A Novel Wrench–Current Decoupling Strategy to Extend the Use of Small Lookup Data for a Long-Range Maglev Planar Motor
Abstract
:1. Introduction
2. Planar Maglev System Description
2.1. Modular Planar Electromagnet Stator
2.2. Disc Magnet Movers
3. Lorentz Levitation Modeling
3.1. Coordinate System Settings
- {o}
- System coordinate or origin: located at the center of the coil array top surface;
- {c}
- Coil coordinate: located at the center of the coil top surface (ci for coil number i);
- {m}
- Magnet coordinate: located at the center of the magnet.
3.2. Lorentz Wrench Model
3.3. Magnetic Flux Density Computation
3.4. Numerical Integration for Wrench Model
4. Control System and Wrench–Current Decoupling for Long-Range Motion
4.1. Overall Control System
4.2. Wrench–Current Decoupling
4.3. Lookup Table
4.4. Extended Wrench–Current Decoupling Data Using Quadrant Symmetry Transformation for Long-Range Planar Motion
5. System Setup and Experiment Results
5.1. System Setup
5.2. Experiment Results: Single 4-Inch Disc Magnet Mover
5.2.1. Long-Range Planar Motion
5.2.2. Full-Range Rotation: Roll and Pitch
5.3. Experiment Results: Four 2-Inch Disc Magnet Mover
5.3.1. Long-Range Planar Motion
5.3.2. Full-Range Rotation: Roll and Pitch
5.3.3. Full-Range Rotation: Yaw
6. Discussion
7. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.W.; Kim, K.C.; Lee, J. Review of maglev train technologies. IEEE Trans. Magn. 2006, 42, 1917–1925. [Google Scholar] [CrossRef]
- Nøland, J.K. Prospects and challenges of the hyperloop transportation system: A systematic technology review. IEEE Access 2021, 9, 28439–28458. [Google Scholar] [CrossRef]
- Abbott, J.J.; Diller, E.; Petruska, A.J. Magnetic Methods in Robotics. Annu. Rev. Control Robot. Auton. Syst. 2020, 3, 57–90. [Google Scholar] [CrossRef]
- Kummer, M.P.; Abbott, J.J.; Kratochvil, B.E.; Borer, R.; Sengul, A.; Nelson, B.J. OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 2010, 26, 1006–1017. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, J.; Salehizadeh, M.; Onaizah, O.; Diller, E. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci. Robot. 2019, 4, eaav4494. [Google Scholar] [CrossRef]
- Lim, A.; Schonewille, A.; Forbrigger, C.; Looi, T.; Drake, J.; Diller, E. Design and Comparison of Magnetically-Actuated Dexterous Forceps Instruments for Neuroendoscopy. IEEE Trans. Biomed. Eng. 2021, 68, 846–856. [Google Scholar] [CrossRef]
- Pedram, S.A.; Klatzky, R.L.; Berkelman, P. Torque Contribution to Haptic Rendering of Virtual Textures. IEEE Trans. Haptics 2017, 10, 567–579. [Google Scholar] [CrossRef]
- Smirnov, A.; Uzhegov, N.; Sillanpää, T.; Pyrhönen, J.; Pyrhönen, O. High-speed electrical machine with active magnetic bearing system optimization. IEEE Trans. Ind. Electron. 2017, 64, 9876–9885. [Google Scholar] [CrossRef]
- Pisetskiy, S.; Kermani, M. High-Performance Magneto-Rheological Clutches for Direct-Drive Actuation: Design and Development. J. Intell. Mater. Syst. Struct. 2021, 32, 2582–2600. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Yuan, D.; Wang, S.; Wang, S.; Zhu, T.; Zhu, J. Oscillations and size control of Titanium droplet for electromagnetic levitation melting. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Kumar, P.; Ansari, M.; Toyserkani, E.; Khamesee, M.B. Experimental implementation of a magnetic levitation system for laser-directed energy deposition via powder feeding additive manufacturing applications. Actuators 2023, 12, 244. [Google Scholar] [CrossRef]
