Improvement of Freeze-Dried Survival of Lactiplantibacillus plantarum Based on Cell Membrane Regulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Reagents
2.2. Bacterial Culture Conditions
2.3. Preparation of the Bacterial Suspension and Preparation before Lyophilization
2.4. Determination of Survival Rate and Number of Live Bacteria in Lyophilization
2.5. Acid Stress Treatment
2.6. Cold Stress Treatment
2.7. Osmotic Stress Treatment
2.8. Fatty Acid-Regulated Bacterial Culture
2.9. Effects of Cell Membrane-Regulatory Substances on the Bacterial Cultures
2.10. Determination of Fatty Acid Composition of Cell Membranes
2.11. Scanning Electron Microscopy of the Bacteria after Lyophilization
2.12. Statistical Analysis
3. Results
3.1. Effects of Environmental Stress Treatments on the Composition of Cell Membrane Fatty Acids and the Lyophilization Survival Rate
3.1.1. Cold Stress Treatment
3.1.2. Acid Stress Treatment
3.1.3. Osmotic Stress Treatment
3.2. Effects of Foreign Fatty Acid Addition on the Composition of Cell Membrane Fatty Acids and the Lyophilization Survival Rate
3.3. Effects of a Combination of Cell Membrane Regulatory Substances on the Lyophilization Survival Rate
3.4. Effects of Cell Membrane-Regulatory Substances on the Lyophilization Survival Rate
3.5. Scanning Electron Microscopy to Observe Changes before and after Cell Membrane Regulation
3.6. The Optimal Regulation Scheme for Different Lactiplantibacillus, Lacticaseibacillus, and Limosilactobacillus Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wuyts, S.; Van Beeck, W.; Allonsius, C.N.; van den Broek, M.F.; Lebeer, S. Applications of plant-based fermented foods and their microbes. Curr. Opin. Biotechnol. 2020, 61, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Yan, X.; Wu, J.; Weng, P.; Wu, Z. Effects of freeze drying in complex lyoprotectants on the survival, and membrane fatty acid composition of Lactobacillus plantarum L1 and Lactobacillus fermentum L2. Cryobiology 2022, 105, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Santivarangkna, C.; Wenning, M.; Foerst, P.; Kulozik, U. Damage of cell envelope of Lactobacillus helveticus during vacuum drying. J. Appl. Microbiol. 2007, 102, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Florence, A.C.R.; de Oliveira, M.N.; Delile, A.; Béal, C. Survival of Bifidobacterium strains in organic fermented milk is improved as a result of membrane fatty acid composition. Int. Dairy J. 2016, 61, 1–9. [Google Scholar] [CrossRef]
- Flegler, A.; Iswara, J.; Mänz, A.T.; Schocke, F.S.; Faßbender, W.A.; Hölzl, G.; Lipski, A. Exogenous fatty acids affect membrane properties and cold adaptation of Listeria monocytogenes. Sci. Rep. 2022, 12, 1499. [Google Scholar] [CrossRef]
- Reitermayer, D.; Kafka, T.A.; Lenz, C.A.; Vogel, R.F. Interrelation between Tween and the membrane properties and high pressure tolerance of Lactobacillus plantarum. BMC Microbiol. 2018, 18, 72. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Pu, J.; Dong, C.; Zheng, X.; Guo, B.; Xia, Y.; Ai, L. Effect of oleic acid on the viability of different freeze-dried Lactiplantibacillus plantarum strains. J. Dairy Sci. 2021, 104, 11457–11465. [Google Scholar] [CrossRef]
