Biofilm-Forming Bacteria Implicated in Complex Otitis Media in Children in the Post-Heptavalent Pneumococcal Conjugate Vaccine (PCV7) Era
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Specimens and Bacteriological Analyses
2.3. Bacterial Cultures and Laboratory Testing
2.4. Molecular Methods
2.5. In Vitro Biofilm Growth
2.6. Biofilm Dry Mass Metrics
2.7. Planktonic and Biofilm Antimicrobial Susceptibility Testing
2.8. Statistical Analysis
3. Results
3.1. Microbiological Findings
3.2. Biofilm Production
3.3. Antimicrobial Susceptibility Testing and Determination of Minimal Inhibitory Concentration for Bacterial Regrowth
3.4. Allergic Rhinitis in Otitis-Prone Children
3.5. Follow-Up
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schilder, A.G.M.; Chonmaitree, T.; Cripps, A.W.; Rosenfeld, R.M.; Casselbrant, M.L.; Haggard, M.P.; Venekamp, R.P. Otitis media. Nat. Rev. Dis. Prim. 2016, 2, 16063. [Google Scholar] [CrossRef] [PubMed]
- Danishyar, A.; Ashurst, J.V. Acute Otitis Media; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Gok, U.; Bulut, Y.; Keles, E.; Yalcin, S.; Doymaz, M. Bacteriological and PCR analysis of clinical material aspirated from otitis media with effusions. Int. J. Pediatr. Otorhinolaryngol. 2001, 60, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.; Imtiaz-Umer, S.; Fergie, N.; Birchall, J.; Bayston, R. Bacterial involvement in otitis media with effusion. Int. J. Pediatr. Otorhinolaryngol. 2012, 76, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI Guideline M45; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Torretta, S.; Pignataro, L.; Carioli, D.; Ibba, T.; Folino, F.; Rosazza, C.; Fattizzo, M.; Marchisio, P. Phenotype Profiling and Allergy in Otitis-Prone Children. Front. Pediatr. 2018, 6, 383. [Google Scholar] [CrossRef] [PubMed]
- Hoberman, A.; Preciado, D.; Paradise, J.L.; Chi, D.H.; Haralam, M.; Block, S.L.; Kearney, D.H.; Bhatnagar, S.; Pujalt, G.B.M.; Shope, T.R.; et al. Tympanostomy Tubes or Medical Management for Recurrent Acute Otitis Media. N. Engl. J. Med. 2021, 384, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Hoa, M.; Syamal, M.; Schaeffer, M.A.; Sachdeva, L.; Berk, R.; Coticchia, J. Biofilms and chronic otitis media: An initial exploration into the role of biofilms in the pathogenesis of chronic otitis media. Am. J. Otolaryngol. 2010, 31, 241–245. [Google Scholar] [CrossRef]
- Vermee, Q.; Cohen, R.; Hays, C.; Varon, E.; Bonacorsi, S.; Bechet, S.; Thollot, F.; Corrard, F.; Poyart, C.; Levy, C.; et al. Biofilm production by Haemophilus influenzae and Streptococcus pneumoniae isolated from the nasopharynx of children with acute otitis media. BMC Infect. Dis. 2019, 19, 44. [Google Scholar] [CrossRef]
- Buzatto, G.P.; Tamashiro, E.; Proenca-Modena, J.L.; Saturno, T.H.; Prates, M.C.; Gagliardi, T.B.; Carenzi, L.R.; Massuda, E.T.; Hyppolito, M.A.; Valera, F.C.P.; et al. The pathogens profile in children with otitis media with effusion and adenoid hypertrophy. PLoS ONE 2017, 12, e0171049. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.D.; Lima, A.; Marçal, N.; Dias, L.; Gama, M.; Sillankorva, S. Identification of the Bacterial Pathogens in Children with Otitis Media: A Study in the Northwestern Portuguese District of Braga. Microorganisms 2021, 10, 54. [Google Scholar] [CrossRef]
- Hu, Y.-L.; Lee, P.-I.; Hsueh, P.-R.; Lu, C.-Y.; Chang, L.-Y.; Huang, L.-M.; Chang, T.-H.; Chen, J.-M. Predominant role of Haemophilus influenzae in the association of conjunctivitis, acute otitis media and acute bacterial paranasal sinusitis in children. Sci. Rep. 2021, 11, 11. [Google Scholar] [CrossRef]
