Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi
Abstract
:1. Introduction
2. Typhoid Fever: Epidemiology, Clinical Manifestations, and Diagnosis
3. Emergence of Antimicrobial Resistance and Current Predomination Worldwide
4. Mechanisms of Antimicrobial Resistance in S. Typhi
4.1. Virulence Plasmids and Plasmid-Mediated Antimicrobial Resistance in S. Typhi
4.2. Antimicrobial-Resistance-Associated Genes in S. Typhi
5. Pathogenesis of S. Typhi
6. Pathogenicity and Its Role in S. Typhi Virulence
6.1. Salmonella Pathogenicity Islands (SPIs)
6.2. Vi Antigen
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindberg, A.A. Polyosides (encapsulated bacteria). Comptes Rendus Acad. Sci. III 1999, 322, 925–932. [Google Scholar] [CrossRef]
- Elnekave, E.; Hong, S.L.; Lim, S.; Johnson, T.J.; Perez, A.; Alvarez, J. Comparing serotyping with whole-genome sequencing for subtyping of non-typhoidal Salmonella enterica: A large-scale analysis of 37 serotypes with a public health impact in the USA. Microb. Genom. 2020, 6, e000425. [Google Scholar] [CrossRef] [PubMed]
- Gangathraprabhu, B.; Kannan, S.; Santhanam, G.; Suryadevara, N.; Maruthamuthu, M. A review on the origin of multidrug-resistant Salmonella and perspective of tailored phoP gene towards avirulence. Microb. Pathog. 2020, 147, 104352. [Google Scholar] [CrossRef] [PubMed]
- Crump, J.A. Progress in typhoid fever epidemiology. Clin. Infect. Dis. 2019, 68, S4–S9. [Google Scholar] [CrossRef] [Green Version]
- Luby, S.P.; Faizan, M.K.; Fisher-Hoch, S.P.; Syed, A.; Mintz, E.D.; Bhutta, Z.A.; McCormick, J.B. Risk factors for typhoid fever in an endemic setting, Karachi, Pakistan. Epidemiol. Infect. 1998, 120, 129–138. [Google Scholar] [CrossRef]
- Li, Q. Mechanisms for the invasion and dissemination of Salmonella. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 2655801. [Google Scholar] [CrossRef]
- Gauld, J.S.; Olgemoeller, F.; Heinz, E.; Nkhata, R.; Bilima, S.; Wailan, A.M.; Kennedy, N.; Mallewa, J.; Gordon, M.A.; Read, J.M.; et al. Spatial and genomic data to characterize endemic typhoid transmission. Clin. Infect. Dis. 2022, 74, 1993–2000. [Google Scholar] [CrossRef]
- Gauld, J.S.; Bilima, S.; Diggle, P.J.; Feasey, N.A.; Read, J.M. Rainfall anomalies and typhoid fever in Blantyre, Malawi. Epidemiol. Infect. 2022, 150, E122. [Google Scholar] [CrossRef]
- Nair, S.; Patel, V.; Hickey, T.; Maguire, C.; Greig, D.R.; Lee, W.; Godbole, G.; Grant, K.; Chattaway, M.A. Real-time PCR assay for differentiation of typhoidal and nontyphoidal Salmonella. J. Clin. Microbiol. 2019, 57, e00167-19. [Google Scholar] [CrossRef] [Green Version]
- Mermin, J.H.; Villar, R.; Carpenter, J.; Roberts, L.; Samaridden, A.; Gasanova, L.; Lomakina, S.; Bopp, C.; Hutwagner, L.; Mead, P.; et al. A massive epidemic of multidrug-resistant typhoid fever in Tajikistan associated with consumption of municipal water. J. Infect. Dis. 1999, 179, 1416–1422. [Google Scholar] [CrossRef]
- Karkey, A.; Thompson, C.N.; Tran Vu Thieu, N.; Dongol, S.; Le Thi Phuong, T.; Voong Vinh, P.; Arjyal, A.; Martin, L.B.; Rondini, S.; Farrar, J.J.; et al. Differential epidemiology of Salmonella Typhi and Paratyphi A in Kathmandu, Nepal: A matched case control investigation in a highly endemic enteric fever setting. PLoS Negl. Trop. Dis. 2013, 7, e2391. [Google Scholar] [CrossRef] [PubMed]
- Parry, C.M.; Hien, T.T.; Dougan, G.; White, N.J.; Farrar, J.J. Typhoid fever. N. Engl. J. Med. 2002, 347, 1770–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, B.A.; Schwartz, E. Typhoid and paratyphoid fever in travellers. Lancet Infect. Dis. 2005, 5, 623–628. [Google Scholar] [CrossRef]
- Masuet-Aumatell, C.; Atouguia, J. Typhoid fever infection—Antibiotic resistance and vaccination strategies: A narrative review. Travel Med. Infect. Dis. 2021, 40, 101946–101960. [Google Scholar] [CrossRef] [PubMed]
- Crump, J.A.; Mintz, E.D. Global trends in typhoid and paratyphoid Fever. Clin. Infect. Dis. 2010, 50, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Wain, J.; Hendriksen, R.S.; Mikoleit, M.L.; Keddy, K.H.; Ochiai, R.L. Typhoid fever. Lancet 2015, 385, 1136–1145. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, N.; Nolan, V.G.; Dunn, J.R.; Banerjee, P. Sources of human infection by Salmonella enterica serotype Javiana: A systematic review. PLoS ONE 2019, 14, e0222108. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Liu, L.; Qi, Y.; Sun, Y.; Yang, N.; Xu, G.; Zhou, H.; Li, X. Splenic gene expression profiling in white leghorn layer inoculated with the Salmonella enterica serovar enteritidis. Anim. Genet. 2015, 46, 617–626. [Google Scholar] [CrossRef]
