Effect of Selection for Low and High Varroa destructor Population Growth Rates on the Honey Bee Transcriptome
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples of Bees Selected for LVG and HVG That Were Treated with V. destructor
2.2. RNA Extraction, Sequencing, and Library Preparation
2.3. Bioinformatic Analyses
2.4. Statistical Analyses
3. Results
3.1. Treatments and Reads
3.2. DEGs from Treatment Comparisons
3.3. Up-Regulated DEGs
3.4. Down-Regulated DEGs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATP | Adenosine triphosphate |
bp | Base pairs |
CA | California |
CO2 | Carbon dioxide |
DEA | Differential expression analysis |
DEGs | Differentially expressed genes |
Dim | Dimension |
DNA | Deoxyribonucleic acid |
DWV | Deformed wing virus |
FPKM | Kilobase of exon per million fragments mapped |
GC | Guanine and cytosine content |
GO | Gene ontology |
GTP | Guanosine triphosphate |
GTPase | Guanosine triphosphatases |
H2O | Water |
HVG | Higher rates of Varroa population growth |
HVG-C | HVG bees without Varroa |
HVG-V | HVG bees with Varroa |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LVG | Lower rates of Varroa population growth |
LVG-C | LVG bees without Varroa |
LVG-V | LVG bees with Varroa |
Log | Logarithm |
log2FC | Logarithm 2 fold change |
logFC | Logarithm fold change |
μL | Microliter |
M | Millions |
MA | Massachusetts |
Min | Minutes |
mm | Millimeter |
NADH | Nicotinamide adenine dinucleotide (NAD) + hydrogen (H) |
ON | Ontario |
p | p-value |
padj | Adjusted p-value |
PCA | Principal component analysis |
PRE | Percent relative error |
QC | Québec |
RPKM | Kilobase of transcript per million mapped reads |
RH | Relative humidity |
RNA | Ribonucleic acid |
RNA-seq | RNA sequencing |
rpm | Revolutions per minute |
s | Seconds |
srnRNA | Small nuclear RNA |
USA | United States of America |
V. destructor | Varroa destructor |
VSH | Varroa sensitive hygiene |
×g | G-force |
χ2 | Chi-square test |
References
- Morfin, N.; Goodwin, P.H.; Guzman-Novoa, E. Varroa destructor and its impacts on honey bee biology. Front. Bee Sci. 2023, 1, 1272937. [Google Scholar] [CrossRef]
- Brook, G. Varroa treatment-free colony losses in the European honey bee (Apis mellifera): A review of published literature. J. Apic. Res. 2025, 1–10. [Google Scholar] [CrossRef]
- Ramsey, S.D.; Ochoa, R.; Bauchan, G.; Gulbronson, C.; Mowery, J.D.; Cohen, A.; Lim, D.; Joklik, J.; Cicero, J.M.; Ellis, J.D.; et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA 2019, 116, 1792–1801. [Google Scholar] [CrossRef]
- Han, B.; Wu, J.; Wei, Q.; Liu, F.; Cui, L.; Rueppell, O.; Xu, S. Life-history stage determines the diet of ectoparasitic mites on their honey bee hosts. Nat. Commun. 2024, 15, 725. [Google Scholar] [CrossRef]
- Richards, E.H.; Jones, B.; Bowman, A. Salivary secretions from the honeybee mite, Varroa destructor: Effects on insect haemocytes and preliminary biochemical characterization. Parasitology 2024, 138, 602–608. [Google Scholar] [CrossRef]
- Ryabov, E.V.; Wood, G.R.; Fannon, J.M.; Moore, J.D.; Bull, J.C.; Chandler, D.; Mead, A.; Burroughs, N.; Evans, D.J. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 2014, 10, 1004230. [Google Scholar] [CrossRef]
- Shen, M.; Yang, X.; Cox-Foster, D.; Cui, L. The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 2005, 342, 141–149. [Google Scholar] [CrossRef]
- Kunc, M.; Dobeš, P.; Ward, R.; Lee, S.; Čegan, R.; Dostálková, S.; Holušová, K.; Hurychová, J.; Eliáš, S.; Pinďáková, E.; et al. Omics-based analysis of honey bee (Apis mellifera) response to Varroa sp. Parasitisation and associated factors reveals changes impairing winter bee generation. Insect Biochem. Mol. Biol. 2023, 152, 103877. [Google Scholar] [CrossRef]
