4546 | LC853079 | 0 (0) |
Japan | Freshwater | NIES-2341 | LC853071 | 2 (0.3) | |
Germany | Freshwater | CCAP 205/1 | GQ477054 | 7 (0.9) | |
Czech Republic | Freshwater | CCALA 380 | GU799582 | 12 (1.6) | |
Sweden | Freshwater | CAUP H6501 | GU799581 | 22 (2.9) | |
LSU | ND | ND | CAUP H6502 | KC145446 | 2 (0.3) |
rbcL | ND | ND | CAUP H6502 | KC145515 | 0 (0) |
Japan | Freshwater | NIES-2341 | LC853338 | 0 (0) | |
Japan | Freshwater | NIES-4546 | LC853346 | 0 (0) | |
South Africa | Dump soils | GA11 | MW363988 | 0 (0) | |
South Africa | Dump soils | GA13 | MW363990 | 1 (0.3) | |
tufA | ND | ND | CAUP H6502 | KC145523 | 3 (0.3) |
South Africa | Dump soils | GA13 | MW363978 | 5 (0.6) |
Pigments | Retention Time | Peak Area | Amount (mg g−1 DW) * |
---|---|---|---|
Peridinin | 16.602 | 1.06 | 0.27 ± 0.002 |
Neoxanthin | 23.337 | 11.68 | 0.48 ± 0.093 |
Violaxanthin | 24.529 | 19.18 | 0.61 ± 0.065 |
Antheraxanthin | 28.148 | 4.03 | 0.13 ± 0.058 |
Zeaxanthin | 30.118 | 52.79 | 0.95 ± 0.210 |
Lutein | 30.315 | 224.47 | 3.64 ± 0.834 |
Canthaxanthin | 31.272 | 219.32 | 5.59 ± 0.359 |
Chlorophyll b | 36.279 | 64.39 | 2.50 ± 0.483 |
Echinenone | 37.896 | 22.53 | 0.50 ± 0.033 |
Chlorophyll a | 39.039 | 96.52 | 11.42 ± 2.663 |
Pheophytin a | 41.719 | 1.17 | 1.33 ± 0.207 |
β-carotene | 42.422 | 31.33 | 0.49 ± 0.094 |
Component | Content (mg g−1 DW) | Content (%) | Note |
---|---|---|---|
Palmitic acid (C16:0) | 11.95 ± 0.36 | 39.72 ± 0.6 | SFA (major) |
Stearic acid (C18:0) | 0.65 ± 0.02 | 2.17 ± 0.03 | |
Oleic acid (C18:1 n-9) | 5.2 ± 0.16 | 17.28 ± 0.26 | ω-9 MUFA (major) |
Linoleic acid (C18:2 n-6) | 1.89 ± 0.06 | 6.28 ± 0.09 | ω-6 PUFA (major) |
α-linolenic acid (C18:3 n-3) | 4.7 ± 0.14 | 15.61 ± 0.23 | ω-3 PUFA (major) |
Eicosapentaenoic acid (C20:5 n-3) | 0.27 ± 0.01 | 0.88 ± 0.01 | |
Lignoceric acid (C24:0) | 3.33 ± 0.1 | 11.07 ± 0.17 | |
Nervonic acid (C24:1) | 2.1 ± 0.06 | 6.98 ± 0.11 | |
Total saturated fatty acids | 15.93 | 52.96 | |
Total monounsaturated fatty acids | 7.3 | 24.26 | |
Total polyunsaturated fatty acids | 6.8 | 22.77 |
Species | Strain | Monosaccharides (mg g−1 DW) | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Arabinose | Fructose | Galactose | Glucose | Lactose | Mannitol | Sorbitol | Sucrose | |||
Mychonastes homosphaera | MHSC24 | - | 0.617 ± 0.031 | 2.068 ± 0.103 | 0.749 ± 0.037 | - | 0.457 ± 0.023 | - | 0.990 ± 0.05 | This study |
Chlorella salina | MM0063 | 27.8 | 19.0 | 75.1 | 124.1 | - | 3.5 | 5.6 | - | [47] |
Dunaliella salina | DSTA20 | - | 13.2 | 15.7 | 195.5 | - | - | - | 7.13 | [36] |
D. tertiolecta | CS-175 | 0.65 | - | 1.1 | 85.3 | - | - | - | - | [48] |
Picochlorum atomus | CS-183 | 0.16 | - | 10.6 | 55.2 | - | - | - | - | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, C.R.; Lee, S.; Kim, G.Y.; Do, J.-M.; Hong, J.W.; Noh, H.-S.; Kim, H.J.; Kang, N.S. Mychonastes homosphaera MHSC24 Isolated from Brackish Waters of Korea: Taxonomic, Physiological, and Biochemical Characterization. Microorganisms 2025, 13, 2322. https://doi.org/10.3390/microorganisms13102322
Jo CR, Lee S, Kim GY, Do J-M, Hong JW, Noh H-S, Kim HJ, Kang NS. Mychonastes homosphaera MHSC24 Isolated from Brackish Waters of Korea: Taxonomic, Physiological, and Biochemical Characterization. Microorganisms. 2025; 13(10):2322. https://doi.org/10.3390/microorganisms13102322
Chicago/Turabian StyleJo, Chang Rak, Sangbum Lee, Ga Young Kim, Jeong-Mi Do, Ji Won Hong, Hae-Seo Noh, Hyung June Kim, and Nam Seon Kang. 2025. "Mychonastes homosphaera MHSC24 Isolated from Brackish Waters of Korea: Taxonomic, Physiological, and Biochemical Characterization" Microorganisms 13, no. 10: 2322. https://doi.org/10.3390/microorganisms13102322
APA StyleJo, C. R., Lee, S., Kim, G. Y., Do, J.-M., Hong, J. W., Noh, H.-S., Kim, H. J., & Kang, N. S. (2025). Mychonastes homosphaera MHSC24 Isolated from Brackish Waters of Korea: Taxonomic, Physiological, and Biochemical Characterization. Microorganisms, 13(10), 2322. https://doi.org/10.3390/microorganisms13102322