- EFSA; ECDC. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e6971–e7295. [Google Scholar]
- Galgallo, D.A.; Roka, Z.G.; Boru, W.G.; Abill, K.; Ransom, J. Investigation of a Typhoid fever epidemic in Moyale Sub-County, Keny-2015. J. Health Popul. Nutr. 2018, 37, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate outbreaks of foodborne illness in the united states associated with fresh produce from 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, B.; Li, H.; Feng, Y.; Zeng, S.; Zhuo, Z.; Luo, J.; Chen, X.; Li, X. Prevalence, serotype distribution and antimicrobial resistance of non-typhoidal Salmonella in hospitalized patients in Conghua District of Guangzhou, China. Front. Cell Infect. Microbiol. 2022, 12, 805384. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Islam, M.S.; Sajib, M.S.I.; Saha, S.; Uddin, M.J.; Hooda, Y.; Hasan, M.; Amin, M.R.; Hanif, M.; Shahidullah, M.; et al. Epidemiology of typhoid and paratyphoid: Implications for vaccine policy. Clin. Infect. Dis. 2019, 68, S117–S123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhan, M.K.; Bahl, R.; Bhatnagar, S. Typhoid and paratyphoid fever. Lancet 2005, 366, 749–762. [Google Scholar] [CrossRef]
- Lozano-León, A.; García-Omil, C.; Rodríguez-Souto, R.R.; Lamas, A.; Garrido-Maestu, A. An evaluation of the pathogenic potential, and the antimicrobial resistance, of Salmonella strains isolated from mussels. Microorganisms 2022, 10, 126. [Google Scholar] [CrossRef]
- Crump, J.A.; Luby, S.P.; Mintz, E.D. The global burden of typhoid fever. Bull. World Health Organ. 2004, 82, 346–353. [Google Scholar]
- Dougan, G.; Baker, S. Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annu. Rev. Microbiol. 2014, 68, 317–336. [Google Scholar] [CrossRef]
- Bano-Zaidi, M.; Aguyano-Romero, M.; Campos, F.D.; Colome-Ruiz, J.; Gonzalez, M.E.; Piste, I.M.; Magaña, C.P.; Gamboa, M. Typhoid fever outbreak with severe complications in Yucatan, Mexico. Lancet Glob. Health 2018, 6, e1062–e1063. [Google Scholar] [CrossRef] [Green Version]
- IHME. Global Burden of Disease Collaborative Network. GBD 2020 Cause and Risk Summaries: Typhoid Fever—Level 4 Cause. Seattle, United States: Institute for Health Metrics and Evaluation (IHME). 2020. Available online: http://www.healthdata.org/results/gbd_summaries/2019/typhoid-fever-level-4-cause (accessed on 1 July 2022).
- Radhakrishnan, A.; Als, D.; Mintz, E.D.; Crump, J.A.; Stanaway, J.; Breiman, R.F.; Bhutta, Z.A. Introductory article on global burden and epidemiology of typhoid fever. Am. J. Trop. Med. Hyg. 2018, 99, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Bansal, J. A rare case of typhoid fever in the United States associated with travel to Mexico. Cureus 2022, 14, e22316. [Google Scholar] [CrossRef] [PubMed]
- Khanam, F.; Ross, A.G.; Nigel, A.; McMillan, J.; Qadri, F. Toward typhoid fever elimination. Int. J. Infect. Dis. 2022, 119, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, M.K.; Hasan, S.S.; Babar, Z.U.D.; Ahmed, S.I. Extensively drug-resistant typhoid fever in Pakistan. Lancet Infect. Dis. 2019, 19, 242–243. [Google Scholar] [CrossRef] [Green Version]
- Akram, J.; Khan, A.S.; Khan, H.A.; Gilani, S.A.; Akram, S.J.; Ahmad, F.J.; Mehboob, R. Extensively drug-resistant (XDR) typhoid: Evolution, prevention, and its management. BioMed Res. Int. 2020, 2020, 6432580. [Google Scholar] [CrossRef]
- Kaljee, L.M.; Pach, A.; Garrett, D.; Bajracharya, D.; Karki, K.; Khan, I. Social and economic burden associated with typhoid fever in Kathmandu and surrounding areas: A qualitative study. J. Infect. Dis. 2018, 218, S243–S249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, F.; Adu-Sarkodie, Y.; Hünger, F.; Sarpong, N.; Ekuban, S.; Agyekum, A.; Nkrumah, B.; Schwarz, N.G.; Favorov, M.O.; Meyer, C.G.; et al. Typhoid fever among children. Ghana Emerg. Infect. Dis. 2010, 16, 1796–1797. [Google Scholar] [CrossRef]
- Karkey, A.; Arjyal, A.; Anders, K.L.; Boni, M.F.; Dongol, S.; Koirala, S.; My, P.V.; Nga, T.V.; Clements, A.C.; Holt, K.E.; et al. The burden and characteristics of enteric fever at a healthcare facility in a densely populated area of Kathmandu. PLoS ONE 2010, 5, e13988. [Google Scholar] [CrossRef] [Green Version]
- Mogasale, V.; Maskery, B.; Ochiai, R.L.; Lee, J.S.; Mogasale, V.V.; Ramani, E.; Kim, Y.E.; Park, J.K.; Wierzba, T.F. Burden of typhoid fever in low income and middle-income countries: A systematic, literature-based update with risk-factor adjustment. Lancet Glob. Health 2014, 2, e570–e580. [Google Scholar] [CrossRef] [Green Version]
