Enhancing Electromagnetic Wave Absorption in 3D-Printed Concrete with Superabsorbent Polymers for High Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Electromagnetic Wave Absorbing Composite Cementitious Material Design
2.2. Three-Dimensional Printing Concrete Sample Fabrication
2.3. Test Methods
2.3.1. Electromagnetic Reflection Experiment
2.3.2. CT Analysis
3. Results and Discussion
3.1. Electromagnetic Reflection Results
3.1.1. Effect of SAP Occupying Percentages on Absorption Characteristics
3.1.2. Effect of Treatment on Absorption Characteristics
3.2. CT Analysis
4. Conclusions
- The introduction of SAP improves wave impedance matching and wave impedance distribution, resulting in enhanced EMW impedance matching and reduced direct reflections. Notably, the sample with dry-processed 40 vol.% SAP exhibits the highest increase, with a rate of 25.44%. Due to the lower cost of SAP materials compared to previous EMW-absorbing materials, this printed EMW-absorbing concrete holds substantial commercial and application potential.
- The SAP filling volume significantly influences the reflection loss performance of EMW-absorbing concrete. SAP-Dry Treatment40 exhibits a peak reflectance loss of −19.12 dB at 7.53 GHz, accompanied by an absorption rate of 98.77%, and the reflectance bandwidth is below −10 dB at 13.97 GHz. This is in contrast to the 20 vol.% sample (peak −17.377 dB, absorption rate 98.17%, and bandwidth 13.66) and the sample with 0 vol.% dry-processed SAP (peak −15.24 dB, absorption rate 97.01%, and bandwidth 13.08).
- Microscopic analysis reveals irregular void distribution in concrete. EMW undergoes multiple reflections and scattering, leading to energy loss. Phase changes between adjacent voids induce interference, weakening EMW propagation. Additionally, SAP particles fracture during 3D printing and mixing, forming a complex 3D structure that enhances impedance matching, reduces direct reflection, and improves EMW-absorption performance.
- The study found that different SAP pretreatment and mixing methods significantly affect the EMW-absorption performance of concrete with 20% and 40% SAP content. Within the 2–10 GHz frequency range, Method B is most suitable for concrete with 20% SAP content. In contrast, for the higher frequency range of 11–18 GHz, Method C becomes the more appropriate choice for this SAP content. For concrete with 40 vol.% SAP, Method A proves to be the best choice within the 2–10 GHz frequency range, and Method C excels within the 11–18 GHz frequency range.
5. Research Limitations and Future Work
- This study employed high-resolution CT imaging to systematically analyze the microstructural characteristics and EMW attenuation mechanisms of SAP-modified 3D-printed concrete. However, the mechanical properties and long-term durability of the composites were not experimentally assessed. To address this, future work will include standardized tests such as chloride penetration, freeze–thaw cycles, as well as compressive and flexural strength evaluations. These efforts aim to verify the structural reliability of SAP-based 3DPC under service conditions and promote its broader application in electromagnetic shielding and infrastructure.
- Numerical simulations and multilayer impedance modeling were not included in the present work. These approaches will be considered in future studies to further quantify wave propagation and impedance matching mechanisms in graded 3D-printed cementitious absorbers.