- Whaley, D.; Damyar, K.; Witek, R.P.; Mendoza, A.; Alexander, M.; Lakey, J.R. Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transplant. 2021, 30, 963689721999617. [Google Scholar] [CrossRef]
- Subczynski, W.K.; Wisniewska, A. Physical properties of lipid bilayer membranes: Relevance to membrane biological functions. Acta Biochim. Pol. 2000, 47, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Flegler, A.; Lipski, A. The C(50) carotenoid bacterioruberin regulates membrane fluidity in pink-pigmented Arthrobacter species. Arch. Microbiol. 2021, 204, 70. [Google Scholar] [CrossRef]
- Gruszecki, W.I.; Strzałka, K. Carotenoids as modulators of lipid membrane physical properties. Biochim. Et Biophys. Acta 2005, 1740, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazemidashtarjandi, S.; Sharma, V.M.; Puri, V.; Farnoud, A.M.; Burdick, M.M. Lipid Composition of the Cell Membrane Outer Leaflet Regulates Endocytosis of Nanomaterials through Alterations in Scavenger Receptor Activity. ACS Nano 2022, 16, 2233–2248. [Google Scholar] [CrossRef] [PubMed]
- Lozano, B.; Castellote, A.I.; Montes, R.; López-Sabater, M.C. Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk. Int. J. Food Sci. Nutr. 2014, 65, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Fujisaki, S.; Nishino, T.; Katsuki, H. Biosynthesis of isoprenoids in intact cells of Escherichia coli. J. Biochem. 1986, 99, 1137–1146. [Google Scholar] [CrossRef]
- Seel, W.; Flegler, A.; Zunabovic-Pichler, M.; Lipski, A. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures. J. Bacteriol. 2018, 200, e00148-18. [Google Scholar] [CrossRef] [Green Version]
- Hrubovčák, P.; Dushanov, E.; Kondela, T.; Tomchuk, O.; Kholmurodov, K.; Kučerka, N. Reflectometry and molecular dynamics study of the impact of cholesterol and melatonin on model lipid membranes. Eur. Biophys. J. EBJ 2021, 50, 1025–1035. [Google Scholar] [CrossRef]
- Ozolina, N.V.; Kapustina, I.S.; Gurina, V.V.; Bobkova, V.A.; Nurminsky, V.N. Role of Plasmalemma Microdomains (Rafts) in Protection of the Plant Cell Under Osmotic Stress. J. Membr. Biol. 2021, 254, 429–439. [Google Scholar] [CrossRef]
- Dies, H.; Cheung, B.; Tang, J.; Rheinstädter, M.C. The organization of melatonin in lipid membranes. Biochim. Et Biophys. Acta 2015, 1848, 1032–1040. [Google Scholar] [CrossRef] [Green Version]
- Jezowska, I.; Wolak, A.; Gruszecki, W.I.; Strzałka, K. Effect of beta-carotene on structural and dynamic properties of model phosphatidylcholine membranes. II. A 31P-NMR and 13C-NMR study. Biochim. Et Biophys. Acta 1994, 1194, 143–148. [Google Scholar] [CrossRef]
- Wang, X.; Quinn, P.J. Vitamin E and its function in membranes. Prog. Lipid Res. 1999, 38, 309–336. [Google Scholar] [CrossRef]
- Costa, E.J.; Shida, C.S.; Biaggi, M.H.; Ito, A.S.; Lamy-Freund, M.T. How melatonin interacts with lipid bilayers: A study by fluorescence and ESR spectroscopies. FEBS Lett. 1997, 416, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Loh, D.; Reiter, R.J. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants 2021, 10, 1483. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Khunajakr, N.; Dunn, N.W. Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis. Cryobiology 1998, 37, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Wouters, J.A.; Frenkiel, H.; de Vos, W.M.; Kuipers, O.P.; Abee, T. