Impact of Refrigerated Storage on Microbial Growth, Color Stability, and pH of Turkey Thigh Muscles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microbiological Analyses
2.3. Total Pigments Determination
2.4. Color Determination
2.5. Colour Sensory Assessment
2.6. pH Determination
2.7. Statistical Analysis
3. Results
3.1. Microbiological Results
3.2. Heme Pigments
3.3. Color Stability and pH
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Baidhani, A.M.; Al-Qutaifi, H.K. Nutritional and industrial value of turkey meat “Meleagris Gallopavo”: Review. J. Agric. Sci. 2021, 11, 114–125. [Google Scholar]
- Pfeiffer, M.M.; VanOverbeke, D.L.; Mitacek, R.M.; Mafi, G.G.; Ramanathan, R. Effects of Temperature Abuse on Shelf Life and Color Stability on Beef Products. Meat Muscle Biol. 2018, 1, 41. [Google Scholar] [CrossRef]
- Ngapo, T.M. Consumer preferences for pork chops in five Canadian provinces. Meat Sci. 2017, 129, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Ngapo, T.M.; Lozano, M.R.; Varela, D.B. Mexican consumers at the point of meat purchase. Pork choice. Meat Sci. 2018, 135, 27–35. [Google Scholar] [CrossRef]
- Bekhit, A.E.; Faustman, C. Metmyoglobin reducing activity. Meat Sci. 2005, 71, 407–439. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M.; Clarke, F.M.; Purslow, P.P.; Warner, R.D. Meat color is determined not only by chromatic heme pigments but also by the physical structure and achromatic light scattering properties of the muscle. Compr. Rev. Food Sci. Food Saf. 2020, 19, 44–63. [Google Scholar] [CrossRef] [PubMed]
- Faustman, C.; Suman, S.P.; Ramanathan, R. The eating quality of meat: I Color. In Lawrie’s Meat Science; Woodhead Publishing: Sawston, UK, 2023; pp. 363–392. [Google Scholar]
- Nair, M.N.; Costa-Lima, B.R.; Schilling, M.W.; Suman, S.P. Proteomics of color in fresh muscle foods. In Proteomics in Food Science; Academic Press: Cambridge, MA, USA, 2017; pp. 163–175. [Google Scholar]
- Suman, S.P.; Nair, M.N. Current developments in fundamental and applied aspects of meat color. In New Aspects of Meat Quality; Woodhead Publishing: Sawston, UK, 2017; pp. 111–127. [Google Scholar]
- Gorbunova, E.V.; Chertov, A.N.; Petukhova, D.B.; Alekhin, A.A.; Korotaev, V.V. Research of principles for estimating the freshness of meat products by color analysis method. In Proceedings of the Photonic Instrumentation Engineering II, San Francisco, CA, USA, 7–12 February 2015; Volume 9369, pp. 180–186. [Google Scholar]
- Ramanathan, R.; Piao, D.; Krishnan, S.; Mafi, G.G. 75 Novel Approaches to Characterize Beef Color Changes. J. Anim. Sci. 2022, 100 (Suppl. S2), 203. [Google Scholar] [CrossRef]
- Tushar, Z.H.; Rahman, M.M.; Hashem, M.A. Metmyoglobin reducing activity and meat color: A review. Meat Res. 2023, 3, 67. [Google Scholar] [CrossRef]
- Maestro, D.; Šegalo, S.; Pašalić, A.; Maestro, N.; Čaušević, A. Food safety—From pioneering steps to the modern scientific discipline. J. Health Sci. 2022, 12, 178–183. [Google Scholar] [CrossRef]
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32004R0853&qid=1716997170771 (accessed on 23 May 2024).
- Regulation (EC), No. 2073/2005 of the Commission Regulation of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02005R2073-20140601 (accessed on 23 May 2024).
