Disarming Staphylococcus aureus: Review of Strategies Combating This Resilient Pathogen by Targeting Its Virulence
Abstract
:1. Introduction
2. Inhibition of Adhesion and Biofilm Formation
Mechanism of Action | Inhibitor | Reference |
---|---|---|
Sortase A Inhibition | ||
Binds to and inhibits SrtA activity | Rhodionin | [32] |
Reversible SrtA inhibition impairs SpA anchoring | Plantamajoside | [33] |
Inhibits SrtA, reduces adhesion/biofilm | Hibifolin | [34] |
Dual inhibition of SrtA and α-hemolysin | Isosakuranetin | [31] |
Binds SrtA, induces conformational changes | 2R,3R-dihydromyricetin | [35] |
Inhibits SrtA and Hla, reduces adhesion | Daphnetin | [68] |
Inhibits SrtB, reduces adhesion to lung cells | Coptisine | [69] |
MSCRAMM Interaction Blockade | ||
Blocks ClfA/ClfB ligand-binding trenches | Allantodapsone | [70] |
Inhibits MSCRAMM anchoring (SraP adhesin) | Anti-SraP L-lectin mAb | [64] |
Biofilm Gene Downregulation | ||
Downregulates icaA/icaD | C1 and C2 (LMW compounds) | [71] |
Downregulates sarA, agr, and ica | Quebrachitol | [67] |
Downregulates sarX and PIA production | YH7 | [53] |
Suppresses sarA, icaA, and icaD | Gallic acid (GA) | [40] |
Extracellular Matrix (ECM) Disruption | ||
Destabilizes ECM components | Fmoc-F | [72] |
Disrupts eDNA meshwork | D-Asp/D-Glu | [51] |
Reduces eDNA and metabolic activity | PASP and EO@PASP/HACCNPs | [73] |
Surface Property Modification | ||
Alters surface hydrophilicity | Microalgal EPSs (Ta fraction) | [74] |
Reduces adhesion via glycopolymer interactions | Trehalose-AuNPs | [75] |
Membrane Integrity Disruption | ||
Disrupts membrane permeability | Vc-EAF (Vernonia condensata) | [63] |
Nanoparticle-Mediated Disruption | ||
Downregulates PIA synthesis | Ag@Glu/Tsc NPs | [76] |
Adhesion Gene Suppression | ||
Inhibits clfA, sdrC | DLL37-1 and LL37-1 | [49] |
Anti-Inflammatory and Anti-Adhesive | ||
Attenuates NF-κB pathway | Forsythiaside | [58] |
3. Neutralization of Toxins
Category | Inhibitor | Mechanism of Action | Reference |
---|---|---|---|
1. Toxin Neutralization and Superantigen Interaction Blockade | Bispecific scFv MB102a | Allosterically inhibited SEB-TCR complex formation. | [78] |
Computational protein binder | Bound SEB’s MHC-II domain, inhibiting the inflammatory response. | [79] | |
Hm0487 monoclonal antibody | Blocked SEB interaction with TCR/MHC-II; enhanced phagocytosis. | [80] | |
Human cathelicidin LL-37 | Bound LukS, inhibiting PVL toxin. | [81] | |
LXY8 monoclonal antibody | Blocked SEB-TCR interaction | [82] | |
Monoclonal antibody YG1 | Neutralized Hla pore formation by targeting amino acids 205–212. | [83] | |
pSEB116-132 peptide | Blocked SEB binding to CD28, reducing inflammation. | [84] | |
scFv MS473 | Neutralized TSST-1, preventing lethal shock. | [85] | |
2. Staphyloxanthin and Pigmentation Inhibition | AS8 (thymol-isatin hybrid) | Inhibited staphyloxanthin; reduced biofilm formation. | [86] |
Patuletin | Bound CrtM, inhibiting staphyloxanthin and biofilm formation. | [87] | |
Terbinafine | Inhibited staphyloxanthin biosynthesis; disrupted biofilm. | [88] | |
3. Membrane Integrity Disruption and ROS Generation | Ga3+CHP (photoactivated) | Generated ROS via photodynamic inactivation, reducing toxin production. | [89] |
MSI-1 peptide | Disrupted membrane integrity; reduced STX synthesis. | [90] | |
Rosmarinus officinalis/Myrtus communis oils | Induced oxidative stress; reduced catalase activity. | [91] | |
4. Coagulase and Fibrin Formation Inhibition | Baicalein | Inhibited coagulase activity of vWbp; enhanced penicillin G efficacy. | [92] |
Galangin | Bound vWbp inhibited fibrin formation and synergized with latamoxef. | [93] | |
Sinensetin | Bound Coa residues (R73A, R204A), inhibiting coagulation. | [94] | |
5. Protease and Enzyme Inhibition | Ayanin | Inhibited ClpP; reduced virulence factors. | [95] |
Phenyl esters (MAS-19, MAS-30) | Inhibited ClpXP protease; reduced toxin production. | [96] | |
Tamarixetin | Inhibited ClpP hydrolytic activity; suppressed virulence factors. | [97] | |
6. Immune Response Modulation | Anandamide (AEA) | Modulated miRNAs to increase anti-inflammatory molecules (ARG1, TGF-β2). | [98] |
Δ9-Tetrahydrocannabinol | Suppressed cytokines via CB2 receptor-induced Tregs and MDSCs. | [99] | |
IBT-V02 vaccine | Generated neutralizing antibodies against multiple toxins. | [100] |
3.1. Inhibition of Hemolysin Production
3.2. Inhibition of Enterotoxins
3.3. Inhibition of Staphyloxanthin Production
3.4. Inhibition of Coagulase Production
3.5. Inhibition of Other Toxins
4. Iron Acquisition Inhibitors
Inhibitor | Action Mechanism | Reference |
---|---|---|
C35* | Inhibits IsdB-Hb complex formation, preventing heme acquisition by S. aureus | [152] |
Synthetic gallotannins (PGG, G4Glc, G4Man) | Inhibits S. aureus biofilm formation, interacts with QS systems, and exhibits antioxidant properties | [153] |
Compound 9 | Inhibits CntL, reducing intracellular iron, nickel, and cobalt concentrations under metal-limited conditions | [154] |
HSGN-220, HSGN-218, HSGN-144 | Inhibits DNA replication, modulates menaquinone biosynthesis, starves bacteria of iron by upregulating heme/siderophore proteins, and disrupts membrane potential without altering permeability | [155] |
GW3965·HCl, PHT-427 | Reduces FeoB enzymatic activity, bacterial growth, and virulence factors (e.g., staphyloxanthin); alters bacterial metabolism to reduce iron availability | [156] |
Saikosaponin A (SSA) | It reduces inflammation markers (MPO, TNF-α, IL-1β) and inhibits S. aureus-induced ferroptosis by decreasing iron accumulation and enhancing GPX4 activity | [157] |
5. Anti-QS Strategies
Inhibitor | Action Mechanism | Reference |
---|---|---|
Visomitin | Inhibits Agr system; reduces virulence factors (hemolysin, staphyloxanthin) and biofilm formation | [160] |
Bacillus subtilis-derived peptides | Modulates Agr signaling inhibits biofilm formation and enhances antibiotic susceptibility | [161] |
Ambuic acid | Suppresses AIP-I and δ-toxin production; inhibits QS-regulated virulence | [162] |
3Staphylococcus simulans AIP-I | Blocks MRSA agr signaling; reduces toxin production and skin necrosis | [163] |
Staphylococcus warneri AIPs | Inhibits MRSA agr-IV signaling; reduces toxin production | [164] |
Carnosic acid, carnosol | Inhibits agr-mediated QS signaling; reduces RNAIII expression and virulence factors (PSMs, α-hemolysin) | [165] |
Pyrazolopyrimidine, thiazolopyridine | Inhibits agr-mediated QS; suppresses Phenol-Soluble Modulin (PSM) production | [166] |
Pyocyanin | Binds AgrA; downregulates agrA; and reduces biofilm formation and toxin production | [167] |
Azan-7 | Binds AgrA blocks interaction with P3 promoter and reduces hemolysis and biofilm formation | [168] |
orrectCNP0238696 | Binds AgrA (in silico); inhibits QS-regulated virulence | [169] |
Flavuside B (FlaB) | Suppresses agrA expression; reduces virulence and inflammation | [170] |
G5-QQ3 dendrimer | Binds AgrA; inhibits hemolysis and biofilm formation | [171] |
Staquorsin | Binds AgrA; inhibits RNAIII transcription; reduces virulence factors and biofilm formation | [172] |
Physalins (H, B, isophysalin B) | Binds AgrA DNA-binding site; suppresses virulence gene expression | [173] |
Actinomycetales-derived metabolites | Inhibits AgrA; reduces hemolysis and virulence factor expression | [174] |
Epoxide compounds (ambuic acid) | Inhibits AgrA; reduces hemolysis and biofilm formation | [175] |
Bumetanide | Binds AgrA (Tyr-229); downregulates hla, psmα, and lukS-PV; and promotes wound healing | [176] |
Eugenol | Inhibits AgrA phosphorylation; suppresses agrA, agrC, RNAIII, hla, and seb; and disrupts energy metabolism | [177] |
MA01 rhamnolipid | Downregulates agrA and agrC; inhibits biofilm formation | [178] |
Probiotic-derived metabolites | Downregulates agrA; reduces staphyloxanthin and α-hemolysin production | [179] |
Carboxypyranoanthocyanins | Downregulates QS genes (agrA, RNAIII); inhibits biofilm formation | [180] |
Shikonin | Downregulates QS genes (agrA, RNAIII); reduces biofilm formation | [181] |
5-acetyl-4-methyl-2-(3-pyridyl) thiazole (AMPT) | Binds AgrA and SarA; inhibits biofilm formation and virulence factors (hemolysin, protease) | [182] |
Gliptins (sitagliptin) | Downregulates QS genes (agrA, sarA); inhibits biofilm formation and toxin production | [183] |
Juglone derivatives (e.g., resveratrol) | Binds AgrC (in silico); suppresses agr-regulated virulence | [184] |
Macrocyclic QQ peptides (QQ-1 to QQ-4) | Competitively inhibits AgrC activation; blocks virulence gene expression | [185] |
Peptidomimetics (PhPr(3Br)-Bnc3) | Inhibits agr signaling; reduces toxin production without affecting growth | [157] |
Morin | Binds SarA, inhibiting DNA binding; reduces biofilm formation | [186] |
Vaccenic acid | Downregulates QS genes (SarA); inhibits biofilm formation and virulence factors. | [187] |
6. Anti-Two-Component Strategies
Inhibitor | Action Mechanism | Reference |
---|---|---|
SKKUCS | Inhibits SaeS kinase activity by blocking ATP binding | [202] |
Norlichexanthone | Interferes with AgrA-DNA binding and represses SaeRS-regulated genes | [203] |
NH125 | Noncompetitively inhibits VraS autophosphorylation | [204] |
Dextran sodium sulfate (DSS) | Downregulates SaeRS-regulated virulence genes (toxins, adhesins) | [205] |
I-modulia® | Enhances DSS-mediated suppression of virulence factors (secretion systems and exo-proteases) | |
Five lead compounds (unnamed) | Bind to GraR dimerization interface, disrupting DNA interaction | [206] |
Resveratrol | Downregulates saeRS expression, reducing virulence factor production | [207] |
Phenazopyridine hydrochloride (PP-HCl) | Inhibits SaeS kinase activity, reducing SaeR phosphorylation | [124] |
Fatty acids (FA) | Indirect inhibition via FA accumulation, suppressing SaeS activation | [208] |
PMI-5 | Targets ATP-binding domain of histidine kinases, suppressing virulence-associated TCS activation | [209] |
HR3744, SAV13 | Disrupts SaeR DNA-binding activity | [210] |
TST1N-224 | Disrupts VraRC-DNA complex formation, targeting DNA-binding residues | [211] |
Gambogic acid (GA), Neogambogic acid (NGA) | Downregulates saeRS-regulated virulence genes (hemolysins, leukocidins, and fibrinogen-binding proteins) | [212] |
Fenoprofen | Prevents SaeR-DNA binding, repressing virulence factors | [213] |
3,4′-DMF | Directly inhibits ArlS autophosphorylation | [214] |
Xanthoangelol B | Binds to SaeS, inhibiting histidine kinase activity | [215] |
Verteporfin | Interferes with redox sensing via C227 residue in GraS | [216] |
Sulfonamide derivative (compound 5) | Binds to ATP-binding domain of VraS | [217] |
3,4′-Dimethoxyflavone derivatives (compound 17) | Inhibits ArlRS-dependent gene regulation; suppresses β-lactam resistance via GraRS or mecA-PBP2a | [218] |
Antisense yycG RNA (ASyycG) | Downregulates YycFG pathway activity, reducing biofilm formation and virulence gene expression | [219] |
7. Strain-Specific Challenges in Anti-Virulence Therapeutics
8. Strategies to Prevent Resistance in Anti-Virulence Interventions
- Multi-target and dual-action mechanisms: Several compounds, such as MPDA-LUT@CaP implant coating [224] and HSGN-220/HSGN-218 [155], synergistically inhibit QS and biofilm formation while disrupting bacterial metabolism (e.g., iron starvation, DNA replication). These multi-pathway approaches reduce the likelihood of resistance by limiting adaptive escape routes for pathogens.