- This study investigated the effects of SAP content, pretreatment methods, and incorporation strategies on the EMW-absorption performance of 3D-printed cementitious composites. However, the influence of 3D-printing parameters and patterns on interlayer porosity and EMW attenuation behavior was not fully explored. Future work will focus on quantitatively analyzing the effect of 3D-printing parameters and patterns on EMW-absorption properties through a combination of high-resolution CT scanning, surface profiling, and electromagnetic simulation experiments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taishi, B.; Yang, Y.; Wu, X.; Xu, J.; Huang, S. Dual-band 3D electrically small antenna based on split ring resonators. Adv. Compos. Hybrid Mater. 2022, 5, 350–355. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, L.; Aouraghe, M.A.; Xu, F. Ultra-light-weight kevlar/polyimide 3D woven spacer multifunctional composites for high-gain microstrip antenna. Adv. Compos. Hybrid Mater. 2022, 5, 872–883. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Sun, W. Investigation on microwave absorbing properties of double-layer cementitious composites. Adv. Mater. Res. 2009, 79–82, 1843–1846. [Google Scholar] [CrossRef]
- Wang, M.; Yang, X.; Wang, W. Establishing a 3D aggregates database from X-ray CT scans of bulk concrete. Constr. Build. Mater. 2022, 315, 125740. [Google Scholar] [CrossRef]
- Guo, M.; Wen, X.; Yang, S.; Xu, J.; Pan, X.; Bi, K. Extremely-low frequency mechanical antenna based on vibrating permanent magnet. Eng. Sci. 2021, 16, 387–392. [Google Scholar] [CrossRef]
- Sharan, T.; Singh, A.K. Enhancing the axial ratio bandwidth of circularly polarized open ground slot CPW-fed antenna for multiband wireless communications. Eng. Sci. 2021, 17, 274–284. [Google Scholar] [CrossRef]
- Guan, H.; Liu, S.; Duan, Y.; Cheng, J. Cement based electromagnetic shielding and absorbing building materials. Cem. Concr. Compos. 2006, 28, 468–474. [Google Scholar] [CrossRef]
- Al-Zhrani, S.; Bedaiwi, N.M.; El-Ramli, I.F.; Barasheed, A.Z.; Abduldaiem, A.; Al-Hadeethi, Y.; Umar, A. Underwater optical communications: A brief overview and recent developments. Eng. Sci. 2021, 16, 146–186. [Google Scholar] [CrossRef]
- Darwin, D.; Dolan, C.W.; Nilson, A.H. Design of Concrete Structures; McGraw-Hill Education: New York, NY, USA, 2016; Volume 2. [Google Scholar]
- Huang, H.; Guo, M.; Zhang, W.; Huang, M. Seismic behavior of strengthened RC columns under combined loadings. J. Bridg. Eng. 2022, 27, 05022005. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, Y.; Zhang, W.; Zhu, L. Property assessment of high-performance concrete containing three types of fibers. Int. J. Concr. Struct. Mater. 2021, 15, 39. [Google Scholar] [CrossRef]
- Ma, G.; Li, Z.; Wang, L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr. Build. Mater. 2018, 162, 613–627. [Google Scholar] [CrossRef]
- Chi, M.; Huang, R. Effect of montmorillonite as additive on the properties of cement-based composites. Sci. Eng. Compos. Mater. 2012, 19, 45–54. [Google Scholar] [CrossRef]
- Pretorius, J.C. Composite Plaster Cement-Based Electromagnetic Wave Absorber. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2013. [Google Scholar]
- Xingjun, L.; Mingli, C.; Yan, L.; Xin, L.; Qian, L.; Rong, T.; Qi, W.; Yuping, D. A new absorbing foam concrete: Preparation and microwave absorbing properties. Adv. Concr. Constr. 2015, 3, 103–111. [Google Scholar] [CrossRef]