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [Google Scholar] [CrossRef] [PubMed]
- Siroli, L.; Baldi, G.; Soglia, F.; Bukvicki, D.; Patrignani, F.; Petracci, M.; Lanciotti, R. Use of essential oils to increase the safety and the quality of marinated pork loin. Foods 2020, 9, 987. [Google Scholar] [CrossRef] [PubMed]
- Fregonesi, R.P.; Portes, R.D.G.; Aguiar, A.M.D.M.; Figueira, L.C.; Gonçalves, C.B.; Arthur, V.; Lima, C.G.D.; Fernandes, A.M.; Trindade, M.A. Irradiated vacuum-packed lamb meat stored under refrigeration: Microbiology, physicochemical stability and sensory acceptance. Meat Sci. 2014, 97, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Wang, Y.; Zhang, X.; Zhou, L.; Zhu, Y. Effects of active modified atmosphere on lipid and protein oxidation, moisture migration and quality properties of beef steaks. Packag. Technol. Sci. 2023, 36, 111–123. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Kondratowicz, J.; Koba-Kowalczyk, M. Changes in the quality of meat from roe deer (Capreolus capreolus L.) bucks during cold storage under vacuum and modified atmosphere. Pol. J. Vet. Sci. 2011, 14, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Kaewthong, P.; Pomponio, L.; Carrascal, J.R.; Knøchel, S.; Wattanachant, S.; Karlsson, A.H. Changes in the quality of chicken breast meat due to superchilling and temperature fluctuations during storage. J. Poult. Sci. 2019, 56, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Balamatsia, C.C.; Paleologos, E.K.; Kontominas, M.G.; Savvaidis, I.N. Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 C: Possible role of biogenic amines as spoilage indicators. Antonie Leeuwenhoek 2006, 89, 9–17. [Google Scholar] [CrossRef]
- Buňková, L.; Buňka, F.; Klčovská, P.; Mrkvička, V.; Doležalová, M.; Kráčmar, S. Formation of biogenic amines by Gram-negative bacteria isolated from poultry skin. Food Chem. 2010, 121, 203–206. [Google Scholar] [CrossRef]
- Saleh, E.; Morshdy, A.E.; El-Manakhly, E.; Al-Rashed, S.F.; Hetta, H.; Jeandet, P.; Ali, E. Effects of olive leaf extracts as natural preservative on retailed poultry meat quality. Foods 2020, 9, 1017. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Hayat, M.; Kaka, U.; Kamarulzaman, N.; Sazili, A. Physico-Chemical Characteristics and Microbiological Quality of Broiler Chicken Pectoralis Major Muscle Subjected to Different Storage Temperature and Duration. Foods 2020, 9, 741. [Google Scholar] [CrossRef] [PubMed]
- Tsafrakidou, P.; Sameli, N.; Kakouri, A.; Bosnea, L.; Samelis, J. Assessment of the Spoilage Microbiota and the Growth Potential of Listeria monocytogenes in Minced Free-Range Chicken Meat Stored at 4 °C in Vacuum: Comparison with the Spoilage Community of Resultant Retail Modified Atmosphere Packaged Products. Appl. Microbiol. 2023, 3, 1277–1301. [Google Scholar] [CrossRef]
- Ghollasi-Mood, F.; Mohsenzadeh, M.; Hoseindokht, M.R.; Varidi, M. Quality changesin air-packaged chicken meat stored under different temperature conditions and mathematical modeling for predicting the microbial growth and shelf life. J. Food Saf. 2016, 37, 3. [Google Scholar] [CrossRef]
- Iospavic, R.J.; Kreyenschmidt, J.; Bruckner, S.; Popov, V.; Haque, N. Mathematical modelling for predicting the growth of Pseudomonas spp. in poultry under variable temperature conditions. Int. J. Food Microbiol. 2018, 127, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Dawson, P.; Richardson, J. Storage Temperature Effects on the Quality of Chicken Breast and Beef Sirloin. Eur. J. Agric. Food Sci. 2023, 5, 2. [Google Scholar] [CrossRef]
- Werner, C.; Janisch, S.; Kuembet, U.; Wicke, M. Comparative study of the quality of broiler and turkey meat. Br. Poult. Sci. 2009, 50, 318–324. [Google Scholar] [CrossRef] [PubMed]
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms. Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria. International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 21528-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 1: Detection and Enumeration by MPN Technique with Pre-Enrichment. International Organization for Standardization: Geneva, Switzerland, 2017.
- Warriss, P.D. The extraction of heam pigments from fresh meat. J. Food Technol. 1979, 14, 75. [Google Scholar] [CrossRef]
- Pikul, J. Technological Assessment of Raw Materials and Products of the Poultry Industry; Agricultural University in Poznań: Poznan, Poland, 1993. (In Polish) [Google Scholar]
- Krzywicki, K. The determination of heam pigments in meat. Meat Sci. 1982, 7, 29–36. [Google Scholar] [CrossRef] [PubMed]
- CIE. Colorimetry Commission Internationale de l’Èclairage, 2nd ed.; CIE: Vienna, Austria, 1986; pp. 19–58. [Google Scholar]
- ISO 8589:1988; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organisation for Standardization: Geneva, Switzerland, 1988.
