Fungal Endophytes Isolated from Elymus repens, a Wild Relative of Barley, Have Potential for Biological Control of Fusarium culmorum and Pyrenophora teres in Barley
Abstract
:1. Introduction
2. Results
2.1. Efficacy of Endophyte Seed Coating against Seed-Borne Fusarium culmorum
2.2. Root Colonisation by Periconia macrospinosa E1—Transformed with GFP
2.3. Efficacy of Endophyte Seed Coating on Pyrenophora teres on Leaves
3. Discussion
4. Materials and Methods
4.1. Plant and Fungal Material
4.2. Endophyte and Pathogen Inoculation
4.2.1. Inoculation of Seeds with Endophytes
4.2.2. Inoculation of Seeds with Fusarium culmorum
4.2.3. Leaf Inoculation with Pyrenophora teres
4.3. Sand Assay to Evaluate the Efficacy of Endophyte Seed Coating against Seed-Borne Fusarium culmorum
4.3.1. Sowing and Experimental Design
4.3.2. Disease Index and Disease Incidence
4.4. Root Colonisation by Periconia macrospinosa E1—Transformed with GFP
4.4.1. Agrobacterium tumefaciens Mediated Transformation with GFP
4.4.2. Root Colonisation Experiment
4.5. Net Blotch Assay to Evaluate the Efficacy of Endophyte Seed Coating against Pyrenophora teres
4.5.1. Sowing and Experimental Design
4.5.2. Disease Scoring
4.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Statistical Databases of the Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#home (accessed on 8 June 2022).
- Høyer, A.K.; Jørgensen, H.J.L.; Jensen, B.; Murphy, B.R.; Hodkinson, T.R. emerging methods for biological control of barley diseases including the role of endophytes. In Endophytes for a Growing World; Hodkinson, T.R., Doohan, M.F., Saunders, M.J., Murphy, B.R., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 93–119. [Google Scholar] [CrossRef]
- Oliveira, P.; Mauch, A.; Jacob, F.; Arendt, E.K. Impact of Fusarium culmorum-infected barley malt grains on brewing and beer quality. J. Am. Soc. Brew. Chem. 2012, 70, 186–194. [Google Scholar] [CrossRef]
- Nielsen, L.K.; Cook, D.J.; Edwards, S.G.; Ray, R.V. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. Int. J. Food Microbiol. 2014, 179, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Potterton, E.M.; McCabe, T. The effect of sowing date and nitrogen rate on the grain yield, grain quality and malt analyses of spring malting barley for distilling in Ireland. J. Agric. Sci. 2018, 156, 515–527. [Google Scholar] [CrossRef]
- Mathre, D.E. (Ed.) Compendium of Barley Diseases; APS Press: St. Paul, MN, USA, 1982. [Google Scholar]
- Scherm, B.; Balmas, V.; Spanu, F.; Pani, G.; Delogu, G.; Pasquali, M.; Migheli, Q. Fusarium culmorum: Causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 2013, 14, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.R.; Avrova, A.; Bingham, I.J.; Burnett, F.J.; Fountaine, J.; Havis, N.D.; Hoad, S.P.; Hughes, G.; Looseley, M.; Oxley, S.J.P.; et al. Control of foliar diseases in barley: Towards an integrated approach. Eur. J. Plant Pathol. 2012, 133, 33–73. [Google Scholar] [CrossRef]
- Oldach, K. Personal communication; KWS SAAT SE: Einbeck, Germany, 2018. [Google Scholar]
- Haas, D.; Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Genet. 2005, 3, 307–319. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. Directive 2009/128/EC of the European Parliament and the Council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. Off. J. Eur. Union 2009, 309, 71–86. [Google Scholar]
- Department of Agriculture. National Action Plan for the Sustainable Use of Pesticides; Department of Agriculture: Dublin, Ireland, 2013. [Google Scholar]
- Broadfoot, M. Microbes Added to Seeds Could Boost Crop Production. Scientific American. 12 February 2016. Available online: http://www.scientificamerican.com/article/microbes-added-to-seeds-could-boost-crop-production/ (accessed on 6 June 2022).