- Ma, G.; Sun, J.; Aslani, F.; Huang, Y.; Jiao, F. Review on electromagnetic wave absorbing capacity improvement of cementitious material. Constr. Build. Mater. 2020, 262, 120907. [Google Scholar] [CrossRef]
- Xie, S.; Ji, Z.; Zhu, L.; Zhang, J.; Cao, Y.; Chen, J.; Liu, R.; Wang, J. Recent progress in electromagnetic wave absorption building materials. J. Build. Eng. 2020, 27, 100963. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Guan, B.; Ding, D.; Wang, L.; Wu, J.; Xiong, R. The electromagnetic wave absorbing properties of cement-based composites using natural magnetite powders as absorber. Mater. Res. Express 2017, 4, 056103. [Google Scholar] [CrossRef]
- Bantsis, G.; Mavridou, S.; Sikalidis, C.; Betsiou, M.; Oikonomou, N.; Yioultsis, T. Comparison of low cost shielding-absorbing cement paste building materials in X-band frequency range using a variety of wastes. Ceram. Int. 2012, 38, 3683–3692. [Google Scholar] [CrossRef]
- Ghizdăveț, Z.; Ștefan, B.-M.; Nastac, D.; Vasile, O.; Bratu, M. Sound absorbing materials made by embedding crumb rubber waste in a concrete matrix. Constr. Build. Mater. 2016, 124, 755–763. [Google Scholar] [CrossRef]
- Khaloo, A.R.; Dehestani, M.; Rahmatabadi, P. Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Manag. 2008, 28, 2472–2482. [Google Scholar] [CrossRef] [PubMed]
- Arenas, C.; Leiva, C.; Vilches, L.F.; Cifuentes, H. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers. Waste Manag. 2013, 33, 2316–2321. [Google Scholar] [CrossRef]
- Park, S.B.; Seo, D.S.; Lee, J. Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio. Cem. Concr. Res. 2005, 35, 1846–1854. [Google Scholar] [CrossRef]
- Sun, L.; Wang, C.; Zhang, C.; Yang, Z.; Li, C.; Qiao, P. Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments. Adv. Struct. Eng. 2023, 26, 533–546. [Google Scholar] [CrossRef]
- Singh, A.; Wang, Y.; Zhou, Y.; Sun, J.; Xu, X.; Li, Y.; Liu, Z.; Chen, J.; Wang, X. Utilization of antimony tailings in fiber-reinforced 3D printed concrete: A sustainable approach for construction materials. Constr. Build. Mater. 2023, 408, 133689. [Google Scholar] [CrossRef]
- Singh, A.P.; Gupta, B.K.; Mishra, M.; Chandra, A.; Mathur, R.; Dhawan, S. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties. Carbon 2013, 56, 86–96. [Google Scholar] [CrossRef]
- Wang, P.Q.; Wang, Y.; Zhang, M.; Tan, D.J.; Li, K.Y. Preparation and study on a new type of anti-electromagnetic radiation gypsum board. Appl. Mech. Mater. 2014, 703, 90–93. [Google Scholar] [CrossRef]
- Keel, W.C.; Lintott, C.J.; Schawinski, K.; Bennert, V.N.; Thomas, D.; Manning, A.; Chojnowski, S.D.; Van Arkel, H.; Lynn, S. The History and Environment of a Faded Quasar: Hubble Space Telescope observations of Hanny’s Voorwerp and IC 2497. Astron. J. 2012, 144, 66. [Google Scholar] [CrossRef]
- Wu, F.; Hao, W.J.; Zhang, Y.F.; Wang, M.M.; Chen, D.W.; Yi, Y.Y.; Zhao, H.C.; Dong, Y.F.; Yu, X.H. The Design and Preparation of Foam Concrete Absorber for WLAN anti-jamming EMW-absorber. Adv. Mater. Res. 2013, 785–786, 300–304. [Google Scholar] [CrossRef]
- Lv, H.; Yang, Z.; Pan, H.; Wu, R. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946. [Google Scholar] [CrossRef]
- Wang, D.; Jin, J.; Guo, Y.; Liu, H.; Guo, Z.; Liu, C.; Shen, C. Lightweight waterproof magnetic carbon foam for multifunctional electromagnetic wave absorbing material. Carbon 2023, 202, 464–474. [Google Scholar] [CrossRef]
