Beyond Prescriptive Codes: A Validated Linear–Static Methodology for Seismic Design of Soft-Storey RC Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Archetype Definition and Structural Modelling
2.1.1. Archetype Building and Conventional Design
2.1.2. Masonry Infill Modelling and Configuration Selection
2.2. Seismic Response Assessment: Modal and Static Analysis
2.2.1. Model Filtering, Soft-Storey Characterisation, and Modal Force Derivation
2.2.2. Formulation of the Equivalent Lateral Force Profile (ELFi1)
2.2.3. Non-Linear Static (Adaptive Pushover) Assessment
2.3. Performance and Ductility Quantification
2.3.1. Local and Global Damage Criteria
2.3.2. Adjusted Response Modification Coefficient (RI1)
2.4. Design Recalibration and Retrofit Strategy
2.4.1. Alternative Design Methodology
2.4.2. Structural Redesign of the Ground Storey
2.4.3. Comparative Performance Evaluation
2.5. Validation: Nonlinear Dynamic Time-History Analysis
2.5.1. Nonlinear Dynamic Analysis and Collapse Intensity
2.5.2. Safety Level Against Collapse
3. Results
3.1. Archetype Definition and Model Development
3.1.1. Linear–Elastic Reference Response (SMF Model)
3.1.2. Infill Configuration Sampling (SMF + IM Models)
3.1.3. Final Model Validation and Soft-Storey
3.1.4. Modal Characteristics of the Archetype
3.2. Seismic Response Assessment
3.2.1. Sensitivity of Modal Response to Infill Patterns
3.2.2. Impact of Masonry Infill on Seismic Demand and Force Profiles
3.3. Performance Quantification of the Original System
3.3.1. Assessment of the Response Modification Coefficient in Soft-Storey Structures
3.3.2. Capacity Curves and Performance Points
3.3.3. Local Damage Analysis: Columns
3.3.4. Local Damage Analysis: Masonry Infills
3.3.5. Global Damage Index (GDI)
3.4. Alternative Design and Comparative Assessment
3.4.1. Comparison of Lateral Load Distributions (ELFi1 vs. NEC)
3.4.2. Parametric Analysis for Ground-Storey Redesign
3.4.3. Comparative Analysis of Internal Forces
3.4.4. Comparative Performance of Redesigned System
3.5. Validation Via Nonlinear Dynamic Analysis
4. Discussion
4.1. Deficiencies in Conventional Seismic Design for Vertical Irregularities
4.2. Mechanics of the Proposed ELFi1 Lateral Forcce Profile
4.3. Validation of Numerical Assumptions and Robustness
4.4. Performance Assessment and Design Implications
4.5. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RC | Reinforced concrete |
| ELFi1 | Equivalent Lateral Force profile |
| GDI | Global Damage Index |
| ACMR | Adjusted Collapse Margin Ratio |
| ASCE | American Society of Civil Engineers |
| NEC-15 | Norma ecuatoriana de la construcción (Ecuadorian Construction Code) |
| SMF | Special Moment Frame |
| IM | Infill Masonry |
| ACI | American Concrete Institute |
| ATC-40 | Spectrum Method |
| DI | Damage Index |
| RR | Redundancy Factor |
| IDA | Incremental Dynamic Analysis |
| FEMA P695 | Federal Emergency Management Agency P695 |
References
- Işık, E.; Avcil, F.; Izol, R.; Büyüksaraç, A.; Bilgin, H.; Harirchian, E.; Arkan, E. Field Reconnaissance and Earthquake Vulnerability of the RC Buildings in Adıyaman during 2023 Türkiye Earthquakes. Appl. Sci. 2024, 14, 2860. [Google Scholar] [CrossRef]
- Bohorquez, A.; Viteri, E.; Rivera, E.; Avila, C. Environmental Impact of Earthquake-Resistant Design: A Sustainable Approach to Structural Response in High Seismic Risk Regions. Buildings 2024, 14, 3821. [Google Scholar] [CrossRef]
- Smith, E.M.; Mooney, W.D. A seismic intensity survey of the 16 April 2016 Mw7.8 Pedernales, Ecuador, Earthquake: A comparison with strong-motion data and teleseismic backprojection. In Seismological Research Letters; Seismological Society of America: Albany, CA, USA, 2021. [Google Scholar]