- Walker, R.; Rossall, S.; Asher, M. Colonization of the developing rhizosphere of sugar beet seedlings by potential biocontrol agents applied as seed treatments. J. Appl. Microbiol. 2002, 92, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Ting, A.S.Y.; Fang, M.T.; Tee, C.S. Assessment on the effect of formulative materials on the viability and efficacy of Serratia marcescens—A biocontrol agent against Fusarium oxysporum f. sp. cubense race 4. Am. J. Agric. Biol. Sci. 2009, 4, 283–288. [Google Scholar] [CrossRef]
- Buddrus-Schiemann, K.; Schmid, M.; Schreiner, K.; Welzl, G.; Hartmann, A. Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley. Microb. Ecol. 2010, 60, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D. Endophyte: The evolution of a term, and clarification of its use and definition. Oikos 1995, 73, 274–276. [Google Scholar] [CrossRef]
- Eevers, N.; Gielen, M.; Sánchez-López, A.; Jaspers, S.; White, J.C.; Vangronsveld, J.; Weyens, N. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microb. Biotechnol. 2015, 8, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Bush, L.P.; Wilkinson, H.H.; Schardl, C.L. Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol. 1997, 114, 1–7. [Google Scholar] [CrossRef] [PubMed]
- di Menna, M.E.; Finch, S.C.; Popay, A.J.; Smith, B.L. A review of the Neotyphodium lolii/Lolium perenne symbiosis and its associated effects on animal and plant health, with particular emphasis on ryegrass staggers. N. Z. Vet. J. 2012, 60, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Maciá-Vicente, J.G.; Rosso, L.C.; Ciancio, A.; Jansson, H.-B.; Lopez-Llorca, L.V. Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. Ann. Appl. Biol. 2009, 155, 391–401. [Google Scholar] [CrossRef]
- Wicaksono, W.A.; Jones, E.E.; Monk, J.; Ridgway, H.J. Using bacterial endophytes from a New Zealand native medicinal plant for control of grapevine trunk diseases. Biol. Control 2017, 114, 65–72. [Google Scholar] [CrossRef]
- Vinayarani, G.; Prakash, H.S. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani. World J. Microbiol. Biotechnol. 2018, 34, 49. [Google Scholar] [CrossRef]
- Latz, M.A.; Jensen, B.; Collinge, D.B.; Jørgensen, H.J.L. Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach. Biol. Control 2020, 141, 104128. [Google Scholar] [CrossRef]
- Rojas, E.C.; Jensen, B.; Jørgensen, H.J.; Latz, M.A.; Esteban, P.; Ding, Y.; Collinge, D.B. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biol. Control 2020, 144, 104222. [Google Scholar] [CrossRef]
- Sánchez Márquez, S.; Bills, G.F.; Zabalgogeazcoa, I. The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers. 2007, 27, 171–195. [Google Scholar]
- Mandyam, K.; Fox, C.; Jumpponen, A. Septate endophyte colonization and host responses of grasses and forbs native to a tallgrass prairie. Mycorrhiza 2011, 22, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comby, M.; Lacoste, S.; Baillieul, F.; Profizi, C.; Dupont, J. Spatial and temporal variation of cultivable communities of co-occurring endophytes and pathogens in wheat. Front. Microbiol. 2016, 7, 403. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.J.; Deacon, J.W. Control of the take-all fungus by Microdochium bolleyi, and interactions involving M. bolleyi, Phialophora graminicola and Periconia macrospinosa on cereal roots. Plant Soil 1987, 98, 231–237. [Google Scholar] [CrossRef]
- Hamza, A.M.; El-Kot, G.A.; Hamza, A.M.; El-Kot, G.A.; El-Moghazy, S. Non-traditional methods for controlling maize late wilt disease caused by Cephalosporium maydis. Egypt. J. Biol. Pest Control. 2013, 23, 87–93. [Google Scholar]
- El-Gremi, S.M.; Draz, I.S.; Youssef, W.A.-E. Biological control of pathogens associated with kernel black point disease of wheat. Crop Prot. 2017, 91, 13–19. [Google Scholar] [CrossRef]
- Li, Y.; Xia, L.; Wang, Y.; Liu, X.; Zhang, C.; Hu, T.; Cao, K. The inhibitory effect of Epicoccum nigrum strain XF1 against Phytophthora infestans. Biol. Control 2013, 67, 462–468. [Google Scholar] [CrossRef]