- Yang, Z.; Liang, Q.; Duan, Y.; Li, Z.; Li, D.; Cao, Y. A 3D-printed lightweight broadband electromagnetic absorbing metastructure with preserved high-temperature mechanical property. Compos. Struct. 2021, 274, 114330. [Google Scholar] [CrossRef]
- Yao, X.; Lyu, X.; Sun, J.; Wang, B.; Wang, Y.; Yang, M.; Wei, Y.; Elchalakani, M.; Li, D.; Wang, X. AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition. Constr. Build. Mater. 2023, 375, 130898. [Google Scholar] [CrossRef]
- Huo, J.; Wang, L.; Yu, H. Polymeric nanocomposites for electromagnetic wave absorption. J. Mater. Sci. 2009, 44, 3917–3927. [Google Scholar] [CrossRef]
- Chen, X.; Ye, Y.; Cheng, J. Recent progress in electromagnetic wave absorbers. J. Inorg. Mater. 2011, 26, 449–456. [Google Scholar] [CrossRef]
- Zhu, C.-L.; Zhang, M.-L.; Qiao, Y.-J.; Xiao, G.; Zhang, F.; Chen, Y.-J. Fe3O4/TiO2 core/shell nanotubes: Synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 2010, 114, 16229–16235. [Google Scholar] [CrossRef]
- Xie, S.; Ji, Z.; Yang, Y.; Hou, G.; Wang, J. Electromagnetic wave absorption enhancement of carbon black/gypsum based composites filled with expanded perlite. Compos. Part B Eng. 2016, 106, 10–19. [Google Scholar] [CrossRef]
- Lv, X.; Duan, Y.; Chen, G. Electromagnetic wave absorption properties of cement-based composites filled with graphene nano-platelets and hollow glass microspheres. Constr. Build. Mater. 2018, 162, 280–285. [Google Scholar] [CrossRef]
- Guan, H.; Liu, S.; Duan, Y.; Zhao, Y. Investigation of the electromagnetic characteristics of cement based composites filled with EPS. Cem. Concr. Compos. 2007, 29, 49–54. [Google Scholar] [CrossRef]
- Ma, C.; Xie, S.; Wu, Z.; Ji, Z.; Wang, J. Research and simulation of electromagnetic wave absorbing performance for lightweight cement-based materials containing expanded polystyrene with different particle sizes and carbon black. Constr. Build. Mater. 2024, 430, 136496. [Google Scholar] [CrossRef]
- Guan, H.; Liu, S.; Duan, Y. Expanded Polystyrene as an Admixture in Cement-Based Composites for Electromagnetic Absorbing. J. Mater. Eng. Perform. 2007, 16, 68–72. [Google Scholar] [CrossRef]
- Du, J.; Liu, S.; Guan, H. Research on the absorbing characteristics of cement matrix composites filled with carbon black-coated expanded polystyrene beads. Adv. Cem. Res. 2006, 18, 161–164. [Google Scholar] [CrossRef]
- Guan, H.; Liu, S.; Duan, Y.; Zhao, Y. Research on Wave Absorbing and Compressive Properties of Expanded Polystyrene Filling Cement Composite Materials. J. Mater. Sci. Eng. 2006, 24, 524–527. [Google Scholar]
- Bian, P.; Zhan, B.; Gao, P.; Yu, Q.; Yang, Y.; Hong, L.; Zhang, W. Investigation on the electromagnetic wave absorption properties of foamed cement-based materials. Constr. Build. Mater. 2023, 364, 129903. [Google Scholar] [CrossRef]
- Ma, G.; Sun, J.; Wang, L.; Aslani, F.; Liu, M. Electromagnetic and microwave absorbing properties of cementitious composite for 3D printing containing waste copper solids. Cem. Concr. Compos. 2018, 94, 215–225. [Google Scholar] [CrossRef]
- Shakor, P.; Sanjayan, J.; Nazari, A.; Nejadi, S. Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Constr. Build. Mater. 2017, 138, 398–409. [Google Scholar] [CrossRef]