- Stone, H.; Sidel, J.; Oliver, S.; Woolsey, A.; Singleton, R. Sensory evaluation by descriptive analysis. Food Technol. 1974, 11, 23–34. [Google Scholar]
- Stone, H.; Sidel, J.; Bloomquist, M. Quantitative Descriptive Analysis. Descr. Sens. Anal. Pract. 1980, 10, 24–26. [Google Scholar]
- PN-ISO 4121:1998; Sensory Analysis. Methodology. Polish Committee for Standardization: Warsaw, Poland, 1998.
- PN-ISO 11035:1999; Sensory Analysis. Identification and Selection of Descriptors to Establish a Sensory Profile Using Multidimensional Methods. Polish Committee for Standardization: Warsaw, Poland, 1999.
- PN-ISO 2917:2001; Meat and Meat Products. pH Measurement. Polish Committee for Standardization: Warsaw, Poland, 2001.
- Statsoft Inc. Statistica (Data Analysis Software System), version 13.1; Statsoft Inc.: Tulsa, OK, USA, 2013. [Google Scholar]
- Petruzzelli, A.; Osimani, A.; Pasquini, M.; Clementi, F.; Vetrano, V.; Paolini, F.; Foglini, M.; Micci, E.; Paoloni, A.; Tonucci, F. Trends in the microbial contamination of bovine, ovine and swine carcasses in three small-scale abattoirs in central Italy: A four-year monitoring. Meat Sci. 2016, 11, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Luong, N.D.M.; Coroller, L.; Zagorec, M.; Membré, J.M.; Guillou, S. Spoilage of chilled fresh meat products during storage: A quantitative analysis of literature data. Microorganism 2020, 8, 1198. [Google Scholar] [CrossRef] [PubMed]
- Dušková, M.; Kameník, J.; Šedo, O.; Zdráhal, Z.; Saláková, A.; Karpíšková, R.; Lačanin, I. Survival and Growth of Lactic Acid Bacteria in Hot Smoked Dry Sausages (Non-Fermented Salami) with and without Sensory Deviations. Food Control 2015, 50, 804–808. [Google Scholar] [CrossRef]
- Shao, L.; Chen, S.; Wang, H.; Zhang, J.; Xu, X.; Wang, H. Advances in understanding the predominance, phenotypes, and mechanisms of bacteria related to meat spoilage. Trends Food Sci. Technol. 2021, 118, 822–832. [Google Scholar] [CrossRef]
- Barcenilla, C.; Ducic, M.; López, M.; Prieto, M.; Álvarez-Ordóñez, A. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci. 2022, 183, 108661. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC). No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Official Journal of the European Union L 338/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R2073 (accessed on 23 May 2024).
- Shapton, D.; Shapton, N. Principles and Practices of the Safe Processing of Foods; Butterworth-Heinemann: London, UK, 1993. [Google Scholar]
- Wiklund, E. Microbiological shelf life of fresh, chilled reindeer meat (M. longissimus dorsi). Rangifer 2011, 31, 85–90. [Google Scholar] [CrossRef]
- Denzer, M.L.; Kiyimba, F.; Mafi, G.G.; Ramanathan, R. Metabolomics of Meat Color: Practical Implications. Curr. Proteom. 2022, 19, 299–307. [Google Scholar]
- Comi, G. Spoilage of meat and fish. In The Microbiological Quality of Food; Woodhead Publishing: Sawston, UK, 2017; pp. 179–210. [Google Scholar]
- More, K.D.; Waghamare, R.N.; Deshmukh, V.V.; Londhe, S.V.; Khose, K.K. Use of Ultraviolet Light for Surface Decontamination of Raw Chicken Carcasses. J. Exp. Agric. Int. 2022, 44, 226–239. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, G.; Staincliffe, M.; McEwan, J.C.; Farouk, M.M. Effects of Metabolites, Sex, Sire, and Muscle Type on Chilled Lamb Meat Colour. Foods 2023, 12, 4031. [Google Scholar] [CrossRef]