- Larena, I.; Torres, R.; De Cal, A.; Liñán, M.; Melgarejo, P.; Domenichini, P.; Bellini, A.; Mandrin, J.; Lichou, J.; de Eribe, X.O.; et al. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biol. Control 2005, 32, 305–310. [Google Scholar] [CrossRef]
- Jensen, B.; Knudsen, I.M.; Jensen, D.F. Biological seed treatment of cereals with fresh and long-term stored formulations of Clonostachys rosea: Biocontrol efficacy against Fusarium culmorum. Eur. J. Plant Pathol. 2000, 106, 233–242. [Google Scholar] [CrossRef]
- Jensen, B.; Lübeck, P.S.; Jørgensen, H.J.L. Clonostachys rosea reduces spot blotch in barley by inhibiting pre-penetration growth and sporulation of Bipolaris sorokiniana without inducing resistance. Pest Manag. Sci. 2016, 72, 2231–2239. [Google Scholar] [CrossRef]
- Latz, M.A.C.; Jensen, B.; Collinge, D.B.; Jørgensen, H.J.L. Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease supression. Plant Ecol. Divers. 2018, 11, 555–567. [Google Scholar] [CrossRef]
- Maciá-Vicente, J.G.; Jansson, H.-B.; Mendgen, K.; Lopez-Llorca, L.V. Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici. Can. J. Microbiol. 2008, 54, 600–609. [Google Scholar] [CrossRef]
- Deshmukh, S.D.; Kogel, K.-H. Piriformospora indica protects barley from root rot caused by Fusarium graminearum. J. Plant Dis. Prot. 2007, 114, 263–268. [Google Scholar] [CrossRef]
- Achatz, B.; von Rüden, S.; Andrade, D.; Neumann, E.; Pons-Kühnemann, J.; Kogel, K.-H.; Franken, P.; Waller, F. Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil 2010, 333, 59–70. [Google Scholar] [CrossRef]
- Kavanagh, V.B.; Hall, L.M.; Hall, J.C. Potential hybridization of genetically engineered triticale with wild and weedy relatives in Canada. Crop Sci. 2010, 50, 1128–1140. [Google Scholar] [CrossRef]
- Høyer, A.K.; Hodkinson, T.R. Hidden fungi: Combining culture-dependent and independent DNA barcording reveals inter-plant variation in species richness of endophytic root fungi in Elymus repens. J. Fungi 2021, 7, 466. [Google Scholar] [CrossRef]
- Glare, T.; Caradus, J.; Gelernter, W.; Jackson, T.; Keyhani, N.; Köhl, J.; Marrone, P.; Morin, L.; Stewart, A. Have biopesticides come of age? Trends Biotechnol. 2012, 30, 250–258. [Google Scholar] [CrossRef]
- European Commission. EU Pesticides Database—European Commission. 2016. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/?event=search.as (accessed on 27 August 2018).
- Osborne, S.-J.; McMillan, V.; White, R.; E Hammond-Kosack, K. Elite UK winter wheat cultivars differ in their ability to support the colonization of beneficial root-infecting fungi. J. Exp. Bot. 2018, 69, 3103–3115. [Google Scholar] [CrossRef]
- Jørgensen, H.J.L.; Andresen, H.; Smedegaard-Petersen, V. Control of Drechslera teres and other barley pathogens by preinoculation with Bipolaris maydis and Septoria nodorum. Phytopathology 1996, 86, 602–607. [Google Scholar] [CrossRef]
- Danielsen, S.; Jensen, D.F. Fungal endophytes from stalks of tropical maize and grasses: Isolation, identification, and screening for antagonism against Fusarium verticillioides in maize stalks. Biocontrol Sci. Technol. 1999, 9, 545–553. [Google Scholar] [CrossRef]
- Martín, J.A.; Macaya-Sanz, D.; Witzell, J.; Blumenstein, K.; Gil, L. Strong in vitro antagonism by elm xylem endophytes is not accompanied by temporally stable in planta protection against a vascular pathogen under field conditions. Eur. J. Plant Pathol. 2015, 142, 185–196. [Google Scholar] [CrossRef]
- Adame-Álvarez, R.-M.; Mendiola-Soto, J.; Heil, M. Order of arrival shifts endophyte-pathogen interactions in bean from resistance induction to disease facilitation. FEMS Microbiol. Lett. 2014, 355, 100–107. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef]
- Knudsen, I.M.B.; Hockenhull, J.; Jensen, D.F. Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: Fffects of selected fungal antagonists on growth and yield components. Plant Pathol. 1995, 44, 467–477. [Google Scholar] [CrossRef]