- Dobinson, H.C.; Gibani, M.M.; Jones, C.; Thomaides-Brears, H.B.; Voysey, M.; Darton, T.C.; Waddington, C.S.; Campbell, D.; Milligan, I.; Zhou, L.; et al. Evaluation of the clinical and microbiological response to Salmonella paratyphi a infection in the first paratyphoid human challenge model. Clin. Infect. Dis. 2017, 64, 1066–1073. [Google Scholar] [CrossRef]
- Neil, K.P.; Sodha, S.V.; Lukwago, L.; O-Tipo, S.; Mikoleit, M.; Simington, S.M.; Mukobi, P.; Balinandi, S.; Majalija, S.; Ayers, J.; et al. A large outbreak of typhoid fever associated with a high rate of intestinal perforation in Kasese District, Uganda, 2008–2009. Clin. Infect. Dis. 2012, 54, 1091–1099. [Google Scholar] [CrossRef]
- Nguyen, Q.C.; Everest, P.; Tran, T.K.; House, D.; Murch, S.; Parry, C.; Connerton, P.; Phan, V.B.; To, S.D.; Mastroeni, P.; et al. A clinical, microbiological, and pathological study of intestinal perforation associated with typhoid fever. Clin. Infect. Dis. 2004, 39, 61–67. [Google Scholar]
- Khan, M.I.; Soofi, S.B.; Ochiai, R.L.; Khan, M.J.; Sahito, S.M.; Habib, M.A.; Puri, M.K.; Von Seidlein, L.; Park, J.K.; You, Y.A.; et al. Epidemiology, clinical presentation, and patterns of drug resistance of Salmonella Typhi in Karachi, Pakistan. J. Infect. Dev. Ctries. 2012, 6, 704–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutterloh, E.; Likaka, A.; Sejvar, J.; Manda, R.; Naiene, J.; Monroe, S.S. Multidrug-resistant typhoid fever with neurologic findings on the Malawi-Mozambique border. Clin. Infect. Dis. 2012, 54, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.N.; Blacksell, S.D.; Paris, D.H.; Arjyal, A.; Karkey, A.; Dongol, S.; Giri, A.; Dolecek, C.; Day, N.; Baker, S.; et al. Undifferentiated febrile illness in Kathmandu, Nepal. Am. J. Trop. Med. Hyg. 2015, 92, 875–878. [Google Scholar] [CrossRef]
- Mogasale, V.; Ramani, E.; Mogasale, V.V.; Park, J. What proportion of Salmonella Typhi cases are detected by blood culture? A systematic literature review. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, J.R.; Ryan, E.T. Diagnostics for invasive Salmonella infections: Current challenges and future directions. Vaccine 2015, 33, C8–C15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijedoru, L.; Mallett, S.; Parry, C. Rapid diagnostic tests for typhoid and paratyphoid (Enteric) fever. Cochrane Database Syst. Rev. 2017, 5, 1–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanam, F.; Sheikh, A.; Sayeed, M.A.; Bhuiyan, M.S.; Choudhury, F.K.; Salma, U.; Pervin, S.; Sultana, T.; Ahmed, D.; Goswami, D.; et al. Evaluation of a typhoid/paratyphoid diagnostic assay (TPTest) detecting anti-Salmonella IgA in secretions of peripheral blood lymphocytes in patients in Dhaka, Bangladesh. PLoS Negl Trop. Dis. 2013, 7, e2316. [Google Scholar] [CrossRef]
- Islam, K.; Sayeed, M.A.; Hossen, E.; Khanam, F.; Charles, R.C.; Andrews, J.; Ryan, E.T.; Qadri, F. Comparison of the performance of the TPTest, Tubex, Typhidot and Widal immunodiagnostic assays and blood cultures in detecting patients with typhoid fever in Bangladesh, including using a bayesian latent class modeling approach. PLoS Negl. Trop. Dis. 2016, 10, e0004558. [Google Scholar] [CrossRef] [Green Version]
- Darton, T.C.; Jones, C.; Dongol, S.; Voysey, M.; Blohmke, C.J.; Shrestha, R.; Karkey, A.; Shakya, M.; Arjyal, A.; Waddington, C.S.; et al. Assessment and translation of the antibody-in-lymphocyte supernatant (als) assay to improve the diagnosis of enteric fever in two controlled human infection models and an endemic area of Nepal. Front. Microbiol. 2017, 8, 2031. [Google Scholar] [CrossRef]
- Zhou, L.; Pollard, A.J. A fast and highly sensitive blood culture PCR method for clinical detection of Salmonella enterica serovar Typhi. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakya, M.; Neuzil, K.M.; Pollard, A.J. Prospects of future typhoid and paratyphoid vaccines in endemic countries. J. Infect. Dis. 2021, 224, S770–S774. [Google Scholar] [CrossRef]