- Bluestone, C.D.; Stephenson, J.S.; Martin, L.M. Ten-year review of otitis media pathogens. Pediatr. Infect. Dis. J. 1992, 11 (Suppl. S8), S7–S11. [Google Scholar] [CrossRef]
- Giebink, G.S.; Juhn, S.K.; Weber, M.L.; Le, C.T. The bacteriology and cytology of chronic otitis media with effusion. Pediatr. Infect. Dis. J. 1982, 1, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Diamond, C.; Sisson, P.R.; Kearns, A.M.; Ingham, H.R. Bacteriology of chronic otitis media with effusion. J. Laryngol. Otol. 1989, 103, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Kwon, C.; Lee, H.Y.; Kim, M.G.; Boo, S.H.; Yeo, S.G. Allergic diseases in children with otitis media with effusion. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Hall-Stoodley, L.; Hu, F.Z.; Gieseke, A.; Nistico, L.; Nguyen, D.; Hayes, J.; Forbes, M.; Greenberg, D.P.; Dice, B.; Burrows, A.; et al. Direct Detection of Bacterial Biofilms on the Middle-Ear Mucosa of Children with Chronic Otitis Media. JAMA 2006, 296, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Post, J.C.; Hall–Stoodley, L.; Ehrlicha, G.D. Current Opinion in Otolaryngology & Head and Neck Surgery; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004; p. 5. [Google Scholar]
- Sempere, J.; Llamosí, M.; Román, F.; Lago, D.; González-Camacho, F.; Pérez-García, C.; Yuste, J.; Domenech, M. Clearance of mixed biofilms of Streptococcus pneumoniae and methicillin-susceptible/resistant Staphylococcus aureus by antioxidants N-acetyl-l-cysteine and cysteamine. Sci. Rep. 2022, 12, 6668. [Google Scholar] [CrossRef]
- Dagan, R.; Pelton, S.; Bakaletz, L.; Cohen, R. Prevention of early episodes of otitis media by pneumococcal vaccines might reduce progression to complex disease. Lancet Infect. Dis. 2016, 16, 480–492. [Google Scholar] [CrossRef]
- Janoušková, M.; Straw, M.L.; Su, Y.-C.; Riesbeck, K. Gene Expression Regulation in Airway Pathogens: Importance for Otitis Media. Front. Cell. Infect. Microbiol. 2022, 12, 826018. [Google Scholar] [CrossRef]
- Post, J.C.; Preston, R.A.; Aul, J.J.; Larkins-Pettigrew, M.; Rydquist-White, J.; Anderson, K.W.; Wadowsky, R.M.; Reagan, D.R.; Walker, E.S.; Kingsley, L.A.; et al. Molecular analysis of bacterial pathogens in otitis media with effusion. JAMA 1995, 273, 1598–1604. [Google Scholar] [CrossRef]
- Post, J.C. Candidate’s Thesis: Direct Evidence of Bacterial Biofilms in Otitis Media. Laryngoscope 2001, 111, 2083–2094. [Google Scholar] [CrossRef]
- Ehrlich, G.D.; Veeh, R.; Wang, X.; Costerton, J.W.; Hayes, J.D.; Hu, F.Z.; Daigle, B.J.; Ehrlich, M.D.; Post, J.C. Mucosal Biofilm Formation on Middle-Ear Mucosa in the Chinchilla Model of Otitis Media. J. Am. Med. Assoc. 2002, 287, 1710–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slinger, R.; Duval, M.; Langill, J.; Bromwich, M.; MacCormick, J.; Chan, F.; Vaccani, J.-P. Direct molecular detection of a broad range of bacterial and viral organisms and Streptococcus pneumoniae vaccine serotypes in children with otitis media with effusion. BMC Res. Notes 2016, 9, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Shimol, S.; Givon-Lavi, N.; Leibovitz, E.; Raiz, S.; Greenberg, D.; Dagan, R. Near-Elimination of Otitis Media Caused by 13-Valent Pneumococcal Conjugate Vaccine (PCV) Serotypes in Southern Israel Shortly After Sequential Introduction of 7-Valent/13-Valent PCV. Clin. Infect. Dis. 2014, 59, 1724–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, S.; Principi, N. Impacts of the 13-Valent Pneumococcal Conjugate Vaccine in Children. J. Immunol. Res. 2015, 2015, 591580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Htar, M.T.T.; Christopoulou, D.; Schmitt, H.-J. Pneumococcal serotype evolution in Western Europe. BMC Infect. Dis. 2015, 15, 419. [Google Scholar] [CrossRef] [Green Version]