- Non-bactericidal virulence suppression: Agents like S. simulans AIP-I [163] and macrocyclic QS quencher peptides [185] selectively block QS receptors (e.g., AgrC) or virulence regulators (e.g., BfmR) at sub-inhibitory concentrations, attenuating pathogenicity without affecting bacterial viability. This minimizes selective pressure for resistance.
- Repurposed drugs with dual utility: Bumetanide [196] and fenoprofen [213], originally developed for non-infectious conditions, inhibit AgrA and SaeR signaling, respectively. They demonstrate efficacy in vivo without inducing resistance. Their established safety profiles expedite clinical translation.
- -
- -
- In vivo validation of multi-target agents: Prioritizing preclinical studies for compounds like synthetic gallotannins [153] to confirm their resistance-sparing potential in complex host environments.
- -
- Exploration of host–pathogen interface: Leveraging immunomodulatory agents (e.g., Saikosaponin A; [157]) that enhance host defenses while indirectly suppressing virulence, thereby avoiding direct microbial targeting.
9. Limitations and Challenges
10. Future Directions
11. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
10-HDA | 10-Hydroxy-2-decenoic Acid |
3,4′-DMF | 3,4′-Dimethoxyflavone |
Agr | Accessory Gene Regulator |
AgrA | Agr Response Regulator |
AgrC | Agr Sensor Kinase |
AIP | Autoinducing Peptide |
ArlRS | Arl Two-Component System |
bCSE | Bacterial Cystathionine-γ-Lyase |
Clfs | Clumping Factors |
ClpP | Caseinolytic Protease |
CrtM | Dehydrosqualene Synthase |
CrtN | Dehydrosqualene Desaturase |
DSS | Dextran Sodium Sulfate |
EGCG | Epigallocatechin Gallate |
EPS | Extracellular Polymeric Substances |
ESKAPE | Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species |
FeoB | Ferrous Iron Transporter |
FnBPs | Fibronectin-Binding Proteins |
GraXRS | GraXRS Two-Component System |
H2S | Hydrogen Sulfide |
Hla | Alpha-Hemolysin |
HPC | Homopterocarpin |
HXS | Hexestrol |
IsdB | Iron-Regulated Surface Determinant B |
KD | Dissociation Constant |
LL-37 | Human Cathelicidin LL-37 |
mAbs | Monoclonal Antibodies |
MK-4 | Menaquinone-4 |
MRSA | Methicillin-Resistant Staphylococcus aureus |
NDH-2 | Type II NADH Dehydrogenase |
PBP2a | Penicillin-Binding Protein 2a |
PP-HCl | Phenazopyridine Hydrochloride |
PSMs | Phenol-Soluble Modulins |
PVL | Panton–Valentine Leukocidin |
QS | Quorum Sensing |
S. aureus | Staphylococcus aureus |
SaeRS | Sae Two-Component System |
SarA | Staphylococcal Accessory Regulator A |
SCCmec | Staphylococcal Chromosomal Cassette mec |
SrtA | Sortase A |
STX | Staphyloxanthin |
TCS | Two-Component Systems |
TSST-1 | Toxic Shock Syndrome Toxin-1 |
VRSA | Vancomycin-Resistant Staphylococcus aureus |
YycFG | YycFG Two-Component System |
References
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and Virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Alkuraythi, D. Virulence Factors and Pathogenicity of Staphylococcus aureus. In Advances and Perspectives of Infections Caused by Staphylococcus aureus; IntechOpen: London, UK, 2024; ISBN 978-0-85466-886-1. [Google Scholar]
- Taj, Z.; Chattopadhyay, I. Staphylococcus aureus Virulence Factors and Biofilm Components: Synthesis, Structure, Function and Inhibitors. In ESKAPE Pathogens: Detection, Mechanisms and Treatment Strategies; Busi, S., Prasad, R., Eds.; Springer Nature: Singapore, 2024; pp. 227–270. ISBN 978-981-9987-99-3. [Google Scholar]
- Bronner, S.; Monteil, H.; Prévost, G. Regulation of Virulence Determinants in Staphylococcus aureus: Complexity and Applications. FEMS Microbiol. Rev. 2004, 28, 183–200. [Google Scholar] [CrossRef] [PubMed]
- Jenul, C.; Horswill, A.R. Regulation of Staphylococcus aureus Virulence. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-H.; Cameron, D.R.; Nethercott, C.; Aires-de-Sousa, M.; Peleg, A.Y. Virulence Attributes of Successful Methicillin-Resistant Staphylococcus aureus Lineages. Clin. Microbiol. Rev. 2023, 36, e0014822. [Google Scholar] [CrossRef] [PubMed]
- Girma, A. Staphylococcus aureus: Current Perspectives on Molecular Pathogenesis and Virulence. Cell Surf. 2025, 13, 100137. [Google Scholar] [CrossRef]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef]
- Liu, J.; Chen, D.; Peters, B.M.; Li, L.; Li, B.; Xu, Z.; Shirliff, M.E. Staphylococcal Chromosomal Cassettes Mec (SCCMec): A Mobile Genetic Element in Methicillin-Resistant Staphylococcus aureus. Microb. Pathog. 2016, 101, 56–67. [Google Scholar] [CrossRef]
- Foster, T.J. Antibiotic Resistance in Staphylococcus aureus. Current Status and Future Prospects. FEMS Microbiol. Rev. 2017, 41, 430–449. [Google Scholar] [CrossRef]
- Miller, W.R.; Arias, C.A. ESKAPE Pathogens: Antimicrobial Resistance, Epidemiology, Clinical Impact and Therapeutics. Nat. Rev. Microbiol. 2024, 22, 598–616. [Google Scholar] [CrossRef]
- Brdová, D.; Ruml, T.; Viktorová, J. Mechanism of Staphylococcal Resistance to Clinically Relevant Antibiotics. Drug Resist. Updat. 2024, 77, 101147. [Google Scholar] [CrossRef]
- Shao, K.; Yang, Y.; Gong, X.; Chen, K.; Liao, Z.; Ojha, S.C. Staphylococcal Drug Resistance: Mechanisms, Therapies, and Nanoparticle Interventions. Infect. Drug Resist. 2025, 18, 1007–1033. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Liu, L.; Wei, J.; Xu, B. Progress in the Prevalence, Classification and Drug Resistance Mechanisms of Methicillin-Resistant Staphylococcus aureus. Infect. Drug Resist. 2023, 16, 3271–3292. [Google Scholar] [CrossRef]
- Esposito, S.; Blasi, F.; Curtis, N.; Kaplan, S.; Lazzarotto, T.; Meschiari, M.; Mussini, C.; Peghin, M.; Rodrigo, C.; Vena, A.; et al. New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA). Antibiotics 2023, 12, 742. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Neoh, H.; Nathan, S. Targeting Staphylococcus aureus Toxins: A Potential Form of Anti-Virulence Therapy. Toxins 2016, 8, 72. [Google Scholar] [CrossRef]
- Rasko, D.A.; Sperandio, V. Anti-Virulence Strategies to Combat Bacteria-Mediated Disease. Nat. Rev. Drug Discov. 2010, 9, 117–128. [Google Scholar] [CrossRef]
- Ford, C.A.; Hurford, I.M.; Cassat, J.E. Antivirulence Strategies for the Treatment of Staphylococcus aureus Infections: A Mini Review. Front. Microbiol. 2021, 11, 632706. [Google Scholar] [CrossRef] [PubMed]
- Sabino, Y.N.V.; Cotter, P.D.; Mantovani, H.C. Anti-Virulence Compounds against Staphylococcus aureus Associated with Bovine Mastitis: A New Therapeutic Option? Microbiol. Res. 2023, 271, 127345. [Google Scholar] [CrossRef]
- Kumar, S.; Mahato, R.P.; Ch, S.; Kumbham, S. Current Strategies against Multidrug-Resistant Staphylococcus aureus and Advances toward Future Therapy. The Microbe 2025, 6, 100281. [Google Scholar] [CrossRef]
- Foster, T.J.; Geoghegan, J.A.; Ganesh, V.K.; Höök, M. Adhesion, Invasion and Evasion: The Many Functions of the Surface Proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 2014, 12, 49. [Google Scholar] [CrossRef]
- Sahoo, K.; Meshram, S.; Sahoo, K., Jr. Biofilm Formation in Chronic Infections: A Comprehensive Review of Pathogenesis, Clinical Implications, and Novel Therapeutic Approaches. Cureus 2024, 16. [Google Scholar] [CrossRef]
- Peng, Q.; Tang, X.; Dong, W.; Sun, N.; Yuan, W. A Review of Biofilm Formation of Staphylococcus aureus and Its Regulation Mechanism. Antibiotics 2022, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Monteiro, F.J.; Ferraz, M.P. Infection of Orthopedic Implants with Emphasis on Bacterial Adhesion Process and Techniques Used in Studying Bacterial-Material Interactions. Biomatter 2012, 2, 176. [Google Scholar] [CrossRef]
- Zhao, A.; Sun, J.; Liu, Y. Understanding Bacterial Biofilms: From Definition to Treatment Strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef] [PubMed]
- Tsikopoulos, K.; Sidiropoulos, K.; Kitridis, D.; Moulder, E.; Ahmadi, M.; Drago, L.; Lavalette, D. Preventing Staphylococcus aureus Stainless Steel-Associated Infections in Orthopedics. A Systematic Review and Meta-Analysis of Animal Literature. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2021, 39, 2615–2637. [Google Scholar] [CrossRef]
- Li, J.; Wen, Q.; Gu, F.; An, L.; Yu, T. Non-Antibiotic Strategies for Prevention and Treatment of Internalized Staphylococcus aureus. Front. Microbiol. 2022, 13, 974984. [Google Scholar] [CrossRef] [PubMed]
- Speziale, P.; Pietrocola, G. Monoclonal Antibodies Targeting Surface-Exposed and Secreted Proteins from Staphylococci. Vaccines 2021, 9, 459. [Google Scholar] [CrossRef]
- Acet, Ö.; Dikici, E.; Acet, B.Ö.; Odabaşı, M.; Mijakovic, I.; Pandit, S. Inhibition of Bacterial Adhesion by Epigallocatechin Gallate Attached Polymeric Membranes. Colloids Surf. B Biointerfaces 2023, 221, 113024. [Google Scholar] [CrossRef]
- Gao, K.; Su, B.; Dai, J.; Li, P.; Wang, R.; Yang, X. Anti-Biofilm and Anti-Hemolysis Activities of 10-Hydroxy-2-Decenoic Acid against Staphylococcus aureus. Molecules 2022, 27, 1485. [Google Scholar] [CrossRef]
- Tian, L.; Wang, L.; Yang, F.; Zhou, T.; Jiang, H. Exploring the Modulatory Impact of Isosakuranetin on Staphylococcus aureus: Inhibition of Sortase A Activity and α-Haemolysin Expression. Virulence 2023, 14, 2260675. [Google Scholar] [CrossRef]