- Kuhns, M.; Zautner, A.E.; Rabsch, W.; Zimmermann, O.; Weig, M.; Bader, O.; Groß, U. Rapid discrimination of Salmonella enterica serovar typhi from other serovars by MALDI-TOF mass spectrometry. PLoS ONE 2012, 7, e40004. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Juarez, S.; Nga, T.V.; Dunstan, S.; Nakajima-Sasaki, R.; Davies, D.H.; McSorley, S.; Baker, S.; Felgner, P.L. Immune profiling with a Salmonella Typhi antigen microarray identifies new diagnostic biomarkers of human typhoid. Sci. Rep. 2013, 3, 1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Näsström, E.; Thieu, N.T.V.; Dongol, S.; Karkey, A.; Vinh, P.V.; Thanh, T.H.; Johansson, A.; Arjyal, A.; Thwaites, G.; Dolecek, C.; et al. Salmonella Typhi and Salmonella Paratyphi A elaborate distinct systemic metabolite signatures during enteric fever. Elife 2014, 3, e03100. [Google Scholar] [CrossRef]
- Näsström, E.; Parry, C.M.; Thieu, N.T.V.; Maude, R.R.; de Jong, H.K.; Fukushima, M.; Rzhepishevska, O.; Marks, F.; Panzner, U.; Im, J.; et al. Reproducible diagnostic metabolites in plasma from typhoid fever patients in Asia and Africa. Elife 2017, 6, e15651. [Google Scholar] [CrossRef]
- Näsström, E.; Jonsson, P.; Johansson, A.; Dongol, S.; Karkey, A.; Basnyat, B.; Tran Vu Thieu, N.; Trinh Van, T.; Thwaites, G.E.; Antti, H.; et al. Diagnostic metabolite biomarkers of chronic typhoid carriage. PLoS Negl. Trop. Dis. 2018, 12, e0006215. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.J.; Dunstan, S.J.; Dolecek, C.; Perkins, T.; House, D.; Dougan, G.; Nguyen, T.H.; Tran, T.P.; Doan, C.D.; Le, T.P.; et al. Transcriptional response in the peripheral blood of patients infected with Salmonella enterica serovar Typhi. Proc. Natl. Acad. Sci. USA 2009, 106, 22433–22438. [Google Scholar] [CrossRef] [Green Version]
- Blohmke, C.J.; Darton, T.C.; Jones, C.; Suarez, N.M.; Waddington, C.S.; Angus, B.; Zhou, L.; Hill, J.; Clare, S.; Kane, L.; et al. Interferon-driven alterations of the host’s amino acid metabolism in the pathogenesis of typhoid fever. J. Exp. Med. 2016, 213, 1061–1077. [Google Scholar] [CrossRef] [Green Version]
- Cuypers, W.L.; Jacobs, J.; Wong, V.; Klemm, E.J.; Deborggraeve, S.; Van Puyvelde, S. Fluoroquinolone resistance in Salmonella: Insights by whole-genome sequencing. Microb Genom. 2018, 4, e000195. [Google Scholar] [CrossRef]
- Ochiai, R.L.; Acosta, C.J.; Danovaro-Holliday, M.C.; Baiqing, D.; Bhattacharya, S.K.; Agtini, M.D.; Bhutta, Z.A.; Canh, D.G.; Ali, M.; Shin, S.; et al. A study of typhoid fever in five Asian countries: Disease burden and implications for controls. Bull. World Health Organ. 2008, 86, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Groisman, E.A. Signal-dependent binding of the response regulators PhoP and PmrA to their target promoters in vivo. J. Biol. Chem. 2005, 280, 4089–4094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crump, J.A.; Sjolund-Karlsson, M.; Gordon, M.A.; Parry, C.M. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef]
- Lynch, M.F.; Blanton, E.M.; Bulens, S.; Polyak, C.; Vojdani, J.; Stevenson, J.; Medalla, F.; Barzilay, E.; Joyce, K.; Barrett, T.; et al. Typhoid fever in the United States, 1999–2006. J. Am. Med. Assoc. 2009, 302, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Mengo, D.M.; Kariuki, S.; Muigai, A.W.T.; Revathi, G.N. Trends in Salmonella enterica serovar typhi in Nairobi, Kenya from 2004 to 2006. J. Infect. Dev. Ctries. 2010, 813, 393–396. [Google Scholar] [CrossRef]
- Qamar, F.N.; Yousafzai, M.T.; Khalid, M.; Kazi, A.M.; Lohana, H.; Karim, S.; Khan, A.; Hotwani, A.; Qureshi, S.; Kabir, F.; et al. Outbreak investigation of ceftriaxone resistant Salmonella enterica serotype Typhi and its risk factors among the general population in Hyderabad, Pakistan: A matched case-control study. Lancet Infect. Dis. 2018, 18, 1368–1376. [Google Scholar] [CrossRef]
- World Health Organization. Drug resistant Salmonella infections in Pakistan: Update. Wkly. Epidemiol Monit. 2019, 12, 34. [Google Scholar]
- Wong, W.; Al, H.; Patel, S.; Yau, Y.; Eshaghi, A.; Zittermann, S.; Tattum, L.; Morris, S.K. The first Canadian pediatric case of extensively drug-resistant Salmonella Typhi originating from an outbreak in Pakistan and its implication for empiric antimicrobial choices. IDCases 2019, 15, e00492. [Google Scholar] [CrossRef]
- Howard-Jones, A.; Kesson, A.M.; Outhred, A.C.; Britton, P.N. First reported case of extensively drug-resistant typhoid in Australia. Med. J. Aust. 2019, 211, 286–286.e1. [Google Scholar] [CrossRef]
- Engsbro, A.L.; Jespersen, H.S.R.; Goldschmidt, M.I.; Mollerup, S.; Worning, P.; Pedersen, M.S.; Westh, H.; Schneider, U.V. Ceftriaxone resistant Salmonella enterica serotype Typhi in a pregnant traveller returning from Karachi, Pakistan to Denmark. Euro Surveill. 2019, 24, 1900289. [Google Scholar] [CrossRef] [Green Version]