- Dagan, R.; Leibovitz, E.; Greenberg, D.; Bakaletz, L.; Givon-Lavi, N. Mixed Pneumococcal–Nontypeable Haemophilus influenzae Otitis Media Is a Distinct Clinical Entity with Unique Epidemiologic Characteristics and Pneumococcal Serotype Distribution. J. Infect. Dis. 2013, 208, 1152–1160. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, R.M.; Schwartz, S.R.; Pynnonen, M.A.; Tunkel, D.E.; Hussey, H.M.; Fischera, J.S.; Grimes, A.M.; Hackell, K.M.; Harrison, M.F.; Haskell, H.; et al. Clinical practice guideline: Tympanostomy tubes in children. Otolaryngol. Head Neck Surg. 2013, 149 (Suppl. S1), S1–S35. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, N.; Iannuzzi, L.; Gelardi, M. Does the type of rhinitis influence development of otitis media with effusion in children? Curr. Allergy. Asthma Rep. 2014, 14, 472. [Google Scholar] [CrossRef]
- Tzanakaki, G.; Tsopanomichalou, M.; Kesanopoulos, K.; Matzourani, R.; Sioumala, M.; Tabaki, A.; Kremastinou, J. Simultaneous single-tube PCR assay for the detection of Neisseria meningitidis, Haemophilus influenzae type b and Streptococcus pneumoniae. Clin. Microbiol. Infect. 2005, 11, 386–390. [Google Scholar] [CrossRef] [Green Version]
- Xirogianni, A.; Tzanakaki, G.; Karagianni, E.; Markoulatos, P.; Kourea-Kremastinou, J. Development of a single-tube polymerase chain reaction assay for the simultaneous detection of Haemophilus influenzae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus spp. directly in clinical samples. Diagn. Microbiol. Infect. Dis. 2009, 63, 121–126. [Google Scholar] [CrossRef]
- Sioumala, M.; Tzanakaki, G.; Kesanopoulos, K.; Levidotou-Stefanou, S.; Kourea-Kremastinou, J. Simultaneous detection of nine serotypes of Streptococcus pneumoniae using stepdown multiplex PCR. Hell. Microbiol. Acta 2007, 52, 173–179. [Google Scholar]
- Xirogianni, A.; Tsolia, M.; Voyiatzi, A.; Sioumala, M.; Makri, A.; Argyropoulou, A.; Paniara, O.; Markoulatos, P.; Kourea-Kremastinou, J.; Tzanakaki, G. Diagnosis of Upper and Lower Respiratory Tract Bacterial Infections with the Use of Multiplex PCR Assays. Diagnostics 2013, 3, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Bergmans, A.M.C.; Groothedde, J.-W.; Schellekens, J.F.P.; Van Embden, J.D.A.; Ossewaarde, J.M.; Schouls, L.M. Etiology of Cat Scratch Disease: Comparison of Polymerase Chain Reaction Detection of Bartonella (Formerly Rochalimaea) and Afipia felis DNA with Serology and Skin Tests. J. Infect. Dis. 1995, 171, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Neimark, H.; Rumore, P.; Steinman, C.R. Broad range DNA probes for detecting and amplifying eubacterial nucleic acids. FEMS Microbiol. Lett. 1989, 48, 19–24. [Google Scholar] [CrossRef]
- Hendolin, P.H.; Markkanen, A.; Ylikoski, J.; Wahlfors, J.J. Use of multiplex PCR for simultaneous detection of four bacterial species in middle ear effusions. J. Clin. Microbiol. 1997, 35, 2854–2858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aly, B.H.; Hamad, M.S.; Mohey, M.; Amen, S. Polymerase Chain Reaction (PCR) Versus Bacterial Culture in Detection of Organisms in Otitis Media with Effusion (OME) in Children. Indian J. Otolaryngol. Head Neck Surg. 2012, 64, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burmølle, M.; Thomsen, T.R.; Fazli, M.M.; Dige, I.; Christensen, L.; Homøe, P.; Tvede, M.; Nyvad, B.; Tolker-Nielsen, T.; Givskov, M.; et al. Biofilms in chronic infections—A matter of opportunity—Monospecies biofilms in multispecies infections. FEMS Immunol. Med. Microbiol. 2010, 59, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Adlowitz, D.G.; Casey, J.R.; Zeng, M.; Pichichero, M.E. Simultaneous Assay for Four Bacterial Species Including Alloiococcus otitidis Using Multiplex-PCR in Children with Culture Negative Acute Otitis Media. Pediatr. Infect. Dis. J. 2010, 29, 741–745. [Google Scholar] [CrossRef] [Green Version]