- Zanni, V.; Galbraith, D.A.; Annoscia, D.; Grozinger, C.M.; Nazzi, F. Transcriptional signatures of parasitism and markers of colony decline in Varroa-infested honey bees (Apis mellifera). Insect Biochem. Mol. Biol. 2017, 87, 1–13. [Google Scholar] [CrossRef]
- Morfin, N.; Goodwin, P.H.; Hunt, G.J.; Guzman-Novoa, E. Effects of sublethal doses of clothianidin and/or V. destructor on honey bee (Apis mellifera) self-grooming behavior and associated gene expression. Sci. Rep. 2019, 9, 5196. [Google Scholar] [CrossRef]
- Wallner, K. Varroacides and their residues in bee products. Apidologie 1999, 30, 235–248. [Google Scholar] [CrossRef]
- Rinderer, T.E.; Harris, J.W.; Hunt, G.J.; De Guzman, L.I. Breeding for resistance to Varroa destructor in North America. Apidologie 2010, 41, 409–424. [Google Scholar] [CrossRef]
- De La Mora, A.; Goodwin, P.H.; Emsen, B.; Kelly, P.G.; Petukhova, T.; Guzman-Novoa, E. Selection of honey bee (Apis mellifera) genotypes for three generations of low and high population growth of the mite Varroa destructor. Animals 2024, 14, 3537. [Google Scholar] [CrossRef]
- Spivak, M.; Reuter, G.S.; Lee, K.; Ranum, B. Hygienic Stock of Bees is in Good Hands! Am. Bee J. 2009, 149, 965–967. Available online: https://www.researchgate.net/publication/279896898_The_Future_of_the_MN_Hygienic_Stock_of_Bees_is_in_Good_Hands (accessed on 10 October 2025).
- Guzman-Novoa, E.; Correa Benítez, A. Selection of honey bees (Apis mellifera L.) for resistance to the mite Varroa jacobsoni O. Vet. Mex. 1996, 27, 149–158. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19980200441 (accessed on 10 October 2025).
- Boecking, O.; Spivak, M. Behavioral defenses of honey bees against Varroa jacobsoni Oud. Apidologie 1999, 30, 141–158. [Google Scholar] [CrossRef]
- Guzman-Novoa, E.; Emsen, B.; Unger, P.; Espinosa-Montaño, L.G.; Petukhova, T. Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.). J. Invertebr. Pathol. 2012, 110, 314–320. [Google Scholar] [CrossRef]
- Le Conte, Y.; Alaux, C.; Martin, J.-F.; Harbo, J.R.; Harris, J.W.; Dantec, C.; Séverac, D.; Cros-Arteil, S.; Navajas, M. Social immunity in honeybees (Apis mellifera): Transcriptome analysis of Varroa-hygienic behaviour: Genomics of social immunity. Insect Mol. Biol. 2011, 20, 399–408. [Google Scholar] [CrossRef]
- Hakanoğlu, H. Identification of Potential Transcriptomic Biomarkers for Varroa Resistance in Honey Bees (Apis mellifera anatoliaca). Ph.D. Thesis, Sabancı University, Istanbul, Turkey, 2020. [Google Scholar]
- Morfin, N.; Harpur, B.A.; De La Mora, A.; Guzman-Novoa, E. Breeding honey bees (Apis mellifera L.) for low and high Varroa destructor population growth: Gene expression of bees performing grooming behavior. Front. Insect Sci. 2020, 3, 951447. [Google Scholar] [CrossRef]
- De La Mora, A.; Goodwin, P.H.; Morfin, N.; Petukhova, T.; Guzman-Novoa, E. Diversity of potential resistance mechanisms in honey bees (Apis mellifera) selected for low population growth of the parasitic mite, Varroa destructor. Insects 2025, 16, 385. [Google Scholar] [CrossRef]
- Dietemann, V.; Nazzi, F.; Martin, S.J.; Anderson, D.L.; Locke, B.; Delaplane, K.S.; Wauquiez, Q.; Tannahill, C.; Frey, E.; Ziegelmann, B.; et al. Standard methods for varroa research. J. Apic. Res. 2013, 52, 1–54. [Google Scholar] [CrossRef]
- Morfin, N. (University of Manitoba, Winnipeg, MB, Canada). Personal communication, 2025.