- Mritunjay, S.K.; Kumar, V. A study on prevalence of microbial contamination on the surface of raw salad vegetables. 3 Biotech 2017, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Zaujan, N.A.M.; Othman, M.Z.; Lutfi, F.N.M.; Rahim, K.; Kamarudin, H.M.N.; Rehan, M.M. Identification and characterization of pigmented bacteria isolated from Malaysian seawater. Int. J. Stud. Res. Technol. Manag. 2019, 7, 1–8. [Google Scholar]
- Qureshi, M.A.A.; Sankaran, S.; Subbaiah, S. Effect of Certain Compounds on the Pigmentation Characteristics of Some Bacterial Isolates. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 2464–2483. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, J.; Zhou, H.; Lu, A.; Xu, B. A comprehensive insight into the effects of microbial spoilage, myoglobin autoxidation, lipid oxidation, and protein oxidation on the discoloration of rabbit meat during retail display. Meat Sci. 2021, 172, 108359. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, J.A.; Roncalés, P.; Bellés, M. Biochemical reactions during fresh meat storage. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 224–232. [Google Scholar]
- Feidt, C.; Brun-Bellut, J.; Dransfield, E. Liberation of peptides during meat storage and their interaction with proteinase activity. Meat Sci. 1998, 49, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Lametsch, R.; Roepstorff, P.; Bendixen, E. Identification of protein degradation during post-mortem storage of pig meat. J. Agric. Food Chem. 2002, 50, 5508–5512. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cheng, F.; Wang, Y.; Han, J.; Gao, F.; Tian, J.; Zhang, K.; Jin, Y. The changes occurring in proteins during processing and storage of fermented meat products and their regulation by lactic acid bacteria. Foods 2022, 11, 2427. [Google Scholar] [CrossRef] [PubMed]
- Min, J.S.; Lee, S.O.; Jang, A.; Jo, C.; Park, C.S.; Lee, M. Relationship between the concentration of biogenic amines and volatile basic nitrogen in fresh beef, pork, and chicken meat. Asian-Australas. J. Anim. Sci. 2007, 20, 1278–1284. [Google Scholar] [CrossRef]
- Wang, Y.; Han, J.; Wang, D.; Gao, F.; Zhang, K.; Tian, J.; Jin, Y. Research update on the impact of lactic acid bacteria on the substance metabolism, flavor, and quality characteristics of fermented meat products. Foods 2022, 11, 2090. [Google Scholar] [CrossRef]
- Block, E.; Batista, V.S.; Matsunami, H.; Zhuang, H.; Ahmed, L. The role of metals in mammalian olfaction of low molecular weight organosulfur compounds. Nat. Prod. Rep. 2017, 34, 529–557. [Google Scholar] [CrossRef] [PubMed]
- Moro, D.D. Bacteriological investigation of meat sold in Ojo, Lagos, Nigeria. World J. Adv. Res. Rev. 2021, 10, 136–142. [Google Scholar] [CrossRef]
- Gálvez, A.; Grande Burgos, M.J.; Lucas López, R.; Pérez Pulido, R.; Gálvez, A.; López, R.L.; Burgos, M.J.G. Biopreservation of Meats and Meat Products. In Food Biopreservation; Springer: Berlin/Heidelberg, Germany, 2014; pp. 23–47. [Google Scholar]
- Kapetanakou, A.E.; Agathaggelou, E.I.; Skandamis, P.N. Storage of pork meat under modified atmospheres containing vapors from commercial alcoholic beverages. Int. J. Food Microbiol. 2014, 178, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Hoa, V.B.; Cho, S.H.; Seong, P.N.; Kang, S.M.; Kim, Y.S.; Moon, S.S.; Seol, K.H. The significant influences of pH, temperature and fatty acids on meat myoglobin oxidation: A model study. J. Food Sci. Technol. 2021, 58, 3972–3980. [Google Scholar] [CrossRef] [PubMed]