- Meechan, P.J.; Wilson, C. Use of Ultraviolet Lights in Biological Safety Cabinets: A Contrarian View. Appl. Biosaf. 2006, 11, 222–227. [Google Scholar] [CrossRef]
- Ioannidis, A.; Papavasileiou, K.; Bersimis, S.; Chatzipanagiotou, S. Distribution of Six Effector Protein Virulence Genes Among Salmonella enterica enterica Serovars Isolated from Children and their Correlation with Biofilm Formation and Antimicrobial Resistance. Mol. Diagn. Ther. 2013, 17, 311–317. [Google Scholar] [CrossRef]
- Papavasileiou, K.; Papavasileiou, E.; Tseleni-Kotsovili, A.; Bersimis, S.; Nicolaou, C.; Ioannidis, A.; Chatzipanagiotou, S. Comparative antimicrobial susceptibility of biofilm versus planktonic forms of Salmonella enterica strains isolated from children with gastroenteritis. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1401–1405. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; CLSI supplement M100S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Eser, O.; Ipci, K.; Alp, S.; Akyol, U.; Unal, O.; Hascelik, G.; Sennaroglu, L.; Gür, D. Efficacy of Nasopharyngeal Culture in Identification of Pathogen in Middle Ear Fluid in Chronic Otitis Media with Effusion. Indian J. Med. Microbiol. 2009, 27, 237–241. [Google Scholar] [CrossRef]
- Xu, Q.; Kaur, R.; Casey, J.R.; Adlowitz, D.G.; Pichichero, M.E.; Zeng, M. Identification of Streptococcus pneumoniae and Haemophilus influenzae in culture-negative middle ear fluids from children with acute otitis media by combination of multiplex PCR and multi-locus sequencing typing. Int. J. Pediatr. Otorhinolaryngol. 2011, 75, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Ngo, C.C.; Massa, H.M.; Thornton, R.B.; Cripps, A.W. Predominant Bacteria Detected from the Middle Ear Fluid of Children Experiencing Otitis Media: A Systematic Review. PLoS ONE 2016, 11, e0150949. [Google Scholar] [CrossRef] [Green Version]
- Nasser, S.C.; Moukarzel, N.; Nehme, A.; Haidar, H.; Kabbara, B.; Haddad, A. Otitis media with effusion in Lebanese children: Prevalence and pathogen susceptibility. J. Laryngol. Otol. 2011, 125, 928–933. [Google Scholar] [CrossRef]
- Bunse, T.; Hildmann, H.; Zan, W.; Opferkuch, W. A bacteriological study of otitis media with effusion. Concurrent coagulase-negative staphylococcal infections in the middle ear. Eur. Arch. Oto-Rhino-Laryngol. 1987, 243, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Stol, K.; Verhaegh, S.J.; Graamans, K.; Engel, J.A.; Sturm, P.D.; Melchers, W.J.; Meis, J.F.; Warris, A.; Hays, J.P.; Hermans, P.W. Microbial profiling does not differentiate between childhood recurrent acute otitis media and chronic otitis media with effusion. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 488–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holder, R.C.; Kirse, D.J.; Evans, A.K.; Peters, T.R.; Poehling, K.A.; Swords, W.E.; Reid, S.D. One third of middle ear effusions from children undergoing tympanostomy tube placement had multiple bacterial pathogens. BMC Pediatr. 2012, 12, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, R.B.; Rigby, P.J.; Wiertsema, S.P.; Filion, P.; Langlands, J.; Coates, H.L.; Vijayasekaran, S.; Keil, A.D.; Richmond, P.C. Multi-species bacterial biofilm and intracellular infection in otitis media. BMC Pediatr. 