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Roberts, A.; Pimentel, H.; Trapnell, C.; Pachter, L. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 2011, 27, 2325–2329. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. (Online Ed.) 2010, 11, R106. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Reimand, J.; Arak, T.; Adler, P.; Kolberg, L.; Reisberg, S.; Peterson, H.; Vilo, J. g:Profiler—A web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016, 44, W83–W89. [Google Scholar] [CrossRef] [PubMed]
- Hulsen, T.; De Vlieg, J.; Alkema, W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 2008, 9, 488. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Blake, J.A.; Baldarelli, R.; Kadin, J.A.; Richardson, J.E.; Smith, C.L.; Bult, C.J.; Anagnostopoulos, A.V.; Beal, J.S.; Bello, S.M.; Blodgett, O.; et al. Mouse Genome Database (MGD): Knowledgebase for mouse–human comparative biology. Nucleic Acids Res. 2021, 49, D981–D987. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: R-Project, 2019 [Computer Software]. Available online: https://www.R-project.org/ (accessed on 23 March 2024).
- Raser, J.M.; O’Shea, E.K. Noise in gene expression: Origins, consequences, and control. Science 2005, 309, 2010–2013. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J. Impact of gene expression noise on organismal fitness and the efficacy of natural selection. Proc. Natl. Acad. Sci. USA 2011, 108, E67–E76. [Google Scholar] [CrossRef] [PubMed]
- Chakroborty, N.K.; Bienefeld, K.; Menzel, R. Odor learning and odor discrimination of bees selected for enhanced hygienic behavior. Apidologie 2015, 46, 499–514. [Google Scholar] [CrossRef]
- Fiołka, M.J.; Ptaszyńska, A.A.; Czarniawski, W. Antibacterial and antifungal lysozyme-type activity in Cameraria ohridella pupae. J. Invertebr. Pathol. 2005, 90, 1–9. [Google Scholar] [CrossRef]
- Zaobidna, E.A.; Żółtowska, K.; Łopieńska-Biernat, E. Expression and activity of lysozyme in Apis mellifera carnica brood infested with Varroa destructor. J. Apic. Sci. 2017, 61, 253. [Google Scholar] [CrossRef]
- Jinno, A.; Park, P.W. Role of Glycosaminoglycans in infectious disease. Glycosaminoglycans 2015, 1229, 567–585. [Google Scholar] [CrossRef]
- Sahebi, M.; Hanafi, M.M.; van Wijnen, A.J.; Azizi, P.; Abiri, R.; Ashkani, S.; Taheri, S. Towards understanding pre-mRNA splicing mechanisms and the role of SR proteins. Gene 2016, 587, 107–119. [Google Scholar] [CrossRef]
- Kunat-Budzyńska, M.; Staniszewska, P.; Olszewski, K.; Cytryńska, M.; Strachecka, A. The efficiency of the Krebs cycle and the respiratory chain in physiologically and prematurely aging bees (Apis mellifera). Int. J. Mol. Sci. 2025, 26, 7294. [Google Scholar] [CrossRef]
- Margiotta, A. Role of SNAREs in neurodegenerative diseases. Cells 2021, 10, 991. [Google Scholar] [CrossRef]
- Boettner, B.; Van Aelst, L. The role of Rho GTPases in disease development. Gene 2002, 286, 155–174. [Google Scholar] [CrossRef]
- Seabra, M.C.; Mules, E.H.; Hume, A.N. Rab GTPases, intracellular traffic and disease. Trends Mol. Med. 2002, 8, 23–30. [Google Scholar] [CrossRef]
- Parle, E.; Dirks, J.-H.; Taylor, D. Damage, repair and regeneration in insect cuticle: The story so far, and possibilities for the future. Arthropod Struct. Dev. 2017, 46, 49–55. [Google Scholar] [CrossRef]
- Willis, J.H. Structural cuticular proteins from arthropods: Annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem. Mol. Biol. 2010, 40, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Micas, A.F.D.; Ferreira, G.A.; Laure, H.J.; Rosa, J.C.; Bitondi, M.M.G. Proteins of the integumentary system of the honeybee, Apis mellifera. Arch. Insect Biochem. Physiol. 2016, 93, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, S.I.; Nagayama, R.; Hirata, M.; Shigenaga, T.; Agarwala, K.L.; Saito, T.; Cho, J.; Nakajima, H.; Takagi, T.; Iwanaga, S. Tachycitin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin-binding activity. J. Biochem. 1996, 120, 1253–1260. [Google Scholar] [CrossRef]