- Sanjayan, J.G.; Nematollahi, B.; Xia, M.; Marchment, T. Effect of surface moisture on inter-layer strength of 3D printed concrete. Constr. Build. Mater. 2018, 172, 468–475. [Google Scholar] [CrossRef]
- Nematollahi, B.; Xia, M.; Sanjayan, J. Current progress of 3D concrete printing technologies. In Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC 2017), Taipei, China, 28 June–1 July 2017. [Google Scholar]
- Tang, Y.; Wang, Y.; Wu, D.; Chen, M.; Pang, L.; Sun, J.; Feng, W.; Wang, X. Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis. Rev. Adv. Mater. Sci. 2023, 62, 20230347. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Grafe, J.; Nerella, V.N.; Spaniol, E.; Hertel, M.; Füssel, U. 3D-printed steel reinforcement for digital concrete construction–Manufacture, mechanical properties and bond behaviour. Constr. Build. Mater. 2018, 179, 125–137. [Google Scholar] [CrossRef]
- Le, T.T.; Austin, S.A.; Lim, S.; Buswell, R.A.; Law, R.; Gibb, A.G.; Thorpe, T. Hardened properties of high-performance printing concrete. Cem. Concr. Res. 2012, 42, 558–566. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Z.; Xie, Z.; Wei, L.; Hua, J.; Huang, L.; Yap, P.-S. Recent developments on natural fiber concrete: A review of properties, sustainability, applications, barriers, and opportunities. Dev. Built Environ. 2023, 16, 100255. [Google Scholar] [CrossRef]
- Wangler, T.; Lloret, E.; Reiter, L.; Hack, N.; Gramazio, F.; Kohler, M.; Bernhard, M.; Dillenburger, B.; Buchli, J.; Roussel, N.; et al. Digital concrete: Opportunities and challenges. RILEM Tech. Lett. 2016, 1, 67–75. [Google Scholar] [CrossRef]
- Zhou, F.; Li, W.; Hu, Y.; Huang, L.; Xie, Z.; Yang, J.; Wu, D.; Chen, Z. Moisture Diffusion Coefficient of Concrete under Different Conditions. Buildings 2023, 13, 2421. [Google Scholar] [CrossRef]
- Lin, J.-X.; Chen, G.; Pan, H.-S.; Wang, Y.-C.; Guo, Y.-C.; Jiang, Z.-X. Analysis of stress-strain behavior in engineered geopolymer composites reinforced with hybrid PE-PP fibers: A focus on cracking characteristics. Compos. Struct. 2023, 323, 117437. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Ma, G. Method for the enhancement of buildability and bending resistance of 3D printable tailing mortar. Int. J. Concr. Struct. Mater. 2018, 12, 37. [Google Scholar] [CrossRef]
- Yang, S.; Cao, M.; Ren, X.; Ma, G.; Zhang, J.; Wang, H. 3D crack propagation by the numerical manifold method. Comput. Struct. 2018, 194, 116–129. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Wang, X. A critical review of the use of 3-D printing in the construction industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef]
- Xu, H.; Bie, S.; Xu, Y.; Yuan, W.; Chen, Q.; Jiang, J. Broad bandwidth of thin composite radar absorbing structures embedded with frequency selective surfaces. Compos. Part A Appl. Sci. Manuf. 2016, 80, 111–117. [Google Scholar] [CrossRef]
- Lü, S.; Liu, S. Design and analyze of the figure of pyramid absorber used in microwave chambers. Mater Sci. Tech. 2007, 15, 572–574. [Google Scholar]
- Tang, W.; Sun, J.; Wang, Y.; Chen, Z.; Tang, Y.; Wang, D.; Zhao, H.; Wang, X. Electromagnetic absorption properties of 3D printed fiber-oriented composites under different paths. Constr. Build. Mater. 2024, 416, 135140. [Google Scholar] [CrossRef]
- Sun, J.; Tang, W.; Wang, Y.; Yao, X.; Huang, B.; Saafi, M.; Wang, X. Electromagnetic and mechanical performance of 3D printed wave-shaped copper solid superstructures. J. Mater. Res. Technol. 2023, 27, 6936–6946. [Google Scholar] [CrossRef]