- Wang, X.; Luan, Y.; Hou, J.; Jiang, T.; Zhao, Y.; Song, W.; Wang, L.; Kong, X.; Guan, J.; Song, D.; et al. The Protection Effect of Rhodionin against Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia through Sortase A Inhibition. World J. Microbiol. Biotechnol. 2022, 39, 18. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Wang, L.; Wang, B.; Suo, J. Novel Inhibition of Staphylococcus aureus Sortase A by Plantamajoside: Implications for Controlling Multidrug-Resistant Infections. Appl. Environ. Microbiol. 2025, 91, e0180424. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Wang, L.; Zhao, Y.; Lanzi, G.; Wang, X.; Zhang, C.; Guan, J.; Wang, W.; Guo, X.; Meng, Y.; et al. Hibifolin, a Natural Sortase A Inhibitor, Attenuates the Pathogenicity of Staphylococcus aureus and Enhances the Antibacterial Activity of Cefotaxime. Microbiol. Spectr. 2022, 10, e0095022. [Google Scholar] [CrossRef]
- Ran, W.; Yi, P.; Jiang, L.; Yu, Y.; Zhong, K.; Wu, Y.; Gao, H. Antibiofilm Mechanism of 2R,3R-Dihydromyricetin by Targeting Sortase A and Its Application against Staphylococcus aureus Adhesion on Eggshell. Int. J. Food Microbiol. 2025, 426, 110925. [Google Scholar] [CrossRef]
- Wu, S.; Wu, B.; Liu, Y.; Deng, S.; Lei, L.; Zhang, H. Mini Review Therapeutic Strategies Targeting for Biofilm and Bone Infections. Front. Microbiol. 2022, 13, 936285. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, W.; Zhu, X.; Zhao, H.; Lu, Y.; Zhang, C.; Lu, Z. Surfactin Effectively Inhibits Staphylococcus aureus Adhesion and Biofilm Formation on Surfaces. Appl. Microbiol. Biotechnol. 2019, 103, 4565–4574. [Google Scholar] [CrossRef]
- Zezzi do Valle Gomes, M.; Nitschke, M. Evaluation of Rhamnolipid and Surfactin to Reduce the Adhesion and Remove Biofilms of Individual and Mixed Cultures of Food Pathogenic Bacteria. Food Control 2012, 25, 441–447. [Google Scholar] [CrossRef]
- Jeong, G.-J.; Kim, D.-K.; Park, D.-J.; Cho, K.-J.; Kim, M.-U.; Oh, D.K.; Tabassum, N.; Jung, W.-K.; Khan, F.; Kim, Y.-M. Control of Staphylococcus aureus Infection by Biosurfactant Derived from Bacillus rugosus HH2: Strain Isolation, Structural Characterization, and Mechanistic Insights. J. Hazard. Mater. 2024, 480, 136402. [Google Scholar] [CrossRef]
- Sang, H.; Jin, H.; Song, P.; Xu, W.; Wang, F. Gallic Acid Exerts Antibiofilm Activity by Inhibiting Methicillin-Resistant Staphylococcus aureus Adhesion. Sci. Rep. 2024, 14, 17220. [Google Scholar] [CrossRef]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green Synthesis of Silver Nanoparticles Using Plant Extracts and Their Antimicrobial Activities: A Review of Recent Literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Mikhailova, E.O. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020, 11, 84. [Google Scholar] [CrossRef]
- Vadakkan, K.; Hemapriya, J.; Ngangbam, A.K.; Sathishkumar, K.; Mapranathukaran, V.O. Biofilm Inhibition of Staphylococcus aureus by Silver Nanoparticles Derived from Hellenia Speciosa Rhizome Extract. Microb. Pathog. 2024, 196, 106933. [Google Scholar] [CrossRef] [PubMed]
- Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Chitosan-Based (Nano)Materials for Novel Biomedical Applications. Molecules 2019, 24, 1960. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.; Teixeira-Santos, R.; Gomes, L.C.; Faria, S.I.; Valcarcel, J.; Vázquez, J.A.; Cerqueira, M.A.; Pastrana, L.; Bourbon, A.I.; Mergulhão, F.J. Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of Staphylococcus aureus and Pseudomonas Aeruginosa. Molecules 2021, 26, 4378. [Google Scholar] [CrossRef]
- Rashki, S.; Asgarpour, K.; Tarrahimofrad, H.; Hashemipour, M.; Ebrahimi, M.S.; Fathizadeh, H.; Khorshidi, A.; Khan, H.; Marzhoseyni, Z.; Salavati-Niasari, M.; et al. Chitosan-Based Nanoparticles against Bacterial Infections. Carbohydr. Polym. 2021, 251, 117108. [Google Scholar] [CrossRef]
- Li, Y.; Ariotti, N.; Aghaei, B.; Pandzic, E.; Ganda, S.; Willcox, M.; Sanchez-Felix, M.; Stenzel, M. Inhibition of S. aureus Infection of Human Umbilical Vein Endothelial Cells (HUVECs) by Trehalose- and Glucose-Functionalized Gold Nanoparticles. Angew. Chem. Int. Ed Engl. 2021, 60, 22652–22658. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; She, P.; Li, Z.; Li, Y.; Li, L.; Yang, Y.; Zhou, L.; Wu, Y. Antibacterial and Antibiofilm Efficacy of Repurposing Drug Hexestrol against Methicillin-Resistant Staphylococcus aureus. Int. J. Med. Microbiol. IJMM 2023, 313, 151578. [Google Scholar] [CrossRef]
- Alba, M.L.S.; Durán-Rodriguez, A.T.; Pulido, L.M.S.; Escobar-Pérez, J.; Gutiérrez, S.A.; Ospina, J.N.; Bermúdez, G.P.; Molina, L.C.M. Peptides DLL37-1 and LL37-1, an Alternative to Inhibit Biofilm Formation in Clinical Isolates of Staphylococcus aureus and Staphylococcus Epidermidis. An. Acad. Bras. Cienc. 2022, 94, e20210848. [Google Scholar] [CrossRef] [PubMed]
- Iwata, Y.; Sakai, N.; Yoneda, I.; Senda, Y.; Sakai-Takemori, Y.; Oshima, M.; Nakagawa-Yoneda, S.; Ogura, H.; Sato, K.; Minami, T.; et al. D-Serine Inhibits the Attachment and Biofilm Formation of Methicillin-Resistant Staphylococcus aureus. Biochem. Biophys. Res. Commun. 2021, 537, 50–56. [Google Scholar] [CrossRef]
- Warraich, A.A.; Mohammed, A.R.; Perrie, Y.; Hussain, M.; Gibson, H.; Rahman, A. Evaluation of Anti-Biofilm Activity of Acidic Amino Acids and Synergy with Ciprofloxacin on Staphylococcus aureus Biofilms. Sci. Rep. 2020, 10, 9021. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, L.; Zhou, P.; Chen, S.; Wang, B.; Wan, C.; Han, W.; Rao, L.; Zhao, H.; Wang, X.; et al. A Novel Small-Molecule Compound S-342-3 Effectively Inhibits the Biofilm Formation of Staphylococcus aureus. Microbiol. Spectr. 2023, 11, e0159623. [Google Scholar] [CrossRef]
- Xiao, Y.; Wan, C.; Wu, X.; Xu, Y.; Chen, Y.; Rao, L.; Wang, B.; Shen, L.; Han, W.; Zhao, H.; et al. Novel Small-Molecule Compound YH7 Inhibits the Biofilm Formation of Staphylococcus aureus in a sarX-Dependent Manner. mSphere 2024, 9, e0056423. [Google Scholar] [CrossRef]
- Jiang, X.; Yan, X.; Gu, S.; Yang, Y.; Zhao, L.; He, X.; Chen, H.; Ge, J.; Liu, D. Biosurfactants of Lactobacillus Helveticus for Biodiversity Inhibit the Biofilm Formation of Staphylococcus aureus and Cell Invasion. Future Microbiol. 2019, 14, 1133–1146. [Google Scholar] [CrossRef]
- Mouafo, H.T.; Sokamte, A.T.; Mbawala, A.; Ndjouenkeu, R.; Devappa, S. Biosurfactants from Lactic Acid Bacteria: A Critical Review on Production, Extraction, Structural Characterization and Food Application. Food Biosci. 2022, 46, 101598. [Google Scholar] [CrossRef]
- Costa, G.A.; Rossatto, F.C.P.; Medeiros, A.W.; Correa, A.P.F.; Brandelli, A.; Frazzon, A.P.G.; Motta, A.D.S.D. Evaluation Antibacterial and Antibiofilm Activity of the Antimicrobial Peptide P34 against Staphylococcus aureus and Enterococcus faecalis. An. Acad. Bras. Cienc. 2018, 90, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.M.; Tran, H.; Booth, M.A.; Fox, K.E.; Nguyen, T.H.; Tran, N.; Tran, P.A. Nanomaterials for Treating Bacterial Biofilms on Implantable Medical Devices. Nanomaterials 2020, 10, 2253. [Google Scholar] [CrossRef]
- Li, H.; Tang, D.; Qi, C.; Zhao, X.; Wang, G.; Zhang, Y.; Yu, T. Forsythiaside Inhibits Bacterial Adhesion on Titanium Alloy and Attenuates Ti-Induced Activation of Nuclear Factor-κB Signaling-Mediated Macrophage Inflammation. J. Orthop. Surg. 2018, 13, 139. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Lo, C.; Zhuang, J.; Angsantikul, P.; Zhang, Q.; Wei, X.; Zhou, Z.; Obonyo, M.; Fang, R.H.; et al. Inhibition of Pathogen Adhesion by Bacterial Outer Membrane-Coated Nanoparticles. Angew. Chem. Int. Ed. Engl. 2019, 58, 11404–11408. [Google Scholar] [CrossRef] [PubMed]
- Paluch, E.; Sobierajska, P.; Okińczyc, P.; Widelski, J.; Duda-Madej, A.; Krzyżanowska, B.; Krzyżek, P.; Ogórek, R.; Szperlik, J.; Chmielowiec, J.; et al. Nanoapatites Doped and Co-Doped with Noble Metal Ions as Modern Antibiofilm Materials for Biomedical Applications against Drug-Resistant Clinical Strains of Enterococcus faecalis VRE and Staphylococcus aureus MRSA. Int. J. Mol. Sci. 2022, 23, 1533. [Google Scholar] [CrossRef]
- Barros, J.; Grenho, L.; Fernandes, M.H.; Manuel, C.M.; Melo, L.F.; Nunes, O.C.; Monteiro, F.J.; Ferraz, M.P. Anti-Sessile Bacterial and Cytocompatibility Properties of CHX-Loaded Nanohydroxyapatite. Colloids Surf. B Biointerfaces 2015, 130, 305–314. [Google Scholar] [CrossRef]
- Al Matni, M.Y.; Meliton, L.; Dudek, S.M.; Letsiou, E. Dual Inhibition of Phosphodiesterase 3 and 4 Enzymes by Ensifentrine Protects against MRSA-Induced Lung Endothelial and Epithelial Dysfunction. Cells 2024, 13, 1750. [Google Scholar] [CrossRef]