- Zhang, B.; Li, C.; Luan, Y.; Lu, Y.; Hu, H.; Liu, Y.; Lu, K.; Zhang, G.; Dai, F.; Tong, X. The role of chitooligosaccharidolytic β-N-acetylglucosamindase in the molting and wing development of the silkworm Bombyx mori. Int. J. Mol. Sci. 2022, 23, 3850. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, W.J.; Park, S.-J. Analyzing gut microbial community in Varroa destructor-infested western honeybee (Apis mellifera). J. Microbiol. Biotechnol. 2023, 33, 1495–1505. [Google Scholar] [CrossRef]
- Kubrak, O.I.; Lushchak, O.V.; Zandawala, M.; Nässel, D.R. Systemic corazonin signalling modulates stress responses and metabolism in Drosophila. Open Biol. 2016, 6, 160152. [Google Scholar] [CrossRef]
- Obernesser, B.; Snyder, L.; Hoffman, A.; Bennett, M.M.; Corby-Harris, V. Corazonin responds to nutrient stress and increases flight activity in Apis mellifera workers. J. Apic. Res. 2025, 1–8. [Google Scholar] [CrossRef]
- Fernandez-Ayala, D.J.; Chen, S.; Kemppainen, E.; O’Dell, K.M.; Jacobs, H.T. Gene expression in a Drosophila model of mitochondrial disease. PLoS ONE 2010, 5, e8549. [Google Scholar] [CrossRef]
- Schier, A.C.; Taatjes, D.J. Structure and mechanism of the RNA polymerase II transcription machinery. Genes Dev. 2020, 34, 465–488. [Google Scholar] [CrossRef]
- Ptushkina, M.; Poolman, T.; Iqbal, M.; Ashe, M.; Petersen, J.; Woodburn, J.; Rattray, M.; Whetton, A.; Ray, D. A non-transcriptional role for the glucocorticoid receptor in mediating the cell stress response. Sci. Rep. 2017, 7, 12101–12112. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Fu, C.Y.; Lin, C.Y.; Hu, J.R.; Huang, T.Y.; Lo, K.Y.; Tsai, H.Y.; Sheu, J.C.; Tsai, H.J. Poly (U)-specific endoribonuclease ENDOU promotes translation of human CHOP mRNA by releasing uORF element-mediated inhibition. EMBO J. 2021, 40, e104123. [Google Scholar] [CrossRef] [PubMed]
- Drapeau, M.D.; Albert, S.; Kucharski, R.; Prusko, C.; Maleszka, R. Evolution of the yellow/major royal jelly protein family and the emergence of social behavior in honey bees. Genome Res. 2006, 16, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Feng, M.; Ma, C.; Rueppell, O.; Li, J. Major royal jelly proteins influence the neurobiological regulation of the division of labor among honey bee workers. Int. J. Biol. Macromol. 2023, 225, 848–860. [Google Scholar] [CrossRef]
- Park, M.J.; Kim, B.Y.; Deng, Y.; Park, H.G.; Choi, Y.S.; Lee, K.S.; Jin, B.R. Antioxidant capacity of major royal jelly proteins of honeybee (Apis mellifera) royal jelly. J. Asia-Pac. Entomol. 2020, 23, 445–448. [Google Scholar] [CrossRef]
- Nie, H.Y.; Liang, L.Q.; Li, Q.F.; Li, Z.H.Q.; Zhu, Y.N.; Guo, Y.K.; Zheng, Q.L.; Lin, Y.; Yang, D.L.; Li, Z.G.; et al. CRISPR/Cas9 mediated knockout of Amyellow-y gene results in melanization defect of the cuticle in adult Apis mellifera. J. Insect Physiol. 2021, 132, 104264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Mora, A.; Goodwin, P.H.; Petukhova, T.; Guzman-Novoa, E. Effect of Selection for Low and High Varroa destructor Population Growth Rates on the Honey Bee Transcriptome. Pathogens 2025, 14, 1077. https://doi.org/10.3390/pathogens14111077
De la Mora A, Goodwin PH, Petukhova T, Guzman-Novoa E. Effect of Selection for Low and High Varroa destructor Population Growth Rates on the Honey Bee Transcriptome. Pathogens. 2025; 14(11):1077. https://doi.org/10.3390/pathogens14111077
Chicago/Turabian StyleDe la Mora, Alvaro, Paul H. Goodwin, Tatiana Petukhova, and Ernesto Guzman-Novoa. 2025. "Effect of Selection for Low and High Varroa destructor Population Growth Rates on the Honey Bee Transcriptome" Pathogens 14, no. 11: 1077. https://doi.org/10.3390/pathogens14111077
APA StyleDe la Mora, A., Goodwin, P. H., Petukhova, T., & Guzman-Novoa, E. (2025). Effect of Selection for Low and High Varroa destructor Population Growth Rates on the Honey Bee Transcriptome. Pathogens, 14(11), 1077. https://doi.org/10.3390/pathogens14111077