- Liu, X.; Guo, P.; Wang, H.; Zhang, Y. Spray-based 3D printed cementitious electromagnetic wave absorption materials: Optimization with structures design. Constr. Build. Mater. 2025, 470, 140615. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Aslani, F.; Ma, G. Properties of a double-layer EMW-absorbing structure containing a graded nano-sized absorbent combing extruded and sprayed 3D printing. Constr. Build. Mater. 2020, 261, 120031. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Aslani, F.; Wang, X.; Ma, G. Mechanical enhancement for EMW-absorbing cementitious material using 3D concrete printing. J. Build. Eng. 2021, 41, 102763. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Aslani, F.; Ma, G. Electromagnetic wave absorbing performance of 3D printed wave-shape copper solid cementitious element. Cem. Concr. Compos. 2020, 114, 103789. [Google Scholar] [CrossRef]
- Das, A.; Reiter, L.; Mantellato, S.; Flatt, R.J. Early-age rheology and hydration control of ternary binders for 3D printing applications. Cem. Concr. Res. 2022, 162, 107004. [Google Scholar] [CrossRef]
- Chen, M.; Li, L.; Wang, J.; Huang, Y.; Wang, S.; Zhao, P.; Lu, L.; Cheng, X. Rheological parameters and building time of 3D printing sulphoaluminate cement paste modified by retarder and diatomite. Constr. Build. Mater. 2020, 234, 117391. [Google Scholar] [CrossRef]
- Jianjun, Y.; Wensuo, M.; Zuobin, G.; Chenhui, J.; Xianqing, L. A model for predicting electromagnetic wave absorption of 3D bidirectional angle-interlock woven fabric. Polym. Test. 2021, 100, 107272. [Google Scholar] [CrossRef]
- Yin, J.; Ma, W.; Gao, Z.; Lei, X.; Jia, C. A Structural Design Method of 3D Electromagnetic Wave-Absorbing Woven Fabrics. Polymers 2022, 14, 2635. [Google Scholar] [CrossRef]
- Deng, A.Z.; Wang, Y.J.; Zhou, X.G. Preparation and Properties of Scattering Electromagnetic Function Mortar Composite. Appl. Mech. Mater. 2013, 253, 445–450. [Google Scholar] [CrossRef]
- Simmons, A.; Emerson, W. An anechoic chamber making use of a new broadband absorbing material. In 1958 IRE International Convention Record; IEEE: New York, NY, USA, 1966. [Google Scholar]
- Micheli, D.; Pastore, R.; Vricella, A.; Delfini, A.; Marchetti, M.; Santoni, F. Electromagnetic characterization of materials by vector network analyzer experimental setup. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 195–236. [Google Scholar]
- Zhang, X.; Ding, X.; Ong, C.; Tan, B.; Yang, J. Dielectric and electrical properties of ordinary Portland cement and slag cement in the early hydration period. J. Mater. Sci. 1996, 31, 1345–1352. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, K.; Taylor, P.C.; Gu, Y. Superabsorbent Polymers for Internal Curing Concrete: An Additional Review on Characteristics, Effects, and Applications. Materials 2024, 17, 5462. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Chen, H.; Wang, Z.; Xue, C.; He, R. Performances of Cement Mortar Incorporating Superabsorbent Polymer (SAP) Using Different Dosing Methods. Materials 2019, 12, 1619. [Google Scholar] [CrossRef] [PubMed]
- Laustsen, S.; Hasholt, M.T.; Jensen, O.M. Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete. Mater. Struct. 2013, 48, 357–368. [Google Scholar] [CrossRef]









| Raw Materials | Producers |
|---|---|