- Chatham-Stephens, K.; Medalla, F.; Hughes, M.; Appiah, G.D.; Aubert, R.D.; Caidi, H.; Angelo, K.M.; Walker, A.T.; Hatley, N.; Masani, S.; et al. Emergence of extensively drug-resistant Salmonella Typhi infections among travelers to or from Pakistan—United States, 2016–2018. Morb. Mortal. Wkly. Rep. 2019, 68, 11–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyson, Z.A.; Klemm, E.J.; Palmer, S.; Dougan, G. Antibiotic resistance and typhoid. Clin. Infect. Dis. 2019, 68, S165–S170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokhary, H.; Pangesti, K.N.A.; Rashid, H.; Abd-El-Ghany, M.; Hill-Cawthorne, G.A. Travel-related antimicrobial resistance: A systematic review. Trop. Med. Infect. Dis. 2021, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Haqqi, A.; Khurram, M.; Din, M.S.U.; Aftab, M.N.; Ali, M.; Ahmed, H.; Afzal, M.S. COVID-19 and Salmonella Typhi co-epidemics in Pakistan: A real problem. J. Med. Virol. 2020, 93, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Pragasam, A.K.; Pickard, D.; Wong, V.; Dougan, G.; Kang, G.; Thompson, A.; John, J.; Balaji, V.; Mutreja, A. Phylogenetic analysis indicates a longer term presence of the globally distributed H58 haplotype of Salmonella Typhi in Southern India. Clin. Infect. Dis. 2020, 71, 1856–1863. [Google Scholar] [CrossRef] [PubMed]
- Park, S.E.; Pham, D.T.; Boinett, C.; Wong, V.K.; Pak, G.D.; Panzner, U.; Espinoza, L.; von Kalckreuth, V.; Im, J.; Schütt-Gerowitt, H.; et al. The phylogeography and incidence of multi-drug resistant typhoid fever in sub-Saharan Africa. Nat. Commun. 2018, 9, 5094–6003. [Google Scholar] [CrossRef] [Green Version]
- Shin, E.; Park, J.; Jeong, H.J.; Park, A.K.; Na, K.; Lee, H.; Chun, J.H.; Hwang, K.J.; Kim, C.J.; Kim, J. Emerging high-level ciprofloxacin-resistant Salmonella enterica serovar typhi haplotype H58 in travelers returning to the Republic of Korea from India. PLOS Negl. Trop. Dis. 2021, 15, e0009170. [Google Scholar] [CrossRef]
- Britto, C.D.; Wong, V.K.; Dougan, G.; Pollard, A.J. A systematic review of antimicrobial resistance in Salmonella enterica serovar Typhi, the etiological agent of typhoid. PLoS Negl. Trop. Dis. 2018, 12, e0006779. [Google Scholar] [CrossRef] [Green Version]
- Saeed, M.; Rasool, M.H.; Rasheed, F.; Saqalein, M.; Nisar, M.A.; Imran, A.A.; Tariq, S.; Amir, A.; Ikram, A.; Khurshid, M. Extended-spectrum beta-lactamases producing extensively drug-resistant Salmonella Typhi in Punjab, Pakistan. J. Infect. Dev. Ctries. 2020, 14, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, A.; Tahir, A. Antimicrobial resistance trends of typhoidal Salmonellae in southern Pakistan. RMJ 2019, 44, 7–10. [Google Scholar]
- Jain, S.; Das Chugh, T. Antimicrobial resistance among blood culture isolates of Salmonella enterica in New Delhi. J. Infect. Dev. Ctries. 2013, 7, 788–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, S.; Sajib, M.S.I.; Garrett, D.; Qamar, F.N. Antimicrobial resistance in typhoidal Salmonella: Around the World in 3 Days. Clin. Infect. Dis. 2020, 71, S91–S95. [Google Scholar] [CrossRef] [PubMed]
- Laghari, G.S.; Hussain, Z.; Hussain, S.Z.M.; Kumar, H.; Uddin, S.M.M.; Haq, A. Antimicrobial susceptibility patterns of Salmonella species in southern Pakistan. Cureus 2019, 11, e4379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchello, C.S.; Carr, S.D.; Crump, J.A. A systematic review on antimicrobial resistance among Salmonella Typhi worldwide. Am. J. Trop. Med. Hyg. 2020, 103, 2518–2527. [Google Scholar] [CrossRef]
- Boerlin, P.; Reid-Smith, R.J. Antimicrobial resistance: Its emergence and transmission. Anim. Health Res. Rev. 2008, 9, 115–126. [Google Scholar] [CrossRef]
- Tracz, D.M.; Boyd, D.A.; Bryden, L.; Hizon, R.; Giercke, S.; Caeseele, P.V.; Mulvey, M.R. Increase in ampC promoter strength due to mutations and deletion of the attenuator in a clinical isolate of cefoxitin-resistant Escherichia coli as determined by RT-PCR. J. Antimicrob. Chemother. 2005, 55, 768–772. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef]
- Lobato-Márquez, D.; Molina-García, L.; Moreno-Córdoba, I.; García-del Portillo, F.; Díaz-Orejas, R. Stabilization of the virulence plasmid pSLT of Salmonella Typhimurium by three maintenance systems and its evaluation by using a new stability test. Front. Mol. Biosci. 2016, 3, 66. [Google Scholar] [CrossRef] [Green Version]
- Guiney, D.G.; Fierer, J. The role of the spv genes in Salmonella pathogenesis. Front. Microbiol. 2011, 2, 129. [Google Scholar] [CrossRef] [Green Version]
- Ahmer, B.M.M.; Tran, M.; Heffron, F. The virulence plasmid of Salmonella typhimurium is self-transmissible. J Bacteriol. 1999, 181, 1364–1368. [Google Scholar] [CrossRef] [Green Version]