2011, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Tikhomirova, A.; Kidd, S.P. Haemophilus influenzae and Streptococcus pneumoniae: Living together in a biofilm. Pathog. Dis. 2013, 69, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Weimer, K.E.; Juneau, R.A.; Murrah, K.A.; Pang, B.; Armbruster, C.E.; Richardson, S.H.; Swords, W.E. Divergent mechanisms for passive pneumococcal resistance to beta-lactam antibiotics in the presence of Haemophilus influenzae. J. Infect Dis. 2011, 203, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armbruster, C.E.; Hong, W.; Pang, B.; Weimer, K.E.D.; Juneau, R.A.; Turner, J.; Swords, W.E. Indirect Pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in Polymicrobial Otitis Media Occurs via Interspecies Quorum Signaling. Mbio 2010, 1, e00102-10. [Google Scholar] [CrossRef] [Green Version]
- Perez, A.C.; Pang, B.; King, L.B.; Tan, L.; Murrah, K.A.; Reimche, J.L.; Wren, J.T.; Richardson, S.H.; Ghandi, U.; Swords, W.E. Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo. Pathog. Dis. 2014, 70, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Talathi, S.; Gupta, N.; Sethuram, S.; Khanna, S.; Sitnitskaya, Y. Otitis Media in Fully Vaccinated Preschool Children in the Pneumococcal Conjugate Vaccine Era. Glob. Pediatr. Health 2017, 4, 2333794X17749668. [Google Scholar] [CrossRef]
- Leibovitz, E. Complicated otitis media and its implications. Vaccine 2008, 26 (Suppl. S7), G16–G19. [Google Scholar] [CrossRef]
- Sarasoja, I.; Jokinen, J.; Lahdenkari, M.; Kilpi, T.; Palmu, A.A. Long-term Effect of Pneumococcal Conjugate Vaccines on Tympanostomy Tube Placements. Pediatr. Infect. Dis. J. 2013, 32, 517–520. [Google Scholar] [CrossRef]
- Palmu, A.A.I.; Verho, J.; Jokinen, J.; Karma, P.; Kilpi, T.M. The Seven-Valent Pneumococcal Conjugate Vaccine Reduces Tympanostomy Tube Placement in Children. Pediatr. Infect. Dis. J. 2004, 23, 732–738. [Google Scholar] [CrossRef]
- Giannakopoulos, P.; Chrysovergis, A.M.; Xirogianni, A.; Nikolopoulos, T.P.M.; Radiotis, A.M.; Lebessi, E.M.; Tsakanikos, M.M.; Tzanakaki, G.; Tsolia, M.N.M. Microbiology of Acute Mastoiditis and Complicated or Refractory Acute Otitis Media Among Hospitalized Children in the Postvaccination Era. Pediatr. Infect. Dis. J. 2014, 33, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, T.; Takeuchi, N.; Fukasawa, C.; Hirose, S.; Okui, H.; Sato, H.; Sato, M.; Arimoto, Y.; Nakano, A.; Ishiwada, N. Analysis of Streptococcus pneumoniae and Haemophilus influenzae isolated from middle ear fluid before and after the introduction of government subsidies for pneumococcal and H. influenzae type b vaccines in Japan. J. Infect. Chemother. 2016, 23, 85–89. [Google Scholar] [CrossRef]
- Caspary, H.; Welch, J.C.; Lawson, L.; Darrow, D.; Buescher, S.; Shahab, S.; Derkay, C.S. Impact of Pneumococcal Polysaccharide Vaccine (Prevnar) on Middle Ear Fluid in Children Undergoing Tympanostomy Tube Insertion. Laryngoscope 2004, 114, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shimol, S.; Givon-Lavi, N.; Leibovitz, E.; Raiz, S.; Greenberg, D.; Dagan, R. Impact of Widespread Introduction of Pneumococcal Conjugate Vaccines on Pneumococcal and Nonpneumococcal Otitis Media. Clin. Infect. Dis. 2016, 63, 611–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmu, A.A.; Lahdenkari, M. Early Vaccine-type Pneumococcal Acute Otitis Media Does not Predispose to Subsequent Otitis When Compared With Early Acute Otitis Media Due to Other Bacterial Etiology. Pediatr. Infect. Dis. J. 2017, 37, 592–594. [Google Scholar] [CrossRef] [PubMed]