| OPC | China Anhui Conch Group Co., Ltd., Wuhu, Chian |
| SAP | Guangdong Xiangbao Biotechnology Co., Ltd., Guangzhou, China |
| PP fibers | China Shenglong Technology Industry Co., Ltd., Shengzhen, China |
| SF | Linyuan Micro Silica Powder Co., Ltd., Xi’an, China |
| CS | Changsha Danuo Building Materials Co., Ltd., Changsha, China |
| HPMC | Shanghai Chenqi Chemical Technology Co., Ltd., Shanghai, China |
| SG | Shanghai Chenqi Chemical Technology Co., Ltd., Shanghai, China |
| NC | Zhejiang Fenghong New Materials Co., Ltd., Hangzhou, China |
| Samples | OPC | SF | Sand | CS | Fiber | SAP | HPMC | SP | NC | SG | Water |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Control | 1000 | 100 | 1000 | 300 | 2 | 0 | 1.28 | 2 | 3 | 1 | 350 |
| SAP-Dry Treatment20 | 1000 | 100 | 800 | 300 | 2 | 9.5 | 1.28 | 2 | 3 | 1 | 350 |
| SAP-Immerse Treatment20 | 1000 | 100 | 800 | 300 | 2 | 78 | 1.28 | 2 | 3 | 1 | 350 |
| SAP-Manual20 | 1000 | 100 | 800 | 300 | 2 | 78 | 1.28 | 2 | 3 | 1 | 350 |
| SAP-Dry Treatment40 | 1000 | 100 | 600 | 300 | 2 | 19 | 1.28 | 2 | 3 | 1 | 350 |
| SAP-Immerse Treatment40 | 1000 | 100 | 600 | 300 | 2 | 156 | 1.28 | 2 | 3 | 1 | 350 |
| SAP-Manual40 | 1000 | 100 | 600 | 300 | 2 | 156 | 1.28 | 2 | 3 | 1 | 350 |
| Material | Pre-Treatment | Density, ρ (g/cm3) | Single Mass (g) | Elastic Modulus Ef (Gpa) | Average Diameter | Aspect Ratio Lf/df | Tensile Strength (MPa) | Rupture Elongation (%) | Length, Lf (mm) |
|---|---|---|---|---|---|---|---|---|---|
| SAP | Dry-treat | 1.141 | 0.006 | 5.5 | 0.5 mm | 1 | - | - | - |
| Immersed-treat | 1.016 | 0.231 | 10.5 | 3 mm | 1 | - | - | - | |
| PP Fiber | - | 0.91 | - | 3.5 | 31 µm | 193.5 | 460 | 30 | 6 |
| Oxide | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | P2O5 | ZnO |
|---|---|---|---|---|---|---|---|---|---|---|
| OPC | 20.10 | 4.60 | 2.80 | 63.4 | 1.30 | 2.70 | 0.60 | — | — | — |
| SF | 98.32 | 0.38 | 0.13 | 0.15 | 0.14 | 0.68 | — | 0.09 | 0.07 | 0.05 |
| Experimental Group | Reflection Loss (dB) | Effective Bandwidth (GH) | Ref. |
|---|---|---|---|
| SAP–Dry Treament40 | −19.12 | 13.9 | Our work |
| SAP–Manual40 | −17.69 | 7.7 | Our work |
| Cross-Printed CF Sample | −16.34 | 13.15 | [62] |
| D2 | −14.7 | 9.72 | [65] |
| T147 | −13.31 | 9.3 | [64] |
| CS25 | 10.2 | 3.48 | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, X.; Xu, X.; Liu, X.; Sun, J.; Wang, X.; Xu, J.; Lei, Z.; Yang, C. Enhancing Electromagnetic Wave Absorption in 3D-Printed Concrete with Superabsorbent Polymers for High Performance. Buildings 2026, 16, 300. https://doi.org/10.3390/buildings16020300
Zhang X, Xu X, Liu X, Sun J, Wang X, Xu J, Lei Z, Yang C. Enhancing Electromagnetic Wave Absorption in 3D-Printed Concrete with Superabsorbent Polymers for High Performance. Buildings. 2026; 16(2):300. https://doi.org/10.3390/buildings16020300
Chicago/Turabian StyleZhang, Xin, Xinglong Xu, Xianda Liu, Junbo Sun, Xiangyu Wang, Jing Xu, Zuxiang Lei, and Chao Yang. 2026. "Enhancing Electromagnetic Wave Absorption in 3D-Printed Concrete with Superabsorbent Polymers for High Performance" Buildings 16, no. 2: 300. https://doi.org/10.3390/buildings16020300
APA StyleZhang, X., Xu, X., Liu, X., Sun, J., Wang, X., Xu, J., Lei, Z., & Yang, C. (2026). Enhancing Electromagnetic Wave Absorption in 3D-Printed Concrete with Superabsorbent Polymers for High Performance. Buildings, 16(2), 300. https://doi.org/10.3390/buildings16020300