- Gabant, P.; Chahdi, A.O.; Couturier, M. Nucleotide sequence and replication 845 characteristics of RepHI1B: A replicon specific to the IncHI1 plasmids. Plasmid 1994, 846, 111–120. [Google Scholar] [CrossRef]
- Klemm, E.J.; Shakoor, S.; Page, A.J.; Qamar, F.N.; Judge, K.; Saeed, D.K.; Wong, V.K.; Dallman, T.J.; Nair, S.; Baker, S.; et al. Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio 2018, 9, e00105-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Gallas, N.; Belghouthi, K.; Barratt, N.A.; Ghedira, K.; Hotzel, H.; Tomaso, H.; El-Adawy, H.; Neubauer, H.; Laouini, D.; Zarrouk, S.; et al. Identification and characterization of multidrug-resistant ESBL-producing Salmonella enterica serovars Kentucky and Typhimurium isolated in Tunisia CTX-M-61/TEM-34, a novel cefotaxime-hydrolysing β-lactamase of Salmonella. J. Appl. Microbiol. 2022, 132, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Riyaaz, A.A.A.; Perera, V.; Sivakumaran, S.; de Silva, N. Typhoid fever due to extended spectrum β- lactamase-producing Salmonella enterica serovar Typhi: A case report and literature review. Case Rep. Infect. Dis. 2018, 2018, 4610246. [Google Scholar]
- Abdel Aziz, S.A.; Abdel Latef, K.G.; Shany, A.S.S.; Rouby, S.R. Molecular detection of integrin and antimicrobial substances genes in multidrug resistant Salmonella isolated from poultry, calves and human in Beni-Suef governorate, Egypt. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 535–542. [Google Scholar]
- Odoch, T.; Sekse, C.; Abee-Lund, T.M.; Hansen, H.H.C.; Kankya, C.; Wasteson, Y. Diversity and antimicrobial resistance genotypes in non-typhoidal Salmonella isolates from poultry farms in Uganda. Int. J. Environ. Res. Public Health 2018, 15, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.; Latif, I.; Neupane, D.P.; Lee, G.Y.; Kwon, R.S.; Batool, A.; Ahmed, Q.; Qamar, M.U.; Song, J. The molecular basis of extensively drug-resistant Salmonella Typhi isolates from pediatric septicemia patients. PLoS ONE 2021, 16, e0257744. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.; Hess, C.; Hess, M. Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins 2017, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Paradis, T.; Bègue, H.; Basmaciyan, L.; Dalle, F.; Bon, F. Tight junctions as a key for pathogens invasion in intestinal epithelial cells. Int. J. Mol. Sci. 2021, 22, 2506. [Google Scholar] [CrossRef]
- Tafazoli, F.; Magnusson, K.-E.; Zheng, L. Disruption of epithelial barrier integrity by Salmonella enterica serovar Typhimurium requires geranylgeranylated proteins. Am. Soc. Microbiol. 2003, 71, 872–881. [Google Scholar] [CrossRef] [Green Version]
- Glynn, J.R.; Hornick, R.B.; Levine, M.M.; Bradley, D.J. Infecting dose and severity of typhoid: Analysis of volunteer data and examination of the influence of the definition of illness used. Epidemiol. Infect. 1995, 115, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waddington, C.S.; Darton, T.C.; Jones, C.; Haworth, K.; Peters, A.; John, T.; Thompson, B.A.; Kerridge, S.A.; Kingsley, R.A.; Zhou, L.; et al. An outpatient, ambulant design, controlled human infection model using escalating doses of Salmonella Typhi challenge delivered in sodium bicarbonate solution. Clin. Infect. Dis. 2014, 58, 1230–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, M.J.; Hornick, R.B.; McCrumb, F.R.; Morse, L.J.; Woodward, T.E. Asymptomatic typhoidal bacteremia in volunteers. Antimicrob. Agents Chemotherap. 1963, 161, 604–607. [Google Scholar]
- Lou, L.; Zhang, P.; Piao, R.; Wang, Y. Salmonella Pathogenicity Island 1 (SPI-1) and its complex regulatory network. Front. Cell Infect. Microbiol. 2019, 9, 270–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barilleau, E.; Védrine, M.; Koczerka, M.; Burlaud-Gaillard, J.; Kempf, F.; Grépinet, O.; Virlogeux-Payant, I.; Velge, P.; Wiedemann, A. Investigation of the invasion mechanism mediated by the outer membrane protein PagN of Salmonella Typhimurium. BMC Microbiol. 2021, 21, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Townsend, S.M.; Kramer, N.E.; Edwards, R.; Baker, S.; Hamlin, N.; Simmonds, M.; Stevens, K.; Maloy, S.; Parkhill, J.; Dougan, G.; et al. Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect. Immun. 2001, 69, 2894–2901. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, T.L.; Bäumler, A.J. Salmonella enterica serotype Typhimurium elicits cross-immunity against a Salmonella enterica serotype enteritidis strain expressing LP fimbriae from the lac promoter. Infect Immun. 2001, 69, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.L.; Tsui, I.S.; Yip, C.M.; Fung, A.W.; Wong, D.K.; Dai, X.; Yang, Y.; Hackett, J.; Morris, C. Salmonella enterica serovar Typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun. 2000, 68, 3067–3073. [Google Scholar] [CrossRef]