- Ragucci, S.; Acconcia, C.; Russo, R.; Landi, N.; Valletta, M.; Clemente, A.; Di Maro, A. Ca2+ as activator of pseudoperoxidase activity of pigeon, Eurasian woodcock and chicken myoglobins: New features for meat preservation studies. Food Chem. 2021, 363, 130234. [Google Scholar] [CrossRef] [PubMed]
- Daszkiewicz, T.; Wajda, S.; Kubiak, D.; Krasowska, J. Quality of meat from young bulls in relation to its ultimate pH value. Anim. Sci. Pap. Rep. 2009, 27, 293–302. [Google Scholar]
- Van Laack, R.L.J.M.; Kauffman, R.G.; Greaser, M.L. Determinants of ultimate pH of meat and poultry. In Proceedings of the 53rd Annual Reciprocal Meat Conference, Columbus, OH, USA, 8–21 June 2000; American Meat Science Association: Savoy, IL, USA, 2001; pp. 74–75. [Google Scholar]
- Jankowiak, H.; Cebulska, A.; Bocian, M. The relationship between acidification (pH) and meat quality traits of polish white breed pigs. Eur. Food Res. Technol. 2021, 247, 2813–2820. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Jacobs, J.L.; Knight, M.I.; Plozza, T.E.; Butler, K.L. Understanding the action of muscle iron concentration on dark cutting: An important aspect affecting consumer confidence of purchasing meat. Meat Sci. 2020, 167, 108156. [Google Scholar] [CrossRef] [PubMed]
- Purslow, P.P.; Warner, R.D.; Clarke, F.M.; Hughes, J.M. Variations in meat colour due to factors other than myoglobin chemistry; a synthesis of recent findings (invited review). Meat Sci. 2020, 159, 107941. [Google Scholar] [CrossRef]
Points | Color |
---|---|
6 | Ideal, typical (intense pink-red) |
5 | Typical (pink-red, even) |
4 | Typical but less intense (pink and red) |
3 | Slightly changed (noticeably changed in places—lighter or darker pink and red) |
2 | Strongly changed (light, creamy or very dark—brown) |
1 | Completely changed, putrid (gray, brown, blue) |
Storage Time | |||||||
---|---|---|---|---|---|---|---|
Bacteria Type (CFU/g) | 0* Day | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days |
Total mesophilic aerobes | 1.20 × 103 a | 1.41 × 103 a | 2.34 × 103 a | 2.35 × 104 b | 3.5 × 105 c | 1.50 × 106 d | 1.82 × 107 e |
Presumptive lactic acid bacteria | 1.01 × 102 a | 1.47 × 102 a | 2.57 × 102 a | 8.94 × 102 a | 1.10 × 103 b | 1.60 × 103 b | 1.00 × 104 c |
Enterobacteriaceae | 4.36 × 10 a | 7.00 × 10 a | 8.08 × 10 a | 2.65 × 102 b | 1.08 × 103 c | 2.08 × 104 d | 1.87 × 105 e |
Storage Time | TP | Mb | MbO2 | MMb | |||
---|---|---|---|---|---|---|---|
C | RC | C | RC | C | RC | C | |
0* | 2.45 a ± 0.27 | 0.31 a ± 0.01 | 0.76 a ± 0.09 | 0.42 a ± 0.05 | 1.05 ± 0.17 | 0.26 a ± 0.05 | 0.63 a ± 0.11 |
1 day | 2.44 a ± 0.27 | 0.32 a ± 0.01 | 0.78 a ± 0.11 | 0.44 a ± 0.02 | 1.06 ± 0.13 | 0.25 a ± 0.03 | 0.60 a ± 0.08 |
2 days | 2.36 a ± 0.20 | 0.32 a ± 0.02 | 0.76 a ± 0.08 | 0.41 a ± 0.03 | 0.97 ± 0.11 | 0.26 a ± 0.02 | 0.64 a ± 0.07 |
3 days | 1.85 b ± 0.11 | 0.32 a ± 0.01 | 0.60 b ± 0.03 | 0.42 a ± 0.02 | 0.78 ± 0.07 | 0.26 a ± 0.02 | 0.48 b ± 0.04 |
4 days | 1.59 c ± 0.09 | 0.34 b ± 0.01 | 0.54 b ± 0.03 | 0.37 b ± 0.03 | 0.59 ± 0.06 | 0.29 b ± 0.03 | 0.46 b ± 0.04 |