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins. Appl. Environ. Microbiol. 2001, 67, 5171–5178. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.S.; Perl, L.; Park, J.H.; Tandianus, J.E.; Dunn, N.W. Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr. Microbiol. 2001, 43, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hang, X.; Zhang, M.; Liu, X.; Yang, H. Relationship between acid tolerance and cell membrane in Bifidobacterium, revealed by comparative analysis of acid-resistant derivatives and their parental strains grown in medium with and without Tween 80. Appl. Microbiol. Biotechnol. 2015, 99, 5227–5236. [Google Scholar] [CrossRef]
- Hansen, M.L.; Petersen, M.A.; Risbo, J.; Hümmer, M.; Clausen, A. Implications of modifying membrane fatty acid composition on membrane oxidation, integrity, and storage viability of freeze-dried probiotic, Lactobacillus acidophilus La-5. Biotechnol. Prog. 2015, 31, 799–807. [Google Scholar] [CrossRef]
- Mangiarotti, A.; Genovese, D.M.; Naumann, C.A.; Monti, M.R.; Wilke, N. Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes. Biochim. Et Biophys. Acta. Biomembr. 2019, 1861, 183060. [Google Scholar] [CrossRef]
- Saija, A.; Tomaino, A.; Trombetta, D.; Pellegrino, M.L.; Tita, B.; Caruso, S.; Castelli, F. Interaction of melatonin with model membranes and possible implications in its photoprotective activity. Eur. J. Pharm. Biopharm. 2002, 53, 209–215. [Google Scholar] [CrossRef]
- de Lima, V.R.; Caro, M.S.; Munford, M.L.; Desbat, B.; Dufourc, E.; Pasa, A.A.; Creczynski-Pasa, T.B. Influence of melatonin on the order of phosphatidylcholine-based membranes. J. Pineal Res. 2010, 49, 169–175. [Google Scholar] [CrossRef]
- Li, W. Bringing Bioactive Compounds into Membranes: The UbiA Superfamily of Intramembrane Aromatic Prenyltransferases. Trends Biochem. Sci. 2016, 41, 356–370. [Google Scholar] [CrossRef] [Green Version]
- Suresh, P.; London, E. Using cyclodextrin-induced lipid substitution to study membrane lipid and ordered membrane domain (raft) function in cells. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183774. [Google Scholar] [CrossRef]
- Schafer, F.Q.; Wang, H.P.; Kelley, E.E.; Cueno, K.L.; Martin, S.M.; Buettner, G.R. Comparing beta-carotene, vitamin E and nitric oxide as membrane antioxidants. Biol. Chem. 2002, 383, 671–681. [Google Scholar] [CrossRef]
Methyl Fatty Acid Ester | Cell Membrane Fatty Acids Relative Mass Fraction % | |||
---|---|---|---|---|
Control | 4 °C/2 h | 4 °C/4 h | 4 °C/6 h | |
C14:0 | 1.17 ± 0.05 a | 1.23 ± 0.02 a | 1.25 ± 0.01 a | 1.3 ± 0.02 a |
C16:0 | 37.92 ± 0.37 a | 37.7 ± 0.2 a | 35.79 ± 0.1 b | 34.83 ± 0.05 c |
C16:1 | 3.83 ± 0.08 a | 3.81 ± 0.12 a | 4.14 ± 0.01 a | 4.18 ± 0.08 a |
C18:0 | 2.29 ± 0.04 a | 2.3 ± 0.14 a | 2.05 ± 0.11 a | 1.82 ± 0.15 a |
C18:1 | 37.67 ± 0.54 c | 34.35 ± 0.29 cd | 38.21 ± 0.16 b | 44.35 ± 0.14 a |
cycC19:0 | 17.14 ± 0.16 c | 20.63 ± 0.09 a | 18.56 ± 0.12 b | 13.53 ± 0.3 d |
Unsaturated rate | 58.64 ± 0.46 c | 58.78 ± 0.08 c | 60.91 ± 0.13 b | 62.06 ± 0.17 a |
Methyl Fatty Acid Ester | Cell Membrane Fatty Acids Relative Mass Fraction % | ||||
---|---|---|---|---|---|