- Kingsley, R.A.; Bäumler, A.J. Host adaptation and the emergence of infectious disease: The Salmonella paradigm. Mol. Microbiol. 2000, 36, 1006–1014. [Google Scholar] [CrossRef]
- Graham, S.M.; Molyneux, E.M.; Walsh, A.L.; Cheesbrough, J.S.; Molyneux, M.E.; Hart, C.A. Nontyphoidal Salmonella infections of children in tropical Africa. Pediatr. Infect. Dis. J. 2000, 19, 1189–1196. [Google Scholar] [CrossRef]
- Fleckenstein, J.M.; Kopecko, D.J. Breaching the mucosal barrier by stealth: An emerging pathogenic mechanism for enteroadherent bacterial pathogens. J. Clin. Investig. 2001, 107, 27–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohl, M.E.; Miller, S.I. Salmonella: A model for bacterial pathogenesis. Annu. Rev. Med. 2001, 52, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Gewirtz, A.T.; Simon Jr, P.O.; Schmitt, C.K.; Taylor, L.J.; Hagedorn, C.H.; O’Brien, A.D.; Neish, A.S.; Madara, J.L. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Investig. 2001, 107, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, D.L.; O’Neill, B.L.; Metcalf, E.S. Salmonella typhi stimulation of human intestinal epithelial cells induces secretion of epithelial cell-derived interleukin 6. Infect Immun. 1997, 65, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Maskey, A.P.; Day, J.N.; Phung, Q.T.; Thwaites, G.E.; Campbell, J.I.; Zimmerman, M.; Farrar, J.J.; Basnyat, B. Salmonella enterica serovar Paratyphi A and S. enterica serovar Typhi cause indistinguishable clinical syndromes in Kathmandu, Nepal. Clin. Infect. Dis. 2006, 42, 1247–1253. [Google Scholar] [PubMed]
- Baker, S.; Holt, K.E.; Clements, A.C.; Karkey, A.; Arjyal, A.; Boni, M.F.; Dongol, S.; Hammond, N.; Koirala, S.; Duy, P.T.; et al. Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission. Open Biol. 2011, 1, 110008–110020. [Google Scholar] [CrossRef] [Green Version]
- Gibani, M.M.; Britto, C.; Pollard, A.J. Typhoid and paratyphoid fever: A call to action. Curr. Opin. Infect. Dis. 2018, 31, 440–448. [Google Scholar] [CrossRef]
- Liaquat, S.; Sarwar, Y.; Ali, A.; Haque, A.; Farooq, M.; Martinez-Ballesteros, I.; Laorden, L.; Garaizar, J.; Bikandi, J. Virulotyping of Salmonella enterica serovar Typhi isolates from Pakistan: Absence of complete SPI10 in Vi negative isolates. PLoS Negl. Trop. Dis. 2018, 12, e0006839. [Google Scholar] [CrossRef]
- Kaur, J.; Jain, S.K. Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol. Res. 2012, 167, 199–210. [Google Scholar] [CrossRef]
- Moest, T.P.; Meresse, S. Salmonella T3SSs: Successful mission of the secret(ion) agents. Curr. Opin. Microbiol. 2013, 16, 38–44. [Google Scholar] [CrossRef]
- Weinstein, D.L.; O’Neill, B.L.; Hone, D.M.; Metcalf, E.S. Differential early interactions between Salmonella enterica serovar Typhi and two other pathogenic Salmonella serovars with intestinal epithelial cells. Infect. Immun. 1998, 66, 2310–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckmann, L.; Smith, J.R.; Housley, M.P.; Dwinell, M.B.; Kagnoff, M.F. Analysis by high density cDNA arrays of altered gene expression in human intestinal epithelial cells in response to infection with the invasive enteric bacteria Salmonella. J. Biol. Chem. 2000, 275, 14084–14094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberger, C.M.; Scott, M.G.; Gold, M.R.; Hancock, R.E.; Finlay, B.B. Salmonella Typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J. Immunol. 2000, 164, 5894–5904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarre, W.W.; Zychlinsky, A. Pathogen-induced apoptosis of macrophages: A common end for different pathogenic strategies. Cell Microbiol. 2000, 2, 265–273. [Google Scholar] [CrossRef]
- Brennan, M.A.; Cookson, B.T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 2000, 38, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Boise, L.H.; Collins, C.M. Salmonella-induced cell death: Apoptosis, necrosis or programmed cell death? Trends. Microbiol. 2001, 9, 64–67. [Google Scholar] [CrossRef]
- Monack, D.M.; Hersh, D.; Ghori, N.; Bouley, D.; Zychlinsky, A.; Falkow, S. Salmonella exploits caspase-1 to colonize Peyer’s patches in a murine typhoid model. J. Exp. Med. 2000, 192, 249–258. [Google Scholar] [CrossRef] [PubMed]