- Kim, W.J.; Trumper, D.L. High-precision magnetic levitation stage for photolithography. Precis. Eng. 1998, 22, 66–77. [Google Scholar] [CrossRef]
- Verma, S.; Kim, W.J.; Shakir, H. Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications. IEEE Trans. Ind. Appl. 2005, 41, 1159–1167. [Google Scholar] [CrossRef]
- Kim, W.J.; Verma, S.; Shakir, H. Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems. Precis. Eng. 2007, 31, 337–350. [Google Scholar] [CrossRef]
- Schaeffel, C.; Katzschmann, M.; Mohr, H.; Gloess, R.; Rudolf, C.; Mock, C.; Walenda, C. 6D planar magnetic levitation system - PIMag 6D. Mech. Eng. J. 2016, 3, 15-00111. [Google Scholar] [CrossRef]
- Zhu, H.; Teo, T.J.; Pang, C.K. Design and modeling of a six-degree-of-freedom magnetically levitated positioner using square coils and 1-D Halbach arrays. IEEE Trans. Ind. Electron. 2017, 64, 440–450. [Google Scholar] [CrossRef]
- Zhu, H.; Teo, T.J.; Pang, C.K. Magnetically levitated parallel actuated dual-Stage (Maglev-PAD) system for six-axis precision positioning. IEEE/ASME Trans. Mechatron. 2019, 24, 1829–1838. [Google Scholar] [CrossRef]
- Dyck, M.; Lu, X.; Altintas, Y. Magnetically Levitated Rotary Table With Six Degrees of Freedom. IEEE/ASME Trans. Mechatron. 2017, 22, 530–540. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, K.; Xu, X. Development of magnetically levitated rotary table for repetitive trajectory tracking. Sensors 2022, 22, 4270. [Google Scholar] [CrossRef]
- Lu, X.; Usman, I. 6D direct-drive technology for planar motion stages. CIRP Ann. Manuf. Technol. 2012, 61, 359–362. [Google Scholar] [CrossRef]
- Gloess, R. Mag-6D a new mechatronics design of a levitation stage with nanometer resolution. In Proceedings of the 31st ASPE Annual Meeting 2016, Portland, OR, USA, 23–28 October 2016; pp. 423–427. [Google Scholar]
- Jansen, J.W.; van Lierop, C.M.M.; Lomonova, E.A.; Vandenput, A.J.A. Magnetically levitated planar actuator with moving magnets. IEEE Trans. Ind. Appl. 2008, 44, 1108–1115. [Google Scholar] [CrossRef]
- Berkelman, P.; Dzadovsky, M. Single magnet levitation by repulsion using a planar coil array. In Proceedings of the 2008 IEEE International Conference on Control Applications, San Antonio, TX, USA, 3–5 September 2008; pp. 108–113. [Google Scholar] [CrossRef]
- Berkelman, P.; Dzadovsky, M. Magnetic levitation over large translation and rotation ranges in all directions. IEEE/ASME Trans. Mechatron. 2013, 18, 44–52. [Google Scholar] [CrossRef]
- Miyasaka, M.; Berkelman, P. Magnetic levitation with unlimited omnidirectional rotation range. Mechatronics 2014, 24, 252–264. [Google Scholar] [CrossRef]
- Hollis, R.L.; Salcudean, S.E. Lorentz levitation technology: A new approach to fine motion robotics, teleoperation, haptic interfaces, and vibration isolation. In Proceedings of the International Symposium on Robotics Research, Kyoto, Japan, 28–30 October 1993. [Google Scholar]
- Bancel, F. Magnetic nodes. J. Phys. Appl. Phys. 1999, 32, 2155–2161. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, X.; Khamesee, M.B. Real-time data-driven force and torque modeling on a 2-D Halbach array by a symmetric coil considering end effect. IEEE Trans. Magn. 2022, 58, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Trakarnchaiyo, C.; Zhang, H.; Khamesee, M.B. MagTable: A tabletop system for 6-DOF large range and completely contactless operation using magnetic levitation. Mechatronics 2021, 77, 102600. [Google Scholar] [CrossRef]