Control | pH 3.5/2 h | pH 3.5/4 h | pH 4.0/2 h | pH 4.0/4 h | |
C14:0 | 1.17 ± 0.05 a | 0.92 ± 0.03 a | 0.88 ± 0.03 a | 1.05 ± 0.01 a | 1.08 ± 0.02 a |
C16:0 | 37.92 ± 0.37 a | 36.75 ± 0.13 b | 38.22 ± 0.11 a | 35.28 ± 0.00 d | 35.97 ± 0.90 c |
C16:1 | 3.83 ± 0.08 ab | 3.29 ± 0.04 ab | 3.17 ± 0.07 b | 4.12 ± 0.06 a | 3.9 ± 0.01 ab |
C18:0 | 2.29 ± 0.04 a | 2.08 ± 0.03 a | 2.02 ± 0.08 a | 2.55 ± 0.07 a | 2.17 ± 0.02 a |
C18:1 | 37.67 ± 0.54 c | 37.53 ± 0.26 c | 36.03 ± 0.31 d | 42.78 ± 0.10 a | 41.96 ± 0.18 b |
cycC19:0 | 17.14 ± 0.16 b | 19.43 ± 0.05 a | 19.68 ± 0.21 a | 14.23 ± 0.10 d | 14.92 ± 0.12 c |
Unsaturated rate | 58.64 ± 0.46 c | 60.25 ± 0.10 ab | 58.88 ± 0.14 c | 61.13 ± 0.00 a | 60.78 ± 0.08 a |
Methyl Fatty Acid Ester | Cell Membrane Fatty Acids Relative Mass Fraction % | |||
---|---|---|---|---|
Control | 650 mOsm/kg | 750 mOsm/kg | 850 mOsm/kg | |
C14:0 | 1.17 ± 0.05 a | 1.11 ± 0.08 a | 1.03 ± 0.01 a | 1.01 ± 0.02 a |
C16:0 | 37.92 ± 0.37 a | 35.58 ± 0.23 c | 36.78 ± 0.08 b | 37.84 ± 0.14 a |
C16:1 | 3.83 ± 0.08 a | 4.17 ± 0.05 a | 4.18 ± 0.06 a | 4.18 ± 0.01 a |
C18:0 | 2.29 ± 0.04 a | 2.66 ± 0.05 a | 2.57 ± 0.12 a | 2.53 ± 0.09 a |
C18:1 | 37.67 ± 0.54 b | 38.59 ± 0.34 a | 36.83 ± 0.37 c | 34.35 ± 0.14 d |
cycC19:0 | 17.14 ± 0.16 d | 17.9 ± 0.02 c | 18.63 ± 0.35 b | 20.09 ± 0.17 a |
Unsaturated rate | 58.64 ± 0.46 c | 60.66 ± 0.36 a | 59.64 ± 0.04 b | 58.62 ± 0.10 c |
Methyl Fatty Acid Ester | Cell Membrane Fatty Acids Relative Mass Fraction % | |||
---|---|---|---|---|
Control | Tween 80 | Tween 20 | Oleic Acid | |
C14:0 | 1.17 ± 0.05 b | 2.79 ± 0.03 a | 0.85 ± 0.02 b | 1.28 ± 0.02 b |
C16:0 | 37.92 ± 0.37 b | 17.28 ± 0.19 d | 43.36 ± 0.25 a | 28.71 ± 0.31 c |
C16:1 | 3.83 ± 0.08 a | 3.49 ± 0.03 a | 2.67 ± 0.07 b | 2.51 ± 0.05 b |
C18:0 | 2.29 ± 0.04 a | 0.78 ± 0.02 b | 1.73 ± 0.04 a | 2.14 ± 0.07 a |
C18:1 | 37.67 ± 0.54 c | 50.14 ± 0.25 a | 27.75 ± 0.16 d | 39.26 ± 0.41 b |
cycC19:0 | 17.14 ± 0.16 d | 25.52 ± 0.23 a | 23.64 ± 0.31 b | 20.10 ± 0.14 c |
Unsaturated rate | 58.64 ± 0.46 c | 79.15 ± 0.56 a | 54.06 ± 0.37 d | 67.87 ± 0.19 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, S.; Hu, K.; Qian, Z.; Mao, B.; Zhang, Q.; Zhao, J.; Tang, X.; Zhang, H. Improvement of Freeze-Dried Survival of Lactiplantibacillus plantarum Based on Cell Membrane Regulation. Microorganisms 2022, 10, 1985. https://doi.org/10.3390/microorganisms10101985
Cui S, Hu K, Qian Z, Mao B, Zhang Q, Zhao J, Tang X, Zhang H. Improvement of Freeze-Dried Survival of Lactiplantibacillus plantarum Based on Cell Membrane Regulation. Microorganisms. 2022; 10(10):1985. https://doi.org/10.3390/microorganisms10101985
Chicago/Turabian StyleCui, Shumao, Kai Hu, Zhihao Qian, Bingyong Mao, Qiuxiang Zhang, Jianxin Zhao, Xin Tang, and Hao Zhang. 2022. "Improvement of Freeze-Dried Survival of Lactiplantibacillus plantarum Based on Cell Membrane Regulation" Microorganisms 10, no. 10: 1985. https://doi.org/10.3390/microorganisms10101985
APA StyleCui, S., Hu, K., Qian, Z., Mao, B., Zhang, Q., Zhao, J., Tang, X., & Zhang, H. (2022). Improvement of Freeze-Dried Survival of Lactiplantibacillus plantarum Based on Cell Membrane Regulation. Microorganisms, 10(10), 1985. https://doi.org/10.3390/microorganisms10101985