- Stamboulidis, K.; Chatzaki, D.; Poulakou, G.; Ioannidou, S.; Lebessi, E.; Katsarolis, I.; Sypsa, V.; Tsakanikos, M.; Kafetzis, D.; Tsolia, M.N. The Impact of the Heptavalent Pneumococcal Conjugate Vaccine on the Epidemiology of Acute Otitis Media Complicated by Otorrhea. Pediatr. Infect. Dis. J. 2011, 30, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Lewnard, J.A.; Givon-Lavi, N.; Tähtinen, P.A.; Dagan, R. Pneumococcal Phenotype and Interaction with Nontypeable Haemophilus influenzae as Determinants of Otitis Media Progression. Infect. Immun. 2018, 86, e00727-17. [Google Scholar] [CrossRef] [Green Version]
- Brugger, S.D.; Frey, P.; Aebi, S.; Hinds, J.; Mühlemann, K. Multiple Colonization with S. pneumoniae before and after Introduction of the Seven-Valent Conjugated Pneumococcal Polysaccharide Vaccine. PLoS ONE 2010, 5, e11638. [Google Scholar] [CrossRef] [Green Version]
- Mizrahi, A.; Cohen, R.; Varon, E.; Bonacorsi, S.; Béchet, S.; Poyart, C.; Levy, C.; Raymond, J. Non typable-Haemophilus influenzae biofilm formation and acute otitis media. BMC Infect. Dis. 2014, 14, 400. [Google Scholar] [CrossRef] [Green Version]
- Reimche, J.L.; Kirse, D.J.; Whingham, A.S.; Swords, W.E. Resistance of non-typeable Haemophilus influenzae biofilms is independent of biofilm size. Pathog. Dis. 2017, 75, ftw112. [Google Scholar] [CrossRef] [Green Version]
- Costerton, W.; Veeh, R.; Shirtliff, M.; Pasmore, M.; Post, C.; Ehrlich, G. The application of biofilm science to the study and control of chronic bacterial infections. J. Clin. Investig. 2003, 112, 1466–1477. [Google Scholar] [CrossRef] [Green Version]
- García-Cobos, S.; Moscoso, M.; Pumarola, F.; Arroyo, M.; Lara, N.; Pérez-Vázquez, M.; Aracil, B.; Oteo, J.; García, E.; Campos, J. Frequent carriage of resistance mechanisms to beta-lactams and biofilm formation in Haemophilus influenzae causing treatment failure and recurrent otitis media in young children. J. Antimicrob. Chemother. 2014, 69, 2394–2399. [Google Scholar] [CrossRef]
- Daniel, M. Antibiotics for otitis media with effusion in children. Clin. Otolaryngol. 2013, 38, 56–57. [Google Scholar] [CrossRef]
- Armbruster, C.E.; Swords, W.E. Interspecies bacterial communication as a target for therapy in otitis media. Expert Rev. Anti-infect. Ther. 2010, 8, 1067–1070. [Google Scholar] [CrossRef] [Green Version]
- Boston, M.; McCook, J.; Burke, B.; Derkay, C. Incidence of and Risk Factors for Additional Tympanostomy Tube Insertion in Children. Arch. Otolaryngol. Neck Surg. 2003, 129, 293–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.D.; Sillankorva, S. Otitis media pathogens—A life entrapped in biofilm communities. Crit. Rev. Microbiol. 2019, 45, 595–612. [Google Scholar] [CrossRef] [PubMed]
- Wallace, I.F.; Berkman, N.D.; Lohr, K.N.; Harrison, M.F.; Kimple, A.J.; Steiner, M.J. Surgical Treatments for Otitis Media with Effusion: A Systematic Review. Pediatrics 2014, 133, 296–311. [Google Scholar] [CrossRef] [Green Version]
- Murray, R.; Logvinenko, T.; Roberson, D. Frequency and cause of readmissions following pediatric otolaryngologic surgery. Laryngoscope 2015, 126, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Morris, P.S.; Leach, A.J. Acute and Chronic Otitis Media. Pediatr. Clin. N. Am. 2009, 56, 1383–1399. [Google Scholar] [CrossRef] [PubMed]
- Hurst, D.S. The Role of Allergy in Otitis Media with Effusion. Otolaryngol. Clin. N. Am. 2011, 44, 637–654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, M.; Zhang, J.; Zeng, L.; Wang, Y.; Zheng, Q.Y. Risk Factors for Chronic and Recurrent Otitis Media–A Meta-Analysis. PLoS ONE 2014, 9, e86397. [Google Scholar] [CrossRef] [Green Version]
- Coenye, T.; Nelis, H.J. In vitro and in vivo model systems to study microbial biofilm formation. J. Microbiol. Methods 2010, 83, 89–105. [Google Scholar] [CrossRef]