5 days | 1.31 d ± 0.11 | 0.35 b ± 0.03 | 0.46 c ± 0.06 | 0.35 b ± 0.04 | 0.46 ± 0.06 | 0.29 b ± 0.03 | 0.38 c ± 0.06 |
6 days | 0.74 e ± 0.13 | 0.34 b ± 0.01 | 0.26 d ± 0.03 | 0.35 b ± 0.02 | 0.27 ± 0.04 | 0.31 b ± 0.02 | 0.24 d ± 0.03 |
Variables | Storage Time | ||||||
---|---|---|---|---|---|---|---|
0* Day | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | |
L* | 46.68 a ± 1.30 | 46.54 a ± 1.52 | 46.34 a ± 0.54 | 45.19 b ± 1.12 | 44.02 c ± 1.23 | 43.24 c ± 0.98 | 39.14 d ± 1.52 |
a* | 17.20 a ± 0.95 | 17.16 a ± 0.36 | 17.04 a ± 0.38 | 16.23 b ± 0.68 | 16.18 b ± 0.46 | 14.22 c ± 0.52 | 11.63 d ± 0.37 |
b* | 3.04 a ± 0.22 | 3.08 a ± 0.52 | 3.38 a ± 0.52 | 3.44 b ± 0.39 | 5.03 c ± 0.28 | 6.11 d ± 0.33 | 7.82 e ± 0.53 |
SE [CU] | 5.47 a ± 0.19 | 5.30 a ± 0.80 | 5.22 a ± 0.22 | 4.70 b ± 0.70 | 3.62 c ± 0.27 | 3.02 d ± 0.21 | 2.10 e ± 0.12 |
pH | 5.94 a ± 0.07 | 5.95 a ± 0.07 | 6.01 b ± 0.05 | 6.08 c ± 0.06 | 6.12 c ± 0.09 | 6.25 d ± 0.10 | 6.43 e ± 0.05 |
TMA | LAB | EB | TP | MbC | MMbC | MbO2C | pH | L* | a* | b* | SE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TMA | 1.00 | 0.92 | 0.93 | −0.70 | −0.74 | −0.58 | −0.68 | 0.76 | −0.85 | −0.88 | 0.80 | −0.73 |
LAB | 0.92 | 1.00 | 0.95 | −0.79 | −0.82 | −0.67 | −0.77 | 0.85 | −0.85 | −0.92 | 0.87 | −0.80 |
EB | 0.93 | 0.95 | 1.00 | −0.66 | −0.68 | −0.54 | −0.65 | 0.73 | −0.81 | −0.85 | 0.79 | −0.69 |
TP | −0.70 | −0.79 | −0.66 | 1.00 | 0.99 | 0.89 | 0.96 | −0.89 | 0.86 | 0.89 | −0.91 | 0.93 |
MbC | −0.74 | −0.82 | −0.68 | 0.99 | 1.00 | 0.88 | 0.95 | −0.89 | 0.87 | 0.91 | −0.92 | 0.92 |
MMbC | −0.58 | −0.67 | −0.54 | 0.89 | 0.88 | 1.00 | 0.75 | −0.78 | 0.76 | 0.79 | −0.78 | 0.82 |
MbO2C | −0.68 | −0.77 | −0.65 | 0.96 | 0.95 | 0.75 | 1.00 | −0.86 | 0.82 | 0.84 | −0.90 | 0.91 |
pH | 0.76 | 0.85 | 0.73 | −0.89 | −0.89 | −0.78 | −0.86 | 1.00 | −0.90 | −0.88 | 0.88 | −0.86 |
L* | −0.85 | −0.85 | −0.81 | 0.86 | 0.87 | 0.76 | 0.82 | −0.90 | 1.00 | 0.96 | −0.90 | 0.92 |
a* | −0.88 | −0.92 | −0.85 | 0.89 | 0.91 | 0.79 | 0.84 | −0.88 | 0.96 | 1.00 | −0.93 | 0.91 |
b* | 0.80 | 0.87 | 0.79 | −0.91 | −0.92 | −0.78 | −0.90 | 0.88 | −0.90 | −0.93 | 1.00 | −0.94 |
SE | −0.73 | −0.80 | −0.69 | 0.93 | 0.92 | 0.82 | 0.91 | −0.86 | 0.92 | 0.91 | −0.94 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orkusz, A.; Rampanti, G.; Michalczuk, M.; Orkusz, M.; Foligni, R. Impact of Refrigerated Storage on Microbial Growth, Color Stability, and pH of Turkey Thigh Muscles. Microorganisms 2024, 12, 1114. https://doi.org/10.3390/microorganisms12061114
Orkusz A, Rampanti G, Michalczuk M, Orkusz M, Foligni R. Impact of Refrigerated Storage on Microbial Growth, Color Stability, and pH of Turkey Thigh Muscles. Microorganisms. 2024; 12(6):1114. https://doi.org/10.3390/microorganisms12061114
Chicago/Turabian StyleOrkusz, Agnieszka, Giorgia Rampanti, Monika Michalczuk, Martyna Orkusz, and Roberta Foligni. 2024. "Impact of Refrigerated Storage on Microbial Growth, Color Stability, and pH of Turkey Thigh Muscles" Microorganisms 12, no. 6: 1114. https://doi.org/10.3390/microorganisms12061114
APA StyleOrkusz, A., Rampanti, G., Michalczuk, M., Orkusz, M., & Foligni, R. (2024). Impact of Refrigerated Storage on Microbial Growth, Color Stability, and pH of Turkey Thigh Muscles. Microorganisms, 12(6), 1114. https://doi.org/10.3390/microorganisms12061114