- da Silva, J.B.; de Bessa, M.E.; Santos Mayorga, O.A.; Andrade, V.T.; da Costa, Y.F.G.; de Freitas Mendes, R.; Pires Ferreira, A.L.; Scio, E.; Alves, M.S. A Promising Antibiotic, Synergistic and Antibiofilm Effects of Vernonia Condensata Baker (Asteraceae) on Staphylococcus aureus. Microb. Pathog. 2018, 123, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.-T.; Yue, Y.; Zheng, F.; Liang, X.-D.; Cao, Q.-X.; Wang, Y.-W.; Zhu, J. Monoclonal Antibody against L-Lectin Module of SraP Blocks Adhesion and Protects Mice against Staphylococcus aureus Challenge. J. Microbiol. Immunol. Infect. Wei Mian Yu Gan Ran Za Zhi 2021, 54, 420–428. [Google Scholar] [CrossRef]
- Raafat, D.; Otto, M.; Reppschläger, K.; Iqbal, J.; Holtfreter, S. Fighting Staphylococcus aureus Biofilms with Monoclonal Antibodies. Trends Microbiol. 2019, 27, 303–322. [Google Scholar] [CrossRef] [PubMed]
- Sause, W.E.; Buckley, P.T.; Strohl, W.R.; Lynch, A.S.; Torres, V.J. Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections. Trends Pharmacol. Sci. 2016, 37, 231–241. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Bharathidasan, V.; Manigandan, V.; Jeyapragash, D. Quebrachitol Inhibits Biofilm Formation and Virulence Production against Methicillin-Resistant Staphylococcus aureus. Microb. Pathog. 2020, 149, 104286. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, C.; Wang, Y.; Jin, M.; Zhang, Q.; Han, S.; Tang, Y.; Wu, D.; Fu, D.; Jiang, S.; et al. Daphnetin Weakened the Pathogenicity of Methicillin-Resistant Staphylococcus aureus by Inhibiting Sortase A and α-Hemolysin. Biochimie 2025, 229, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, X.; Sun, L.; Gao, Y.; Niu, X.; Wang, H. Novel Inhibitor Discovery of Staphylococcus aureus Sortase B and the Mechanism Confirmation via Molecular Modeling. Molecules 2018, 23, 977. [Google Scholar] [CrossRef]
- Prencipe, F.; Alsibaee, A.; Khaddem, Z.; Norton, P.; Towell, A.M.; Ali, A.F.M.; Reid, G.; Fleury, O.M.; Foster, T.J.; Geoghegan, J.A.; et al. Allantodapsone Is a Pan-Inhibitor of Staphylococcus aureus Adhesion to Fibrinogen, Loricrin, and Cytokeratin 10. Microbiol. Spectr. 2022, 10, e0117521. [Google Scholar] [CrossRef]
- Ray Mohapatra, A.; Harikrishnan, A.; Lakshmanan, D.; Jeevaratnam, K. Targeting Staphylococcus aureus and Its Biofilms with Novel Antibacterial Compounds Produced by Lactiplantibacillus Plantarum SJ33. Arch. Microbiol. 2021, 204, 20. [Google Scholar] [CrossRef]
- Singh, H.; Gahane, A.; Singh, V.; Ghosh, S.; Thakur, A. Antibiofilm Activity of Fmoc-Phenylalanine against Gram-Positive and Gram-Negative Bacterial Biofilms. J. Antibiot. 2021, 74, 407–416. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, P.; Chen, X.; Hu, W.; Abdel-Samie, M.A.; Li, C.; Cui, H. Inhibition of Staphylococcus aureus Biofilms by Poly-L-Aspartic Acid Nanoparticles Loaded with Litsea Cubeba Essential Oil. Int. J. Biol. Macromol. 2023, 242, 124904. [Google Scholar] [CrossRef] [PubMed]
- Mougin, J.; Pavaux, A.-S.; Fanesi, A.; Lopez, J.; Pruvost, E.; Guihéneuf, F.; Sciandra, A.; Briandet, R.; Lopes, F. Bacterial Adhesion Inhibition by Microalgal EPSs from Cylindrotheca Closterium and Tetraselmis Suecica Biofilms. Appl. Microbiol. Biotechnol. 2024, 108, 168. [Google Scholar] [CrossRef]
- Li, Y.; Milewska, M.; Khine, Y.Y.; Ariotti, N.; Stenzel, M.H. Trehalose Coated Nanocellulose to Inhibit the Infections by S. aureus. Polym. Chem. 2022, 13, 1502–1509. [Google Scholar] [CrossRef]
- Montazeri, A.; Salehzadeh, A.; Zamani, H. Effect of Silver Nanoparticles Conjugated to Thiosemicarbazide on Biofilm Formation and Expression of Intercellular Adhesion Molecule Genes, icaAD, in Staphylococcus aureus. Folia Microbiol. 2020, 65, 153–160. [Google Scholar] [CrossRef]
- Ahmad-Mansour, N.; Loubet, P.; Pouget, C.; Dunyach-Remy, C.; Sotto, A.; Lavigne, J.-P.; Molle, V. Staphylococcus aureus Toxins: An Update on Their Pathogenic Properties and Potential Treatments. Toxins 2021, 13, 677. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Ge, Y.; Su, Y.; Chen, S.; Zeng, X.; Lu, H.; Ma, B. Computational Construction of a Single-Chain Bi-Paratopic Antibody Allosterically Inhibiting TCR-Staphylococcal Enterotoxin B Binding. Front. Immunol. 2021, 12, 732938. [Google Scholar] [CrossRef]
- Ming, K.; Xing, B.; Hu, Y.; Mei, M.; Huang, W.; Hu, X.; Wei, Z. De Novo Design of a Protein Binder against Staphylococcus Enterotoxin B. Int. J. Biol. Macromol. 2024, 257, 128666. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhao, L.; Wang, W.; Yu, F.; Jing, H.; Yang, Y.; Zhang, X.; Zhao, Z.; Gou, Q.; Zhang, W.; et al. A Highly Neutralizing Human Monoclonal Antibody Targeting a Novel Linear Epitope on Staphylococcal Enterotoxin B. Hum. Vaccines Immunother. 2024, 20, 2360338. [Google Scholar] [CrossRef]
- Toor, H.G.; Banerjee, D.I.; Chauhan, J.B. In Silico Evaluation of Human Cathelicidin LL-37 as a Novel Therapeutic Inhibitor of Panton-Valentine Leukocidin Toxin of Methicillin-Resistant Staphylococcus aureus. Microb. Drug Resist. Larchmt. N 2021, 27, 602–615. [Google Scholar] [CrossRef]
- Hu, N.; Qiao, C.; Wang, J.; Wang, Z.; Li, X.; Zhou, L.; Wu, J.; Zhang, D.; Feng, J.; Shen, B.; et al. Identification of a Novel Protective Human Monoclonal Antibody, LXY8, That Targets the Key Neutralizing Epitopes of Staphylococcal Enterotoxin B. Biochem. Biophys. Res. Commun. 2021, 549, 120–127. [Google Scholar] [CrossRef]
- Liu, F.; Guan, Z.; Liu, Y.; Li, J.; Liu, C.; Gao, Y.; Ma, Y.; Feng, J.; Shen, B.; Yang, G. Identification of a Human Anti-Alpha-Toxin Monoclonal Antibody Against Staphylococcus aureus Infection. Front. Microbiol. 2021, 12, 692279. [Google Scholar] [CrossRef] [PubMed]
- Amormino, C.; Russo, E.; Tedeschi, V.; Fiorillo, M.T.; Paiardini, A.; Spallotta, F.; Rosanò, L.; Tuosto, L.; Kunkl, M. Targeting Staphylococcal Enterotoxin B Binding to CD28 as a New Strategy for Dampening Superantigen-Mediated Intestinal Epithelial Barrier Dysfunctions. Front. Immunol. 2024, 15, 1365074. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Jamnani, F.; Moradi, H.R.; Fateh, A.; Azizi, M.; Nazari, F.; Soezi, M.; Siadat, S.D. The Therapeutic Efficacy of MS473, a Fully Human Single-Chain Variable Fragment Targeting Staphylococcus aureus Toxic Shock Syndrome Toxin-1, in a D-Galactosamine-Sensitized Mouse Model of Lethal Shock. BMC Microbiol. 2025, 25, 95. [Google Scholar] [CrossRef]
- Singh, A.; Kaur, K.; Mohana, P.; Singh, K.; Sharma, A.; Prajapati, J.; Goswami, D.; Khosla, N.; Kaur, U.; Kaur, R.; et al. The Development of Thymol–Isatin Hybrids as Broad-Spectrum Antibacterial Agents with Potent Anti-MRSA Activity. RSC Med. Chem. 2024, 15, 234–253. [Google Scholar] [CrossRef]
- Metwaly, A.M.; Saleh, M.M.; Alsfouk, B.A.; Ibrahim, I.M.; Abd-Elraouf, M.; Elkaeed, E.B.; Eissa, I.H. Anti-Virulence Potential of Patuletin, a Natural Flavone, against Staphylococcus aureus: In Vitro and In Silico Investigations. Heliyon 2024, 10, e24075. [Google Scholar] [CrossRef]
- Askoura, M.; Yousef, N.; Mansour, B.; Yehia, F.A.-Z.A. Antibiofilm and Staphyloxanthin Inhibitory Potential of Terbinafine against Staphylococcus aureus: In Vitro and in Vivo Studies. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Szymczak, K.; Szewczyk, G.; Rychłowski, M.; Sarna, T.; Zhang, L.; Grinholc, M.; Nakonieczna, J. Photoactivated Gallium Porphyrin Reduces Staphylococcus aureus Colonization on the Skin and Suppresses Its Ability to Produce Enterotoxin C and TSST-1. Mol. Pharm. 2023, 20, 5108–5124. [Google Scholar] [CrossRef]
- Ye, X.; Huang, Y.; Zhou, C.; Liu, X.; Zhao, W.; Zhao, X.; Xie, X.; Wang, L.; Bai, Z.; Zhou, C.; et al. MSI-1 Combats Drug-Resistant S. aureus by Affecting Bacterial Viability and Inhibiting Carotenoid Pigment Production. Microbiol. Res. 2022, 255, 126909. [Google Scholar] [CrossRef]
- Bowbe, K.H.; Salah, K.B.H.; Moumni, S.; Ashkan, M.F.; Merghni, A. Anti-Staphylococcal Activities of Rosmarinus officinalis and Myrtus communis Essential Oils through ROS-Mediated Oxidative Stress. Antibiotics 2023, 12, 266. [Google Scholar] [CrossRef]
- Zhang, H.; Luan, Y.; Jing, S.; Wang, Y.; Gao, Z.; Yang, P.; Ding, Y.; Wang, L.; Wang, D.; Wang, T. Baicalein Mediates Protection against Staphylococcus aureus-Induced Pneumonia by Inhibiting the Coagulase Activity of vWbp. Biochem. Pharmacol. 2020, 178, 114024. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, P.; Wang, L.; Gao, Z.; Lv, J.; Cui, Z.; Wang, T.; Wang, D.; Wang, L. Galangin as a Direct Inhibitor of vWbp Protects Mice from Staphylococcus aureus-Induced Pneumonia. J. Cell. Mol. Med. 2022, 26, 828–839. [Google Scholar] [CrossRef]
- Ge, B.; Hu, C.; Qian, Y.; Tang, Y.; Zhang, Q.; Jiang, S.; Mu, Z.; Zhang, M. Sinensetin Interferes with Staphylococcus aureus Infections by Targeting Staphylocoagulase and Improves Infection Survival Rates in Mouse Model of Pneumonia. J. Appl. Microbiol. 2024, 135, lxae235. [Google Scholar] [CrossRef]
- Jin, M.; Zhu, S.; Tang, Y.; Kong, X.; Wang, X.; Li, Y.; Jiang, S.; Wei, L.; Hu, C.; Wang, B.; et al. Ayanin, a Natural Flavonoid Inhibitor of Caseinolytic Protease, Is a Promising Therapeutic Agent to Combat Methicillin-Resistant Staphylococcus aureus Infections. Biochem. Pharmacol. 2023, 217, 115814. [Google Scholar] [CrossRef]
- Schwarz, M.; Hübner, I.; Sieber, S.A. Tailored Phenyl Esters Inhibit ClpXP and Attenuate Staphylococcus aureus α-Hemolysin Secretion. Chembiochem 2022, 23, e202200253. [Google Scholar] [CrossRef]