- Vlastarakos, P.V.; Nikolopoulos, T.P.; Maragoudakis, P.; Tzagaroulakis, A.; Ferekidis, E. Biofilms in ear, nose, and throat infections: How important are they? Laryngoscope 2007, 117, 668–673. [Google Scholar] [CrossRef]
- Vlastarakos, P.V.; Nikolopoulos, T.P.; Korres, S.; Tavoulari, E.; Tzagaroulakis, A.; Ferekidis, E. Grommets in otitis media with effusion: The most frequent operation in children. But is it associated with significant complications? Eur. J. Pediatr. 2007, 166, 385–391. [Google Scholar] [CrossRef] [PubMed]
COME Samples (n = 249) | Culture (+) and PCR (+) | PCR (+) and Culture (−) | Total PCR (+) | PCR (−) and Culture (+) | Culture (+), PCR N/A |
---|---|---|---|---|---|
H. influenzae | 47 (19%) | 39 (15.5%) | 86 (34.5%) | 0 | |
S. pneumoniae | 12 (5%) | 19 (7.5%) | 31 (12.5%) | 0 | |
M. catarrhalis | 12 (5%) | 4 (1.6%) | 16 (6.4%) | N/A | |
S. aureus | 14 (5.5%) | 0 | 14 | 0 | |
Other/Normal flora | N/A | N/A | N/A | N/A | 53 (21%) |
Mixed infections | |||||
H. influenzae and S. pneumoniae | 4 (1.6%) | 5 (2%) | 9 (3.5%) | 0 | |
H. influenzae and S. spp. | 2 (0.8%) | 0 | 2 (0.8%) | 0 | |
H. influenzae and S. aureus | 1 (0.4%) | 0 | 1 (0.4%) | 0 | |
S. pneumoniae and S. spp. | 1 (0.4%) | 0 | 1 (0.4%) | 0 |
RAOM Samples (n = 37) | Culture (+) and PCR (+) | PCR(+) and Culture (−) | Total PCR (+) | PCR (−) and Culture (+) | Culture (+), PCR N/A |
---|---|---|---|---|---|
H. influenzae | 6 (16%) | 9 (24%) | 15 (40.5%) | 0 | |
S. pneumoniae | 2 (5.5%) | 7 (19%) | 9 (24%) | 0 | |
M. catarrhalis | 1 (2.7%) | 2 (5.3%) | 3 (8.1%) | N/A | 1 (2.7%) |
S. aureus | 2 (5.5%) | 0 | 2 (5.5%) | 0 | |
Streptococcus spp. | 2 (5.5%) | 2 (5.5%) | 4 (11%) | 0 | |
Other/Normal flora | N/A | N/A | N/A | N/A | 8 (21.5%) |
Mixed infections | |||||
S. pneumoniae and H. influenzae | 1 (2.7%) | 6 (16%) | 7 (19%) | 0 | |
S. pneumoniae and M. catarrhalis | 0 | 1 (2.7%) | 1 (2.7%) | 0 | |
H. influenzae and S. spp. | 1 (2.7%) | 0 | 1 (2.7%) | 0 |
Pathogen | Total | COME | RAOM | p Value |
---|---|---|---|---|
Median (IQR) | ||||
Haemophilus influenzae | 0.011 (0.008–0.020) | 0.013 (0.008–0.021) | 0.010 (0.005–0.015) | 0.354 * |
Streptococcus pneumoniae | 0.013 (0.002–0.025) | 0.010 (0.002–0.029) | 0.008 ** | |
Staphylococcus aureus | 0.005 (0.003–0.008) | 0.005 (0.003–0.008) | 0.004 (0.001–0.007) | 0.533 * |
M.catarrhalis | 0.005 (0.003–0.020) | 0.005 (0.003–0.018) | 0.019 ** | |
p Value | 0.002 # | 0.244 # | - |
H. influenzae | |||||
Antimicrobial | COME | RAOM | Breakpoints (susceptible) | ||
μg/mL (% S or R) | μg/mL (% S or R) | ||||
Planktonic MIC | Biofilm MICBR | Planktonic MIC | Biofilm MICBR | ||
Ampicillin | ≤1 (100 S) | >4 (70.2 R) | ≤1 (83.3 S) | >4 (100 R) | ≤1 |
Amoxicillin | ≤1 (100 S) | >4 (66.0 R) | ≤1 (83.3 S) | >4 (100 R) | ≤1 |
Amoxicillin/Clavulanic acid | ≤2 (100 S) | ≥8 (61.7 R) | ≤2 (100 S) | ≥8 (83.3 R) | ≤4/2 |
Cefuroxime | <4 (78.7 S) | <4 (66.0 S) | <4 (100 S) | <4 (66.7 S) | ≤4 |
Cefotaxime | <2 (89.4 S) | ≥8 (55.3 R) | ≤2 (100 S) | ≤2 (83.3 S) | ≤2 |
Clarithromycin | <8 (89.4 S) | <8 (68.8 S) | <8 (100 S) | <8 (100 S) | ≤8 |
Ciprofloxacin | ≤1 (95.7 S) | ≤1 (51.1 S) | ≤1 (100 S) | ≤1 (100 S) | ≤1 |
S. pneumoniae | |||||
Antimicrobial | COME | RAOM | Breakpoints (susceptible) | ||
μg/mL (% S or R) | μg/mL (% S or R) | ||||
Planktonic MIC | Biofilm MICBR | Planktonic MIC | Biofilm MICBR | ||
Amoxicillin | ≤2 (100 S) | ≤2 (50 S) | ≤2 (100 S) | ≤2 (50 S) | ≤2 |
Amoxicillin/Clavulanic acid | <2 (100 S) | ≤1 (50 S) | ≤2 (100 S) | ≤2 (50 S) | ≤2/1 |
Cefuroxime | ≤0.5 (83.3 S) | >4 (75 R) | ≤0.5 (100 S) | ≤0.5 (50 R) | ≤0.5 |
Cefotaxime | ≤0.5 (83.3 S) | >4 (75 R) | ≤0.5 (100 S) | ≤0.5 (50 R) | ≤0.5 |