- Mullins, E.D.; Chen, X.; Romaine, P.; Raina, R.; Geiser, D.M.; Kang, S. Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology 2001, 91, 173–180. [Google Scholar] [CrossRef] [Green Version]
Endophyte Isolate | Fusarium culmorum | Pyrenophora teres | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Experiment Number | Experiment Number | |||||||||
Label | Identification | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
E1 | Periconia macrospinosa | + | + | – | – | – | – | |||
E2 | Periconia macrospinosa | + | ||||||||
E3 | Slopeiomyces cylindrosporus | – | ||||||||
E4 | Epicoccum nigrum | + | – | – | – | – | ||||
E5 | Leptodontidium sp. | – | ||||||||
E6 | Slopeiomyces cylindrosporus | – | ||||||||
E7 | Leptodontidium sp. | + | – | |||||||
E8 | Epicoccum sp. | – | ||||||||
E9 | Periconia sp. | – | – | |||||||
E10 | Lasiosphaeriaceae sp. | – | – | + | – | – | ||||
E11 | Leptodontidium sp. | – | – | |||||||
E12 | Leptodontidium sp. | – | ||||||||
E13 | Lindgomycetaceae sp. | – | – | + | ||||||
E14 | Chaetosphaeriaceae sp. | – | ||||||||
E15 | Dictyochaeta siamensis | – | – | |||||||
E16 | Leptodontidium sp. | – | + | |||||||
E17 | Diaporthe sp. | – | ||||||||
E18 | Slopeiomyces cylindrosporus | + | ||||||||
E19 | Mycochaetophora sp. | – | ||||||||
E20 | Leptodontidium sp. | – | ||||||||
E21 | Unidentified | – | ||||||||
E22 | Clohesyomyces aquaticus | – | ||||||||
E23 | Ophiosphaerella sp. | – | ||||||||
E24 | Dictyochaeta siamensis | – | ||||||||
E1gfp10 | Periconia macrospinosa gfp10 | – |
Endophytes | |||||||
---|---|---|---|---|---|---|---|
Label | Identification | Plant a | Medium b | Label | Identification | Plant | Medium |
E1 | Periconia macrospinosa | 1 | MEA | E14 | Chaetosphaeriaceae sp. | 10 | PDA |
E2 | Periconia macrospinosa | 1 | MEA | E15 | Dictyochaeta siamensis | 10 | MEA |
E3 | Slopeiomyces cylindrosporus | 2 | MEA | E16 | Leptodontidium sp. | 10 | MEA |
E4 | Epicoccum nigrum | 2 | PDA | E17 | Diaporthe sp. | 4 | MEA |
E5 | Leptodontidium sp. | 3 | PDA | E18 | Slopeiomyces cylindrosporus | 4 | PDA |
E6 | Slopeiomyces cylindrosporus | 6 | PDA | E19 | Mycochaetophora sp. | 4 | PDA |
E7 | Leptodontidium sp. | 6 | PDA | E20 | Leptodontidium sp. | 6 | MEA |
E8 | Epicoccum sp. | 7 | PDA | E21 | Unidentified | 9 | MEA |
E9 | Periconia sp. | 2 | PDA | E22 | Clohesyomyces aquaticus | 9 | MEA |
E10 | Lasiosphaeriaceae sp. | 3 | PDA | E23 | Ophiosphaerella sp. | 9 | MEA |
E11 | Leptodontidium sp. | 3 | PDA | E24 | Dictyochaeta siamensis | 7 | MEA |
E12 | Leptodontidium sp. | 6 | MEA | E1gfp10 | Periconia macrospinosa gfp10 | - | MEA |
E13 | Lindgomycetaceae sp. | 7 | MEA |
Name of Treatment | First Dressing | Second Dressing |
---|---|---|
Water | Deionised water | Deionised water |
F. culmorum | F. culmorum | Deionised water |
F. c + E(number) | F. culmorum | Endophyte (number) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Høyer, A.K.; Jørgensen, H.J.L.; Hodkinson, T.R.; Jensen, B. Fungal Endophytes Isolated from Elymus repens, a Wild Relative of Barley, Have Potential for Biological Control of Fusarium culmorum and Pyrenophora teres in Barley. Pathogens 2022, 11, 1097. https://doi.org/10.3390/pathogens11101097
Høyer AK, Jørgensen HJL, Hodkinson TR, Jensen B. Fungal Endophytes Isolated from Elymus repens, a Wild Relative of Barley, Have Potential for Biological Control of Fusarium culmorum and Pyrenophora teres in Barley. Pathogens. 2022; 11(10):1097. https://doi.org/10.3390/pathogens11101097
Chicago/Turabian StyleHøyer, Anna Kaja, Hans Jørgen Lyngs Jørgensen, Trevor Roland Hodkinson, and Birgit Jensen. 2022. "Fungal Endophytes Isolated from Elymus repens, a Wild Relative of Barley, Have Potential for Biological Control of Fusarium culmorum and Pyrenophora teres in Barley" Pathogens 11, no. 10: 1097. https://doi.org/10.3390/pathogens11101097