- Song, W.; Wang, B.; Sui, L.; Shi, Y.; Ren, X.; Wang, X.; Kong, X.; Hou, J.; Wang, L.; Wei, L.; et al. Tamarixetin Attenuated the Virulence of Staphylococcus aureus by Directly Targeting Caseinolytic Protease P. J. Nat. Prod. 2022, 85, 1936–1944. [Google Scholar] [CrossRef]
- Sultan, M.; Alghetaa, H.; Mohammed, A.; Abdulla, O.A.; Wisniewski, P.J.; Singh, N.; Nagarkatti, P.; Nagarkatti, M. The Endocannabinoid Anandamide Attenuates Acute Respiratory Distress Syndrome by Downregulating miRNA That Target Inflammatory Pathways. Front. Pharmacol. 2021, 12, 644281. [Google Scholar] [CrossRef]
- Mohammed, A.; Alghetaa, H.; Sultan, M.; Singh, N.P.; Nagarkatti, P.; Nagarkatti, M. Administration of Δ9-Tetrahydrocannabinol (THC) Post-Staphylococcal Enterotoxin B Exposure Protects Mice From Acute Respiratory Distress Syndrome and Toxicity. Front. Pharmacol. 2020, 11, 893. [Google Scholar] [CrossRef]
- Karauzum, H.; Venkatasubramaniam, A.; Adhikari, R.P.; Kort, T.; Holtsberg, F.W.; Mukherjee, I.; Mednikov, M.; Ortines, R.; Nguyen, N.T.Q.; Doan, T.M.N.; et al. IBT-V02: A Multicomponent Toxoid Vaccine Protects Against Primary and Secondary Skin Infections Caused by Staphylococcus aureus. Front. Immunol. 2021, 12, 624310. [Google Scholar] [CrossRef]
- Divyakolu, S.; Chikkala, R.; Ratnakar, K.S.; Sritharan, V. Hemolysins of Staphylococcus aureus—An Update on Their Biology, Role in Pathogenesis and as Targets for Anti-Virulence Therapy. Adv. Infect. Dis. 2019, 9, 80–104. [Google Scholar] [CrossRef]
- El-Ganiny, A.M.; Gad, A.I.; El-Sayed, M.A.; Shaldam, M.A.; Abbas, H.A. The Promising Anti-Virulence Activity of Candesartan, Domperidone, and Miconazole on Staphylococcus aureus. Braz. J. Microbiol. Publ. Braz. Soc. Microbiol. 2022, 53, 1–18. [Google Scholar] [CrossRef]
- Bakeer, W.; Gaafar, M.; El-Gendy, A.O.; El Badry, M.A.; Khalil, M.G.; Mansour, A.T.; Alharbi, N.K.; Selim, H.M.R.M.; Bendary, M.M. Proven Anti-Virulence Therapies in Combating Methicillin- and Vancomycin-Resistant Staphylococcus aureus Infections. Front. Cell. Infect. Microbiol. 2024, 14, 1403219. [Google Scholar] [CrossRef]
- Bian, N.; Chen, X.; Ren, X.; Yu, Z.; Jin, M.; Chen, X.; Liu, C.; Luan, Y.; Wei, L.; Chen, Y.; et al. 7,8-Dihydroxyflavone Attenuates the Virulence of Staphylococcus aureus by Inhibiting Alpha-Hemolysin. World J. Microbiol. Biotechnol. 2022, 38, 200. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, Z.; Zhang, H.; Liu, Y.; Hao, B.; Shang, R. 14-O-[(4,6-Diamino-Pyrimidine-2-Yl) Thioacetyl] Mutilin Inhibits α-Hemolysin and Protects Raw264.7 Cells from Injury Induced by Methicillin-Resistant S. aureus. Microb. Pathog. 2021, 161, 105229. [Google Scholar] [CrossRef]
- Qian, Y.; Xia, L.; Wei, L.; Li, D.; Jiang, W. Artesunate Inhibits Staphylococcus aureus Biofilm Formation by Reducing Alpha-Toxin Synthesis. Arch. Microbiol. 2021, 203, 707–717. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.G.; Lee, J. Inhibition of Staphylococcus aureus Biofilm Formation and Virulence Factor Production by Petroselinic Acid and Other Unsaturated C18 Fatty Acids. Microbiol. Spectr. 2022, 10, e01330-22. [Google Scholar] [CrossRef]
- Abdelraheem, W.M.; Kamel, H.S.; Gamil, A.N. Evaluation of Anti-Biofilm and Anti-Virulence Effect of Zinc Sulfate on Staphylococcus aureus Isolates. Sci. Rep. 2024, 14, 25747. [Google Scholar] [CrossRef]
- Oliveira, H.B.M.; Selis, N.d.N.; Sampaio, B.A.; Júnior, M.N.S.; de Carvalho, S.P.; de Almeida, J.B.; Almeida, P.P.; da Silva, I.B.S.; Oliveira, C.N.T.; Brito, T.L.S.; et al. Citral Modulates Virulence Factors in Methicillin-Resistant Staphylococcus aureus. Sci. Rep. 2021, 11, 16482. [Google Scholar] [CrossRef]
- Chu, A.J.; Qiu, Y.; Harper, R.; Lin, L.; Ma, C.; Yang, X. Nusbiarylins Inhibit Transcription and Target Virulence Factors in Bacterial Pathogen Staphylococcus aureus. Int. J. Mol. Sci. 2020, 21, 5772. [Google Scholar] [CrossRef]
- Wang, G.; Wen, J.; Tian, Z.; Zhou, H.; Peng, X.; Zhang, P.; Li, Z. Piceatannol and Its Analogues Alleviate Staphylococcus aureus Pathogenesis by Targeting β-Lactamase Biofilms and α-Hemolysin. Sci. Rep. 2025, 15, 5551. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, P.; Lv, H.; Deng, X.; Wang, J. A Natural Dietary Flavone Myricetin as an α-Hemolysin Inhibitor for Controlling Staphylococcus aureus Infection. Front. Cell. Infect. Microbiol. 2020, 10, 330. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, X.; Bai, T.; Zheng, X.; Yang, L.; Li, Q.; Wang, X. Lysine Inhibits Hemolytic Activity of Staphylococcus aureus and Its Application in Food Model Contaminated with Staphylococcus aureus. Toxins 2022, 14, 867. [Google Scholar] [CrossRef] [PubMed]
- Goc, A.; Sumera, W.; Rath, M.; Niedzwiecki, A. Inhibition of α-Hemolysin Activity of Staphylococcus aureus by Theaflavin 3,3′-Digallate. PLoS ONE 2023, 18, e0290904. [Google Scholar] [CrossRef] [PubMed]
- Veiko, A.G.; Olchowik-Grabarek, E.; Sekowski, S.; Roszkowska, A.; Lapshina, E.A.; Dobrzynska, I.; Zamaraeva, M.; Zavodnik, I.B. Antimicrobial Activity of Quercetin, Naringenin and Catechin: Flavonoids Inhibit Staphylococcus aureus-Induced Hemolysis and Modify Membranes of Bacteria and Erythrocytes. Molecules 2023, 28, 1252. [Google Scholar] [CrossRef]
- Goswami, S.; Ghosh, M.; Roy, S.; Basak, S.; Bhattacharjee, S. Quercetin Combined with Ciprofloxacin and Gentamicin Inhibits Biofilm Formation and Virulence in Staphylococcus aureus. Microb. Pathog. 2025, 200, 107297. [Google Scholar] [CrossRef]
- Hao, L.; Zhou, J.; Yang, H.; He, C.; Shu, W.; Song, H.; Liu, Q. Anti-Virulence Potential of Iclaprim, a Novel Folic Acid Synthesis Inhibitor, against Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2024, 108, 432. [Google Scholar] [CrossRef]
- Gui, Z.; Wang, H.; Ding, T.; Zhu, W.; Zhuang, X.; Chu, W. Azithromycin Reduces the Production of α-Hemolysin and Biofilm Formation in Staphylococcus aureus. Indian J. Microbiol. 2014, 54, 114–117. [Google Scholar] [CrossRef]
- Ikemoto, K.; Kobayashi, S.; Haranosono, Y.; Kozai, S.; Wada, T.; Tokushige, H.; Kawamura, A. Contribution of Anti-Inflammatory and Anti-Virulence Effects of Azithromycin in the Treatment of Experimental Staphylococcus aureus Keratitis. BMC Ophthalmol. 2020, 20, 89. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.Q.; Doan, T.N.M.; Sato, K.; Tkaczyk, C.; Sellman, B.R.; Diep, B.A. Monoclonal Antibodies Neutralizing Alpha-Hemolysin, Bicomponent Leukocidins, and Clumping Factor A Protected against Staphylococcus aureus-Induced Acute Circulatory Failure in a Mechanically Ventilated Rabbit Model of Hyperdynamic Septic Shock. Front. Immunol. 2023, 14, 1260627. [Google Scholar] [CrossRef]
- Ortega, E.; Abriouel, H.; Lucas, R.; Gálvez, A. Multiple Roles of Staphylococcus aureus Enterotoxins: Pathogenicity, Superantigenic Activity, and Correlation to Antibiotic Resistance. Toxins 2010, 2, 2117–2131. [Google Scholar] [CrossRef]
- Hu, D.-L.; Wang, L.; Fang, R.; Okamura, M.; Ono, H.K. Staphylococcus aureus Enterotoxins. In Staphylococcus aureus; Fetsch, A., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 39–55. ISBN 978-0-12-809671-0. [Google Scholar]
- Fraser, J.; Arcus, V.; Kong, P.; Baker, E.; Proft, T. Superantigens—Powerful Modifiers of the Immune System. Mol. Med. Today 2000, 6, 125–132. [Google Scholar] [CrossRef]
- Dufresne, K.; DiMaggio, D.A.; Maduta, C.S.; Brinsmade, S.R.; McCormick, J.K. Discovery of an Antivirulence Compound That Targets the Staphylococcus aureus SaeRS Two-Component System to Inhibit Toxic Shock Syndrome Toxin-1 Production. J. Biol. Chem. 2024, 300, 107455. [Google Scholar] [CrossRef]
- Oura, Y.; Shimamura, Y.; Kan, T.; Masuda, S. Effect of Polyphenols on Inflammation Induced by Membrane Vesicles from Staphylococcus aureus. Cells 2024, 13, 387. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, B.-I.; Kim, Y.-H.; Yoon, J.-S.; Choi, N.-Y.; Kim, K.-J. Chrysanthemum Zawadskii Var. Latilobum Flower Essential Oil Reduces MRSA Pathogenicity by Inhibiting Virulence Gene Expression. Molecules 2025, 30, 553. [Google Scholar] [CrossRef]
- Gaur, P.; Seaf, M.; Trabelsi, N.; Marcu, O.; Gafarov, D.; Schueler-Furman, O.; Mandelboim, O.; Ben-Zimra, M.; Levi-Schaffer, F. 2B4: A Potential Target in Staphylococcus aureus Associated Allergic Inflammation. Clin. Exp. Immunol. 2024, 215, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Xu, C.; Zhang, C.; Tan, A.; Lu, D.; Luo, P.; Cheng, P.; Zhang, W.; Bai, L.; Yu, C.; et al. mRNA-Based Platform for Preventing and Treating Staphylococcus aureus by Targeted Staphylococcal Enterotoxin B. Front. Immunol. 2024, 15, 1490044. [Google Scholar] [CrossRef]
- Younis, I.Y.; Hifnawy, M.S.; El-Hawary, S.S.; El Bishbishy, M.H.; Elateek, S.Y. Bioactive Metabolites of Hass and Reed Avocados Targeting Methicillin-Resistant Staphylococcus aureus Enterotoxin-like X via Molecular Modeling and Cytotoxicity Assessments. Nat. Prod. Res. 2021, 35, 6040–6044. [Google Scholar] [CrossRef] [PubMed]