Clarithromycin | ≤0.25 (75 S) | >2 (58.3 R) | ≤0.25 (100 S) | ≤0.25 (50 R) | ≤0.25 |
Levofloxacin | ≤2 (100 S) | ≤2 (83.3 S) | ≤2 (100 S) | ≤2 (100 S) | ≤2 |
M. catarrhalis | |||||
Antimicrobial | COME | RAOM | Breakpoints (susceptible) | ||
μg/mL (% S or R) | μg/mL (% S or R) | ||||
Planktonic MIC | Biofilm MICBR | Planktonic MIC | Biofilm MICBR | ||
Amoxicillin/Clavulanic acid | ≤2 (83.3 S) | ≤2 (66.7 S) | ≤2 (100 S) | ≤2 (100 S) | ≤4/2 |
Clarithromycin | ≤1 (91.7 S) | >4 (91.7 R) | ≤1 (100 S) | ≤1 (100 S) | ≤1 |
Ciprofloxacin | ≤1 (100 S) | ≤1 (91.7 S) | ≤1 (100 S) | ≤1 (100 S) | ≤1 |
S. aureus | |||||
Antimicrobial | COME | RAOM | Breakpoints (susceptible) | ||
μg/mL (% S or R) | μg/mL (% S or R) | ||||
Planktonic MIC | Biofilm MICBR | Planktonic MIC | Biofilm MICBR | ||
Oxacillin | ≥4 (57.1 R) | ≥4 (100 R) | ≥4 (100 R) | ≥4 (100 R) | ≤2 |
Clarithromycin | ≤2 (64.3 S) | ≥8 (100 R) | ≤2 (100 S) | ≥8 (100 R) | ≤2 |
Ciprofloxacin | ≤1 (63.6 S) | ≥4 (100 R) | ≤1 (100 S) | ≥4 (100 R) | ≤1 |
Pathogen | PCR (+) | Follow-Up | Transient OME | Re-Operation |
---|---|---|---|---|
H. influenzae | 86 | 37 | 6 (16%) | 2 (5.5%) |
S. pneumoniae | 31 | 11 | 2 (18%) | 0 |
M. catarrhalis | 16 | 12 | 2 (16.5%) | 1 (8.5%) |
S. aureus | 14 | 10 | 2(20%) | 1 (10%) |
Other/Negative | 133 | 26(19.5%) | 7 (5%) | |
Total | 203 | 38(18.7%) | 11(5.4%) |
Pathogen | PCR (+) | Follow-Up | Transient OME-RAOM | Re-Operation |
---|---|---|---|---|
H. influenzae | 15 | 5 | 3 (60%) | 1 (20%) |
S. pneumoniae | 9 | 2 | 0 | 0 |
M. catarrhalis | 1 | 1 | 0 | 0 |
S. aureus | 2 | 2 | 1 (50%) | 1 (50%) |
Other/Negative | 25 | 12 (48%) | 6 (24%) | |
Total | 35 | 16 (46%) | 8 (22.9%) |
Recurrence | Re-Operation | |
---|---|---|
COME (n = 203) | ||
Myringotomy without VT (n = 74) | 10 (13.5%) | 2 (2.5%) |
Myringotomy with VT (n = 129) | 30 (23%) | 9 (7%) |
RAOM (n = 35) | ||
Myringotomy without VT (n = 9) | 5 (55%) | 2 (22%) |
Myringotomy with VT (n = 26) | 11 (42%) | 6 (23%) |
p Value * | 0.002 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannidis, A.; Chatzipanagiotou, S.; Vassilaki, N.; Giannakopoulos, P.; Hatzaki, D.; Magana, M.; Sachlas, A.; Mpekoulis, G.; Radiotis, A.; Tsakanikos, M.; et al. Biofilm-Forming Bacteria Implicated in Complex Otitis Media in Children in the Post-Heptavalent Pneumococcal Conjugate Vaccine (PCV7) Era. Microorganisms 2023, 11, 545. https://doi.org/10.3390/microorganisms11030545
Ioannidis A, Chatzipanagiotou S, Vassilaki N, Giannakopoulos P, Hatzaki D, Magana M, Sachlas A, Mpekoulis G, Radiotis A, Tsakanikos M, et al. Biofilm-Forming Bacteria Implicated in Complex Otitis Media in Children in the Post-Heptavalent Pneumococcal Conjugate Vaccine (PCV7) Era. Microorganisms. 2023; 11(3):545. https://doi.org/10.3390/microorganisms11030545
Chicago/Turabian StyleIoannidis, Anastasios, Stylianos Chatzipanagiotou, Niki Vassilaki, Polyvios Giannakopoulos, Despina Hatzaki, Maria Magana, Athanasios Sachlas, George Mpekoulis, Alexandros Radiotis, Michail Tsakanikos, and et al. 2023. "Biofilm-Forming Bacteria Implicated in Complex Otitis Media in Children in the Post-Heptavalent Pneumococcal Conjugate Vaccine (PCV7) Era" Microorganisms 11, no. 3: 545. https://doi.org/10.3390/microorganisms11030545
APA StyleIoannidis, A., Chatzipanagiotou, S., Vassilaki, N., Giannakopoulos, P., Hatzaki, D., Magana, M., Sachlas, A., Mpekoulis, G., Radiotis, A., Tsakanikos, M., Tzanakaki, G., Lebessi, E., & Tsolia, M. N. (2023). Biofilm-Forming Bacteria Implicated in Complex Otitis Media in Children in the Post-Heptavalent Pneumococcal Conjugate Vaccine (PCV7) Era. Microorganisms, 11(3), 545. https://doi.org/10.3390/microorganisms11030545