- Xu, F.; Lv, Y.; Xu, X.; Dinavahi, V. FPGA-based real-time wrench model of direct current driven magnetic levitation actuator. IEEE Trans. Ind. Electron. 2018, 65, 9635–9645. [Google Scholar] [CrossRef]
- Trakarnchaiyo, C.; Wang, Y.; Khamesee, M.B. Design of a Compact Planar Magnetic Levitation System with Wrench–Current Decoupling Enhancement. Appl. Sci. 2023, 13, 2370. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Ma, J.; Teo, T.J.; Teo, C.S.; Tomizuka, M.; Lee, T.H. Data-Driven Multiobjective Controller Optimization for a Magnetically Levitated Nanopositioning System. IEEE/ASME Trans. Mechatron. 2020, 25, 1961–1970. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, J. Magnetic Levitation Technology for Precision Motion Systems: A Review and Future Perspectives. Int. J. Autom. Technol. 2022, 16, 386–402. [Google Scholar] [CrossRef]
- Yu, H.; Kim, W.J. A Compact Hall-Effect-Sensing 6-DOF Precision Positioner. IEEE/ASME Trans. Mechatron. 2010, 15, 982–985. [Google Scholar] [CrossRef]
Disc-Magnet Movers | Mass (kg) | (kg ) | (kg ) | (kg ) |
---|---|---|---|---|
Single 4-inch magnet | 0.90 | 0.0006 | 0.0006 | 0.0012 |
Four 2-inch magnets | 0.99 | 0.0012 | 0.0012 | 0.0024 |
DOF | 5-DOF PID Controller | 6-DOF PID Controller | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P Gain | I Gain | D Gain | P Gain | I Gain | D Gain | ||||||||||||
x | 1200 | 6000 | 55 | 1200 | 6000 | 60 | |||||||||||
y | 1200 | 6000 | 55 | 1200 | 6000 | 60 | |||||||||||
z | 1200 | 6000 | 55 | 1200 | 6000 | 60 | |||||||||||
1.5 | 8.0 | 0.055 | 1.5 | 8.0 | 0.07 | ||||||||||||
1.5 | 8.0 | 0.055 | 1.5 | 8.0 | 0.07 | ||||||||||||
— | — | — | 2.0 | 8.0 | 0.07 |
DOF | Single 4-inch Disc Magnet | Four 2-inch Disc Magnets | |||||
---|---|---|---|---|---|---|---|
Min Value | Increment | Max Value | Min Value | Increment | Max Value | ||
Translation (mm) | |||||||
x | 0.0 | 2.0 | 40.0 | 0.0 | 2.0 | 40.0 | |
y | 0.0 | 2.0 | 40.0 | 0.0 | 2.0 | 40.0 | |
z | 26.35 | 2.0 | 36.35 | 16.0 | 2.0 | 30.0 | |
Rotation (deg) | |||||||
Roll | −10.0 | 10.0 | 10.0 | −10.0 | 10.0 | 10.0 | |
Pitch | −10.0 | 10.0 | 10.0 | −10.0 | 10.0 | 10.0 | |
Yaw | — | — | — | 0.0 | 15.0 | 90.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trakarnchaiyo, C.; Khamesee, M.B. A Novel Wrench–Current Decoupling Strategy to Extend the Use of Small Lookup Data for a Long-Range Maglev Planar Motor. Actuators 2023, 12, 358. https://doi.org/10.3390/act12090358
Trakarnchaiyo C, Khamesee MB. A Novel Wrench–Current Decoupling Strategy to Extend the Use of Small Lookup Data for a Long-Range Maglev Planar Motor. Actuators. 2023; 12(9):358. https://doi.org/10.3390/act12090358
Chicago/Turabian StyleTrakarnchaiyo, Chanuphon, and Mir Behrad Khamesee. 2023. "A Novel Wrench–Current Decoupling Strategy to Extend the Use of Small Lookup Data for a Long-Range Maglev Planar Motor" Actuators 12, no. 9: 358. https://doi.org/10.3390/act12090358
APA StyleTrakarnchaiyo, C., & Khamesee, M. B. (2023). A Novel Wrench–Current Decoupling Strategy to Extend the Use of Small Lookup Data for a Long-Range Maglev Planar Motor. Actuators, 12(9), 358. https://doi.org/10.3390/act12090358