- Asadpoor, M.; Ithakisiou, G.-N.; Henricks, P.A.J.; Pieters, R.; Folkerts, G.; Braber, S. Non-Digestible Oligosaccharides and Short Chain Fatty Acids as Therapeutic Targets against Enterotoxin-Producing Bacteria and Their Toxins. Toxins 2021, 13, 175. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Ain, N.; Aziz, T.; Ali, I.; Aqib Shabbir, M.; Javed, K.; Alharbi, M.; Alshammari, A.; Alasmari, A.F. Revolutionizing Treatment for Toxic Shock Syndrome with Engineered Super Chromones to Combat Antibiotic-Resistant Staphylococcus aureus. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 5301–5309. [Google Scholar] [CrossRef]
- Múnera-Jaramillo, J.; López, G.-D.; Suesca, E.; Carazzone, C.; Leidy, C.; Manrique-Moreno, M. The Role of Staphyloxanthin in the Regulation of Membrane Biophysical Properties in Staphylococcus aureus. Biochim. Biophys. Acta BBA—Biomembr. 2024, 1866, 184288. [Google Scholar] [CrossRef]
- Elmesseri, R.A.; Saleh, S.E.; Elsherif, H.M.; Yahia, I.S.; Aboshanab, K.M. Staphyloxanthin as a Potential Novel Target for Deciphering Promising Anti-Staphylococcus aureus Agents. Antibiotics 2022, 11, 298. [Google Scholar] [CrossRef]
- Yehia, F.A.-Z.A.; Yousef, N.; Askoura, M. Celastrol Mitigates Staphyloxanthin Biosynthesis and Biofilm Formation in Staphylococcus aureus via Targeting Key Regulators of Virulence; in Vitro and in Vivo Approach. BMC Microbiol. 2022, 22, 106. [Google Scholar] [CrossRef]
- Esnaashari, F.; Zahmatkesh, H. Antivirulence Activities of Rutin-Loaded Chitosan Nanoparticles against Pathogenic Staphylococcus aureus. BMC Microbiol. 2024, 24, 328. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.C.; Kim, H.; Lee, H.S.; Kim, S.H.; Cho, D.-H.; Jung, H.J.; Bhatia, S.K.; Yune, P.S.; Joo, H.-S.; Kim, J.-S.; et al. 4-Chloro-2-Isopropyl-5-Methylphenol Exhibits Antimicrobial and Adjuvant Activity against Methicillin-Resistant Staphylococcus aureus. J. Microbiol. Biotechnol. 2022, 32, 730–739. [Google Scholar] [CrossRef]
- McAdow, M.; Missiakas, D.M.; Schneewind, O. Staphylococcus aureus Secretes Coagulase and von Willebrand Factor Binding Protein to Modify the Coagulation Cascade and Establish Host Infections. J. Innate Immun. 2012, 4, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Crosby, H.A.; Kwiecinski, J.; Horswill, A.R. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions. Adv. Appl. Microbiol. 2016, 96, 1–41. [Google Scholar] [CrossRef]
- Xiang, H.; Yang, P.; Wang, L.; Li, J.; Wang, T.; Xue, J.; Wang, D.; Ma, H. Isovitexin Is a Direct Inhibitor of Staphylococcus aureus Coagulase. J. Microbiol. Biotechnol. 2021, 31, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Luan, Y.; Yang, P.; Wang, L.; Zhang, H.; Jing, S.; Wang, L.; Wang, T.; Wang, D. Targeting Staphylocoagulase with Isoquercitrin Protects Mice from Staphylococcus aureus-Induced Pneumonia. Appl. Microbiol. Biotechnol. 2020, 104, 3909–3919. [Google Scholar] [CrossRef]
- Loges, L.A.; Silva, D.B.; Paulino, G.V.B.; Landell, M.F.; Macedo, A.J. Polyketides from Marine-Derived Aspergillus Welwitschiae Inhibit Staphylococcus aureus Virulence Factors and Potentiate Vancomycin Antibacterial Activity in Vivo. Microb. Pathog. 2020, 143, 104066. [Google Scholar] [CrossRef]
- Grebe, T.; Sarkari, M.T.; Cherkaoui, A.; Schaumburg, F. Exploration of Compounds to Inhibit the Panton-Valentine Leukocidin of Staphylococcus aureus. Med. Microbiol. Immunol. 2024, 213, 19. [Google Scholar] [CrossRef]
- Reyes-Robles, T.; Lubkin, A.; Alonzo, F.; Lacy, D.B.; Torres, V.J. Exploiting Dominant-Negative Toxins to Combat Staphylococcus aureus Pathogenesis. EMBO Rep. 2016, 17, 428–440. [Google Scholar] [CrossRef]
- Reyes-Robles, T.; Torres, V.J. Staphylococcus aureus Pore-Forming Toxins. Curr. Top. Microbiol. Immunol. 2017, 409, 121–144. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.; Prince, A. A New Approach to Toxin Neutralization in Staphylococcus aureus Therapy. EMBO Rep. 2016, 17, 284–285. [Google Scholar] [CrossRef]
- Tang, H.; Porras, G.; Brown, M.M.; Chassagne, F.; Lyles, J.T.; Bacsa, J.; Horswill, A.R.; Quave, C.L. Triterpenoid Acids Isolated from Schinus Terebinthifolia Fruits Reduce Staphylococcus aureus Virulence and Abate Dermonecrosis. Sci. Rep. 2020, 10, 8046. [Google Scholar] [CrossRef] [PubMed]
- Rouha, H.; Weber, S.; Janesch, P.; Maierhofer, B.; Gross, K.; Dolezilkova, I.; Mirkina, I.; Visram, Z.C.; Malafa, S.; Stulik, L.; et al. Disarming Staphylococcus aureus from Destroying Human Cells by Simultaneously Neutralizing Six Cytotoxins with Two Human Monoclonal Antibodies. Virulence 2018, 9, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-L.; Chen, H.-H.; Xu, J.; Huang, M.-Y.; Wang, J.-F.; Shen, H.-J.; Shen, S.-X.; Gao, C.-X.; Qian, C.-D. Myricetin Acts as an Inhibitor of Type II NADH Dehydrogenase from Staphylococcus aureus. Molecules 2024, 29, 2354. [Google Scholar] [CrossRef]
- Shatalin, K.; Nuthanakanti, A.; Kaushik, A.; Shishov, D.; Peselis, A.; Shamovsky, I.; Pani, B.; Lechpammer, M.; Vasilyev, N.; Shatalina, E.; et al. Inhibitors of Bacterial H2S Biogenesis Targeting Antibiotic Resistance and Tolerance. Science 2021, 372, 1169–1175. [Google Scholar] [CrossRef]
- Conroy, B.S.; Grigg, J.C.; Kolesnikov, M.; Morales, L.D.; Murphy, M.E.P. Staphylococcus aureus Heme and Siderophore-Iron Acquisition Pathways. BioMetals 2019, 32, 409–424. [Google Scholar] [CrossRef]
- Hammer, N.D.; Skaar, E.P. Molecular Mechanisms of Staphylococcus aureus Iron Acquisition. Annu. Rev. Microbiol. 2011, 65, 129–147. [Google Scholar] [CrossRef]
- Cozzi, M.; Failla, M.; Gianquinto, E.; Kovachka, S.; Buoli Comani, V.; Compari, C.; De Bei, O.; Giaccari, R.; Marchesani, F.; Marchetti, M.; et al. Identification of Small Molecules Affecting the Interaction between Human Hemoglobin and Staphylococcus aureus IsdB Hemophore. Sci. Rep. 2024, 14, 8272. [Google Scholar] [CrossRef]
- Hricovíniová, Z.; Mascaretti, Š.; Hricovíniová, J.; Čížek, A.; Jampílek, J. New Unnatural Gallotannins: A Way toward Green Antioxidants, Antimicrobials and Antibiofilm Agents. Antioxidants 2021, 10, 1288. [Google Scholar] [CrossRef]
- Luo, Z.; Su, J.; Luo, S.; Ju, Y.; Chen, B.; Gu, Q.; Zhou, H. Structure-Guided Inhibitor Design Targeting CntL Provides the First Chemical Validation of the Staphylopine Metallophore System in Bacterial Metal Acquisition. Eur. J. Med. Chem. 2024, 280, 116991. [Google Scholar] [CrossRef] [PubMed]
- Naclerio, G.A.; Onyedibe, K.I.; Karanja, C.W.; Aryal, U.K.; Sintim, H.O. Comparative Studies to Uncover Mechanisms of Action of N-(1,3,4-Oxadiazol-2-Yl)Benzamide Containing Antibacterial Agents. ACS Infect. Dis. 2022, 8, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Jin, Y.; Park, J.; Mun, D.; Kim, S.R.; Payne, S.M.; Kim, K.H.; Kim, Y. Characterization of an Antibacterial Agent Targeting Ferrous Iron Transport Protein FeoB against Staphylococcus aureus and Gram-Positive Bacteria. ACS Chem. Biol. 2021, 16, 136–149. [Google Scholar] [CrossRef]
- Zhao, L.; Jin, L.; Yang, B. Saikosaponin A Alleviates Staphylococcus aureus-Induced Mastitis in Mice by Inhibiting Ferroptosis via SIRT1/Nrf2 Pathway. J. Cell. Mol. Med. 2023, 27, 3443–3450. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Ito, T.; Tamai, M.; Nakagawa, S.; Nakamura, Y. The Role of Staphylococcus aureus Quorum Sensing in Cutaneous and Systemic Infections. Inflamm. Regen. 2024, 44, 9. [Google Scholar] [CrossRef]
- Tan, L.; Li, S.R.; Jiang, B.; Hu, X.M.; Li, S. Therapeutic Targeting of the Staphylococcus aureus Accessory Gene Regulator (Agr) System. Front. Microbiol. 2018, 9, 55. [Google Scholar] [CrossRef]
- Wu, R.; Wu, Y.; Wu, P.; Li, H.; She, P. Bactericidal and Anti-Quorum Sensing Activity of Repurposing Drug Visomitin against Staphylococcus aureus. Virulence 2024, 15, 2415952. [Google Scholar] [CrossRef]
- Leistikow, K.R.; May, D.S.; Suh, W.S.; Vargas Asensio, G.; Schaenzer, A.J.; Currie, C.R.; Hristova, K.R. Bacillus Subtilis-Derived Peptides Disrupt Quorum Sensing and Biofilm Assembly in Multidrug-Resistant Staphylococcus aureus. mSystems 2024, 9, e0071224. [Google Scholar] [CrossRef]
- Jones, D.D.; Caesar, L.K.; Pelzer, C.V.; Crandall, W.J.; Jenul, C.; Todd, D.A.; Horswill, A.R.; Cech, N.B. Targeted and Untargeted Analysis of Secondary Metabolites to Monitor Growth and Quorum Sensing Inhibition for Methicillin-Resistant Staphylococcus aureus (MRSA). J. Microbiol. Methods 2020, 176, 106000. [Google Scholar] [CrossRef]
- Brown, M.M.; Kwiecinski, J.M.; Cruz, L.M.; Shahbandi, A.; Todd, D.A.; Cech, N.B.; Horswill, A.R. Novel Peptide from Commensal Staphylococcus Simulans Blocks Methicillin-Resistant Staphylococcus aureus Quorum Sensing and Protects Host Skin from Damage. Antimicrob. Agents Chemother. 2020, 64, e00172-20. [Google Scholar] [CrossRef]
- Severn, M.M.; Cho, Y.-S.K.; Manzer, H.S.; Bunch, Z.L.; Shahbandi, A.; Todd, D.A.; Cech, N.B.; Horswill, A.R. The Commensal Staphylococcus Warneri Makes Peptide Inhibitors of MRSA Quorum Sensing That Protect Skin from Atopic or Necrotic Damage. J. Investig. Dermatol. 2022, 142, 3349–3352.e5. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Hillebrand, G.G.; Nunez, G. Rosmarinus officinalis L. (Rosemary) Extracts Containing Carnosic Acid and Carnosol Are Potent Quorum Sensing Inhibitors of Staphylococcus aureus Virulence. Antibiotics 2020, 9, 149. [Google Scholar] [CrossRef]