- House, D.; Bishop, A.; Parry, C.; Dougan, G.; Wain, J. Typhoid fever: Pathogenesis and disease. Curr. Opin. Infect. Dis. 2001, 14, 573–578. [Google Scholar] [CrossRef]
- Saxena, M.K.; Kumar, R.; Saxena, A.; Singh, Y. Virulence system of Salmonella with special reference to Salmonella enterica. In Salmonella—A Re-Emerging Pathogen; Mascellino, M.T., Ed.; IntechOpen: London, UK, 2018; pp. 41–53. [Google Scholar]
- Aphons, J.A.M.; van Asten, J.; van Dijk, E. Distribution of “classic” virulence factors among Salmonella spp. FEMS Immunol. Med. Microbiol. 2005, 44, 251–259. [Google Scholar]
- Riquelme, S.; Varas, M.; Valenzuela, C.; Velozo, P.; Chahin, N.; Aguilera, P.; Sabag, A.; Labra, B.; Álvarez, S.A.; Chávez, F.P.; et al. Relevant genes linked to virulence are required for Salmonella Typhimurium to survive intracellularly in the social amoeba dictyosteliumdiscoideum. Front. Microbiol. 2016, 7, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Fowoyo, P.T. The mechanisms of virulence and antimicrobial resistance in Salmonella enterica serovar Typhi: A systematic review. Afr. J. Bio. Sci. 2020, 2, 13–26. [Google Scholar]
- Hart, P.J.; O’Shaughnessy, C.M.; Siggins, M.K.; Bobat, S.; Kingsley, R.A.; Goulding, D.A.; Crump, J.A.; Reyburn, H.; Micoli, F.; Dougan, G.; et al. Differential killing of Salmonella enterica Serovar Typhi by antibodies targeting Vi and lipopolysaccharide O:9 antigen. PLoS ONE 2016, 11, e0145945. [Google Scholar]
- Raffatellu, M.; Chessa, D.; Wilson, R.P.; Dusold, R.; Rubino, S.; Bäumler, A.J. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces toll-like receptor-dependent Interleukin-8 expression in the intestinal mucosa. Infect. Immun. 2005, 73, 3367–3374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkhill, J.; Dougan, G.; James, K.D.; Thomson, N.R.; Pickard, D.; Wain, J.; Churcher, C.; Mungall, K.L.; Bentley, S.D.; Holden, M.T.; et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 2001, 413, 848–852. [Google Scholar] [CrossRef] [PubMed]
SPIs | Protein | Function |
---|---|---|
SPI-1 | SipA SipC | Promote membrane ruffling and Salmonella invasion by directly interacting with actin cytoskeleton |
SopE SopE2 | Promote membrane ruffling and Salmonella invasion by directly interacting with actin cytoskeleton by inducing membrane ruffling after injection into epithelial cells | |
SipB | Nucleates actin and translocates other effector proteins | |
IaeP | Involved in post-translational modification of T3SS | |
SopA SopC | Recruit immune cells and secrete fluid in intestinal lumen | |
AvrA | Inhibits cellular apoptosis Inhibits macrophage degradation | |
SicA SicP | Serve as a chaperone | |
SPI-2 | SsaB | Disrupts Golgi apparatus |
SpiC | Disrupts vesicular transport | |
SsaE SscA | Serve as a chaperone | |
SsPH2 SseJ | Rearrange cytoskeletal system | |
SrFT | Cellular apoptosis | |
PipB SopD2 | Target pathogen-induced filaments | |
SPI-3 | MgtC MgtB | Ensure adaptation in nutrition-scarce environment |
MisL | Ensures attachment to epithelial cells | |
MarT | Activates MIS L protein | |
SPI-4 | SicE | Ensures attachment to epithelial cells |
SPI-5 | SsrAB | Serves key role in developing infection |
SPI-6 | Invasion proteins | Ensure invasion of pathogen into host cells |
SPI-7 | Produces Vi antigen | |
SPI-8 | Contributes to putative virulence | |
SPI-9 | T1SS and RTX | Contribute to toxin production and invasion of pathogen into host cells |
SPI-10 | Production of sef fimbriae | |
SPI-11 | Function not clear | |
SPI-12 | Function not clear | |
SPI-13 | Function not clear | |
SPI-14 | Function not clear | |
SPI-15 | Serves a vague role to effector proteins attached to T3SS | |
SPI-16 | Encodes genes for tRNA arg and lipopolysaccharides | |
SPI-17 | Encodes genes for tRNA arg and lipopolysaccharides |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.; Shamim, S. Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms 2022, 10, 2006. https://doi.org/10.3390/microorganisms10102006
Khan M, Shamim S. Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms. 2022; 10(10):2006. https://doi.org/10.3390/microorganisms10102006
Chicago/Turabian StyleKhan, Maryam, and Saba Shamim. 2022. "Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi" Microorganisms 10, no. 10: 2006. https://doi.org/10.3390/microorganisms10102006
APA StyleKhan, M., & Shamim, S. (2022). Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms, 10(10), 2006. https://doi.org/10.3390/microorganisms10102006