- Polaske, T.J.; Gahan, C.G.; Nyffeler, K.E.; Lynn, D.M.; Blackwell, H.E. Identification of Small Molecules That Strongly Inhibit Bacterial Quorum Sensing Using a High-Throughput Lipid Vesicle Lysis Assay. Cell Chem. Biol. 2022, 29, 605–614.e4. [Google Scholar] [CrossRef]
- Kamer, A.M.A.; Abdelaziz, A.A.; Al-Monofy, K.B.; Al-Madboly, L.A. Antibacterial, Antibiofilm, and Anti-Quorum Sensing Activities of Pyocyanin against Methicillin-Resistant Staphylococcus aureus: In Vitro and in Vivo Study. BMC Microbiol. 2023, 23, 116. [Google Scholar] [CrossRef] [PubMed]
- Bernabè, G.; Dal Pra, M.; Ronca, V.; Pauletto, A.; Marzaro, G.; Saluzzo, F.; Stefani, A.; Artusi, I.; De Filippis, V.; Ferlin, M.G.; et al. A Novel Aza-Derivative Inhibits Agr Quorum Sensing Signaling and Synergizes Methicillin-Resistant Staphylococcus aureus to Clindamycin. Front. Microbiol. 2021, 12, 610859. [Google Scholar] [CrossRef]
- Ramasamy, M.; Vetrivel, A.; Venugopal, S.; Murugesan, R. Identification of Inhibitors for Agr Quorum Sensing System of Staphylococcus aureus by Machine Learning, Pharmacophore Modeling, and Molecular Dynamics Approaches. J. Mol. Model. 2023, 29, 258. [Google Scholar] [CrossRef] [PubMed]
- Chingizova, E.A.; Yurchenko, E.A.; Starnovskaya, S.S.; Chingizov, A.R.; Kuzmich, A.S.; Pislyagin, E.A.; Vasilchenko, A.S.; Poshvina, D.V.; Shilovsky, G.A.; Dibrova, D.V.; et al. Flavuside B Exhibits Antioxidant and Anti-Inflammatory Properties in Staphylococcus aureus Infected Skin Wound and Affect the Expression of Genes Controlling Bacterial Quorum Sensing. J. Appl. Microbiol. 2025, 136, lxae318. [Google Scholar] [CrossRef]
- Alenazi, N.A.; Aleanizy, F.S.; Alqahtani, F.Y.; Aldossari, A.A.; Alanazi, M.M.; Alfaraj, R. Anti-Quorum Sensing Activity of Poly-Amidoamine Dendrimer Generation 5 Dendrimer Loaded Kinase Inhibitor Peptide against Methicillin-Resistant Staphylococcus aureus. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2024, 32, 101932. [Google Scholar] [CrossRef]
- Mahdally, N.H.; George, R.F.; Kashef, M.T.; Al-Ghobashy, M.; Murad, F.E.; Attia, A.S. Staquorsin: A Novel Staphylococcus aureus Agr-Mediated Quorum Sensing Inhibitor Impairing Virulence in Vivo Without Notable Resistance Development. Front. Microbiol. 2021, 12, 700494. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Manome, T.; Hara, Y.; Yamazaki, Y.; Nakamura, Y.; Ishibashi, M.; Takaya, A. Physalin H, Physalin B, and Isophysalin B Suppress the Quorum-Sensing Function of Staphylococcus aureus by Binding to AgrA. Front. Pharmacol. 2024, 15, 1365815. [Google Scholar] [CrossRef]
- Desouky, S.E.; Abu-Elghait, M.; Fayed, E.A.; Selim, S.; Yousuf, B.; Igarashi, Y.; Abdel-Wahab, B.A.; Mohammed Alsuhaibani, A.; Sonomoto, K.; Nakayama, J. Secondary Metabolites of Actinomycetales as Potent Quorum Sensing Inhibitors Targeting Gram-Positive Pathogens: In Vitro and In Silico Study. Metabolites 2022, 12, 246. [Google Scholar] [CrossRef]
- Refai, M.Y.; Elazzazy, A.M.; Desouky, S.E.; Abu-Elghait, M.; Fayed, E.A.; Alajel, S.M.; Alajlan, A.A.; Albureikan, M.O.; Nakayama, J. Interception of Epoxide Ring to Quorum Sensing System in Enterococcus faecalis and Staphylococcus aureus. AMB Express 2023, 13, 126. [Google Scholar] [CrossRef] [PubMed]
- Palaniappan, B.; Solomon, A.P.; C, D.R. Targeting AgrA Quorum Sensing Regulator by Bumetanide Attenuates Virulence in Staphylococcus aureus—A Drug Repurposing Approach. Life Sci. 2021, 273, 119306. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, C.; Shi, C.; Alharbi, M.; Cui, H.; Lin, L. Phosphoproteomics Analysis Reveals the Anti-Bacterial and Anti-Virulence Mechanism of Eugenol against Staphylococcus aureus and Its Application in Meat Products. Int. J. Food Microbiol. 2024, 414, 110621. [Google Scholar] [CrossRef] [PubMed]
- Saadati, F.; Shahryari, S.; Sani, N.M.; Farajzadeh, D.; Zahiri, H.S.; Vali, H.; Noghabi, K.A. Effect of MA01 Rhamnolipid on Cell Viability and Expression of Quorum-Sensing (QS) Genes Involved in Biofilm Formation by Methicillin-Resistant Staphylococcus aureus. Sci. Rep. 2022, 12, 14833. [Google Scholar] [CrossRef]
- Cella, M.A.; Coulson, T.; MacEachern, S.; Badr, S.; Ahmadi, A.; Tabatabaei, M.S.; Labbe, A.; Griffiths, M.W. Probiotic Disruption of Quorum Sensing Reduces Virulence and Increases Cefoxitin Sensitivity in Methicillin-Resistant Staphylococcus aureus. Sci. Rep. 2023, 13, 4373. [Google Scholar] [CrossRef]
- Coelho, P.; Oliveira, J.; Fernandes, I.; Araújo, P.; Pereira, A.R.; Gameiro, P.; Bessa, L.J. Pyranoanthocyanins Interfering with the Quorum Sensing of Pseudomonas Aeruginosa and Staphylococcus aureus. Int. J. Mol. Sci. 2021, 22, 8559. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Lee, J.-H.; Kim, S.-H.; Park, S.-Y.; Kim, Y.-J.; Ryu, C.-M.; Seo, H.-W.; Lee, J.-T. Inhibition of Biofilm Formation in Cutibacterium Acnes, Staphylococcus aureus, and Candida Albicans by the Phytopigment Shikonin. Int. J. Mol. Sci. 2024, 25, 2426. [Google Scholar] [CrossRef]
- Ibrahim, Y.M.; Abouwarda, A.M.; Nasr, T.; Omar, F.A.; Bondock, S. Antibacterial and Anti-Quorum Sensing Activities of a Substituted Thiazole Derivative against Methicillin-Resistant Staphylococcus aureus and Other Multidrug-Resistant Bacteria. Microb. Pathog. 2020, 149, 104500. [Google Scholar] [CrossRef]
- Khayat, M.T.; Abbas, H.A.; Ibrahim, T.S.; Khayyat, A.N.; Alharbi, M.; Darwish, K.M.; Elhady, S.S.; Khafagy, E.-S.; Safo, M.K.; Hegazy, W.A.H. Anti-Quorum Sensing Activities of Gliptins against Pseudomonas Aeruginosa and Staphylococcus aureus. Biomedicines 2022, 10, 1169. [Google Scholar] [CrossRef]
- Fatima, M.; Amin, A.; Alharbi, M.; Ishtiaq, S.; Sajjad, W.; Ahmad, F.; Ahmad, S.; Hanif, F.; Faheem, M.; Khalil, A.A.K. Quorum Quenchers from Reynoutria Japonica in the Battle against Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules 2023, 28, 2635. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Wiedmann, M.M.; Zhao, A.; Pagan, I.R.; Novick, R.P.; Suga, H.; Muir, T.W. Discovery of Quorum Quenchers Targeting the Membrane-Embedded Sensor Domain of the Staphylococcus aureus Receptor Histidine Kinase, AgrC. Chem. Commun. Camb. Engl. 2020, 56, 11223–11226. [Google Scholar] [CrossRef]
- Chemmugil, P.; Lakshmi, P.T.V.; Annamalai, A. Exploring Morin as an Anti-Quorum Sensing Agent (Anti-QSA) against Resistant Strains of Staphylococcus aureus. Microb. Pathog. 2019, 127, 304–315. [Google Scholar] [CrossRef]
- Karuppiah, V.; Seralathan, M. Quorum Sensing Inhibitory Potential of Vaccenic Acid against Chromobacterium Violaceum and Methicillin-Resistant Staphylococcus aureus. World J. Microbiol. Biotechnol. 2022, 38, 146. [Google Scholar] [CrossRef]
- Zhao, K.; Vasquez, J.K.; Blackwell, H.E. Potent Pan-Group Quorum Sensing Inhibitors in Staphylococcus aureus Revealed by N-Terminal Tailoring of Peptidomimetics. Chem. Commun. Camb. Engl. 2023, 59, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bhasme, P.; Reddy, D.S.; Liu, D.; Yu, Z.; Zhao, T.; Zheng, Y.; Kumar, A.; Yu, H.; Ma, L.Z. Dual Functions: A Coumarin-Chalcone Conjugate Inhibits Cyclic-Di-GMP and Quorum-Sensing Signaling to Reduce Biofilm Formation and Virulence of Pathogens. mLife 2023, 2, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Bazaid, A.S.; Alsolami, A.; Patel, M.; Khateb, A.M.; Aldarhami, A.; Snoussi, M.; Almusheet, S.M.; Qanash, H. Antibiofilm, Antimicrobial, Anti-Quorum Sensing, and Antioxidant Activities of Saudi Sidr Honey: In Vitro and Molecular Docking Studies. Pharmaceutics 2023, 15, 2177. [Google Scholar] [CrossRef]
- Bazaid, A.S.; Aldarhami, A.; Patel, M.; Adnan, M.; Hamdi, A.; Snoussi, M.; Qanash, H.; Imam, M.; Monjed, M.K.; Khateb, A.M. The Antimicrobial Effects of Saudi Sumra Honey against Drug Resistant Pathogens: Phytochemical Analysis, Antibiofilm, Anti-Quorum Sensing, and Antioxidant Activities. Pharmaceuticals 2022, 15, 1212. [Google Scholar] [CrossRef]
- Moreno-Chamba, B.; Salazar-Bermeo, J.; Navarro-Simarro, P.; Narváez-Asensio, M.; Martínez-Madrid, M.C.; Saura, D.; Martí, N.; Valero, M. Autoinducers Modulation as a Potential Anti-Virulence Target of Bacteria by Phenolic Compounds. Int. J. Antimicrob. Agents 2023, 62, 106937. [Google Scholar] [CrossRef]
- Tamfu, A.N.; Ceylan, O.; Cârâc, G.; Talla, E.; Dinica, R.M. Antibiofilm and Anti-Quorum Sensing Potential of Cycloartane-Type Triterpene Acids from Cameroonian Grassland Propolis: Phenolic Profile and Antioxidant Activity of Crude Extract. Molecules 2022, 27, 4872. [Google Scholar] [CrossRef]
- Alam, P.; Alqahtani, A.S.; Mabood Husain, F.; Tabish Rehman, M.; Alajmi, M.F.; Noman, O.M.; El Gamal, A.A.; Al-Massarani, S.M.; Shavez Khan, M. Siphonocholin Isolated from Red Sea Sponge Siphonochalina Siphonella Attenuates Quorum Sensing Controlled Virulence and Biofilm Formation. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2020, 28, 1383–1391. [Google Scholar] [CrossRef]
- Wijaya, J.; Park, J.; Yang, Y.; Siddiqui, S.I.; Oh, S. A Metagenome-Derived Artificial Intelligence Modeling Framework Advances the Predictive Diagnosis and Interpretation of Petroleum-Polluted Groundwater. J. Hazard. Mater. 2024, 472, 134513. [Google Scholar] [CrossRef] [PubMed]
- Palaniappan, K.; Lin, E.Y.T.; Vogel, S.; Lim, J.C.W. Gaps in the Global Regulatory Frameworks for the Use of Artificial Intelligence (AI) in the Healthcare Services Sector and Key Recommendations. Healthcare 2024, 12, 1730. [Google Scholar] [CrossRef]
- Sedlmayer, F.; Woischnig, A.-K.; Unterreiner, V.; Fuchs, F.; Baeschlin, D.; Khanna, N.; Fussenegger, M. 5-Fluorouracil Blocks Quorum-Sensing of Biofilm-Embedded Methicillin-Resistant Staphylococcus aureus in Mice. Nucleic Acids Res. 2021, 49, e73. [Google Scholar] [CrossRef] [PubMed]
- Slavin, Y.N.; Ivanova, K.; Hoyo, J.; Perelshtein, I.; Owen, G.; Haegert, A.; Lin, Y.-Y.; LeBihan, S.; Gedanken, A.; Häfeli, U.O.; et al. Novel Lignin-Capped Silver Nanoparticles against Multidrug-Resistant Bacteria. ACS Appl. Mater. Interfaces 2021, 13, 22098–22109. [Google Scholar] [CrossRef]
- Yuan, Q.; Feng, W.; Wang, Y.; Wang, Q.; Mou, N.; Xiong, L.; Wang, X.; Xia, P.; Sun, F. Luteolin Attenuates the Pathogenesis of Staphylococcus aureus by Interfering with the Agr System. Microb. Pathog. 2022, 165, 105496. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, S. Two-Component Regulatory Systems in Microbial Pathogenesis. In Industrial Microbiology and Biotechnology: An Insight into Current Trends; Verma, P., Ed.; Springer Nature: Singapore, 2024; pp. 327–346. ISBN 978-981-9719-12-9. [Google Scholar]
- Ali, L.; Abdel Aziz, M.H. Crosstalk Involving Two-Component Systems in Staphylococcus aureus Signaling Networks. J. Bacteriol. 2024, 206, e00418-23. [Google Scholar] [CrossRef]
- Arya, R.; Kim, T.; Youn, J.W.; Bae, T.; Kim, K.K. Identification of an Antivirulence Agent Targeting the Master Regulator of Virulence Genes in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2023, 13, 1268044. [Google Scholar] [CrossRef]
- Baldry, M.; Nielsen, A.; Bojer, M.S.; Zhao, Y.; Friberg, C.; Ifrah, D.; Glasser Heede, N.; Larsen, T.O.; Frøkiær, H.; Frees, D.; et al. Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus. PLoS ONE 2016, 11, e0168305. [Google Scholar] [CrossRef]
- Bhattarai, S.; Marsh, L.; Knight, K.; Ali, L.; Gomez, A.; Sunderhaus, A.; Abdel Aziz, M.H. NH125 Sensitizes Staphylococcus aureus to Cell Wall-Targeting Antibiotics through the Inhibition of the VraS Sensor Histidine Kinase. Microbiol. Spectr. 2023, 11, e0486122. [Google Scholar] [CrossRef]
- Calvez, A.; Stien, D.; Villette, C.; Lebaron, P.; Ravard Helffer, K.; Doat, G.; Bourrain, M. The Association of Dextran Sodium Sulfate to the Bioactive Agent I-Modulia® Attenuates Staphylococcus aureus Virulence Expression and δ-Toxin Production. Microb. Pathog. 2025, 198, 107163. [Google Scholar] [CrossRef] [PubMed]
- Dhankhar, P.; Dalal, V.; Kotra, D.G.; Kumar, P. In-Silico Approach to Identify Novel Potent Inhibitors against GraR of S. aureus. Front. Biosci. Landmark Ed. 2020, 25, 1337–1360. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Li, M.; Hao, Z.; Shen, X.; Liu, L.; Jin, Y.; Wang, S.; Guo, Y.; Yang, L.; Wang, L.; et al. Subinhibitory Concentrations of Resveratrol Reduce Alpha-Hemolysin Production in Staphylococcus aureus Isolates by Downregulating saeRS. Emerg. Microbes Infect. 2018, 7, 136. [Google Scholar] [CrossRef]
- Ericson, M.E.; Subramanian, C.; Frank, M.W.; Rock, C.O. Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus. mBio 2017, 8, e00988-17. [Google Scholar] [CrossRef]
- Espinasse, A.; Goswami, M.; Yang, J.; Vorasin, O.; Ji, Y.; Carlson, E.E. Targeting Multidrug Resistant Staphylococcus Infections with Bacterial Histidine Kinase Inhibitors. Chem. Sci. 2023, 14, 5028–5037. [Google Scholar] [CrossRef]
- Gao, P.; Wei, Y.; Hou, S.; Lai, P.-M.; Liu, H.; Tai, S.S.C.; Tang, V.Y.M.; Prakash, P.H.; Sze, K.-H.; Chen, J.H.K.; et al. SaeR as a Novel Target for Antivirulence Therapy against Staphylococcus aureus. Emerg. Microbes Infect. 2023, 12, 2254415. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-C.; Liu, C.-H.; Wu, Y.-C.; Lai, S.-J.; Lin, C.-J.; Tseng, T.-S. Combatting Antibiotic-Resistant Staphylococcus aureus: Discovery of TST1N-224, a Potent Inhibitor Targeting Response Regulator VraRC, through Pharmacophore-Based Screening and Molecular Characterizations. J. Chem. Inf. Model. 2024, 64, 6132–6146. [Google Scholar] [CrossRef]
- Hua, X.; Jia, Y.; Yang, Q.; Zhang, W.; Dong, Z.; Liu, S. Transcriptional Analysis of the Effects of Gambogic Acid and Neogambogic Acid on Methicillin-Resistant Staphylococcus aureus. Front. Pharmacol. 2019, 10, 986. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, Y.; Yu, J.; Zhang, F.; Liu, Q.; He, L.; Musha, H.; Du, J.; Wang, B.; Han, P.; et al. Repurposed Fenoprofen Targeting SaeR Attenuates Staphylococcus aureus Virulence in Implant-Associated Infections. ACS Cent. Sci. 2023, 9, 1354–1373. [Google Scholar] [CrossRef]
- Kwiecinski, J.M.; Jelani, D.A.; Fuentes, E.J.; Horswill, A.R. Therapeutic Inhibition of Staphylococcus aureus ArlRS Two-Component Regulatory System Blocks Virulence. Antimicrob. Agents Chemother. 2022, 66, e0018722. [Google Scholar] [CrossRef]
- Mizar, P.; Arya, R.; Kim, T.; Cha, S.; Ryu, K.-S.; Yeo, W.-S.; Bae, T.; Kim, D.W.; Park, K.H.; Kim, K.K.; et al. Total Synthesis of Xanthoangelol B and Its Various Fragments: Toward Inhibition of Virulence Factor Production of Staphylococcus aureus. J. Med. Chem. 2018, 61, 10473–10487. [Google Scholar] [CrossRef] [PubMed]
- Prieto, J.M.; Rapún-Araiz, B.; Gil, C.; Penadés, J.R.; Lasa, I.; Latasa, C. Inhibiting the Two-Component System GraXRS with Verteporfin to Combat Staphylococcus aureus Infections. Sci. Rep. 2020, 10, 17939. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Srivastava, S.K. In Silico and Structural Investigation of Sulfonamides Targeting VraSR Two Component System in Methicillin-Resistant Staphylococcus aureus. J. Biomol. Struct. Dyn. 2024, 1–21. [Google Scholar] [CrossRef]
- Weig, A.W.; O’Conner, P.M.; Kwiecinski, J.M.; Marciano, O.M.; Nunag, A.; Gutierrez, A.T.; Melander, R.J.; Horswill, A.R.; Melander, C. A Structure Activity Relationship Study of 3,4′-Dimethoxyflavone for ArlRS Inhibition in Staphylococcus aureus. Org. Biomol. Chem. 2023, 21, 3373–3380. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, Y.; Lei, L.; Zhang, H. Antisense yycG Modulates the Susceptibility of Staphylococcus aureus to Hydrogen Peroxide via the sarA. BMC Microbiol. 2021, 21, 160. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Bai, J.; Cai, S.; Qu, D.; Xie, Y.; Wu, Y. The Staphylococcus aureus ArlS Kinase Inhibitor Tilmicosin Has Potent Anti-Biofilm Activity in Both Static and Flow Conditions. Microorganisms 2024, 12, 256. [Google Scholar] [CrossRef]
- Lee, H.; Boyle-Vavra, S.; Ren, J.; Jarusiewicz, J.A.; Sharma, L.K.; Hoagland, D.T.; Yin, S.; Zhu, T.; Hevener, K.E.; Ojeda, I.; et al. Identification of Small Molecules Exhibiting Oxacillin Synergy through a Novel Assay for Inhibition of vraTSR Expression in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2019, 63, e02593-18. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Lei, L.; Zhang, H. Antisense yycG Regulation of Antibiotic Sensitivity of Methicillin-Resistant Staphylococcus aureus in Chronic Osteomyelitis. Surg. Infect. 2019, 20, 472–479. [Google Scholar] [CrossRef]
- Junejo, B.; Eryilmaz, M.; Rizvanoglu, S.S.; Palabiyik, I.M.; Ghumro, T.; Mallah, A.; Solangi, A.R.; Hyder, S.I.; Maleh, H.K.; Dragoi, E.N. Pharmacological Assessment of Co3O4, CuO, NiO and ZnO Nanoparticles via Antibacterial, Anti-Biofilm and Anti-Quorum Sensing Activities. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2023, 87, 2840–2851. [Google Scholar] [CrossRef]
- Hu, J.; Ding, Y.; Tao, B.; Yuan, Z.; Yang, Y.; Xu, K.; Li, X.; Liu, P.; Cai, K. Surface Modification of Titanium Substrate via Combining Photothermal Therapy and Quorum-Sensing-Inhibition Strategy for Improving Osseointegration and Treating Biofilm-Associated Bacterial Infection. Bioact. Mater. 2022, 18, 228–241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touati, A.; Ibrahim, N.A.; Idres, T. Disarming Staphylococcus aureus: Review of Strategies Combating This Resilient Pathogen by Targeting Its Virulence. Pathogens 2025, 14, 386. https://doi.org/10.3390/pathogens14040386
Touati A, Ibrahim NA, Idres T. Disarming Staphylococcus aureus: Review of Strategies Combating This Resilient Pathogen by Targeting Its Virulence. Pathogens. 2025; 14(4):386. https://doi.org/10.3390/pathogens14040386
Chicago/Turabian StyleTouati, Abdelaziz, Nasir Adam Ibrahim, and Takfarinas Idres. 2025. "Disarming Staphylococcus aureus: Review of Strategies Combating This Resilient Pathogen by Targeting Its Virulence" Pathogens 14, no. 4: 386. https://doi.org/10.3390/pathogens14040386
APA StyleTouati, A., Ibrahim, N. A., & Idres, T. (2025). Disarming Staphylococcus aureus: Review of Strategies Combating This Resilient Pathogen by Targeting Its Virulence. Pathogens, 14(4), 386. https://doi.org/10.3390/pathogens14040386