- American Society of Civil Engineers. Minimum Design Loads and Associated Criteria for Buildings and Other Structures; ASCE/SEI: Reston, VA, USA, 2022; pp. 7–22. [Google Scholar]
- Karami, A.; Shahbazi, S.; Kioumarsi, M. A Study on the Effects of Vertical Mass Irregularity on Seismic Behavior of BRBFs and CBFs. Appl. Sci. 2020, 10, 8314. [Google Scholar] [CrossRef]
- Raj, K.G.; Roopanjali, S.; Akshatha, P. Impact of irregularities on seismic fragility of reinforced concrete structures. Discov. Civ. Eng. 2025, 2, 101. [Google Scholar] [CrossRef]
- Sococol, I.; Mihai, P.; Petrescu, T.-C.; Nedeff, F.; Nedeff, V.; Agop, M.; Luca, B.-I. Numerical Study Regarding the Seismic Response of a Moment-Resisting (MR) Reinforced Concrete (RC) Frame Structure with Reduced Cross-Sections of the RC Slabs. Buildings 2022, 12, 1525. [Google Scholar] [CrossRef]
- Wang, Y.; Uy, B.; Li, D.; Thai, H.-T.; Mo, J.; Khan, M. Behaviour and design of coupled steel-concrete composite wall-frame structures. J. Constr. Steel Res. 2023, 208, 107984. [Google Scholar] [CrossRef]
- CAMICON; MIDUVI. Norma Ecuatoriana de la Construcción—NEC: NEC-SE-MP—Mamposteria Structural; Servicio Ecuatoriano de Normalización INEN: Quito, Ecuador, 2014. [Google Scholar]
- Santos, D.; Melo, J.; Varum, H. Code Requirements for the Seismic Design of Irregular Elevation RC Structures. Buildings 2024, 14, 1351. [Google Scholar] [CrossRef]
- Demirtaş, Y.; Avşar, Ö.; Bozer, A.; Dindar, A.A. Investigation of code based criteria for soft-story irregularity. Structures 2025, 80, 109668. [Google Scholar] [CrossRef]
- Ulutaş, H. Investigation of the Causes of Soft-Storey and Weak-Storey Formations in Low- and Mid-Rise RC Buildings in Türkiye. Buildings 2024, 14, 1308. [Google Scholar] [CrossRef]
- Apostolska, R.; Necevska-Cvetanovska, G.; Bojadzieva, J.; Gjorgjievska, E. Seismic Performance Assessment of Soft-Story RC Frame Buildings. J. Int. Environ. Appl. Sci. 2016, 11, 241–248. [Google Scholar]
- Pragalath, D.C.H.; Panda, S.; Salsal, M. Multiplication Factors for Design of Open Ground Story RC Building—A Probabilistic Approach. In Proceedings of the 7h World Congress on Civil, Structural, and Environmental Engineering (CSEE’22), Virtual Conference, 10–12 April 2022. [Google Scholar]
- Coral, E.; Ávila, C.; Gallegos, E.; Salazar, A.; Barros, L.; Rivera, E. Cellular concrete: A viable low-carbon alternative for developing countries in seismic regions? Struct. Concr. 2025, 26, 2741–2756. [Google Scholar] [CrossRef]
- Federal Emergency Management Agency. Quantification of Building Seismic Performance Factors (FEMA P695); Federal Emergency Management Agency: Hyattsville, MD, USA, 2009.
- Federal Emergency Management Agency. Assessing Seismic Performance of Buildings with Configuration Irregularities: Calibrating Current Standards and Practices; Federal Emergency Management Agency: Hyattsville, MD, USA, 2018.
- ACI Committee 318. Building Requirements for Structural Concrete and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2019. [Google Scholar]
- Crisafulli, F.J. Seismic Behaviour of Reinforced Concrete Structures with Masonry Infills; University of Canterbury: Christchurch, New Zealand, 1997. [Google Scholar]
- Smyrou, E.; Blandon, C.A.; Antoniou, S.; Pinho, R.; Crowley, H. Implementation and Verification of a Masonry Panel Model for Nonlinear Pseudo-Dynamic Analysis of Infilled RC Frames. In Proceedings of the First European Conference on Earthquake Engineering and Seismology 2006, Geneva, Switzerland, 6 September 2006; pp. 3–8. [Google Scholar]
- EN 1996-1-1; Eurocode 6: Design of Masonry Structures—Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures. European Committee for Standardization: Brussels, Belgium, 2005.
- Hendry, A.; Malek, M.H. Characteristic compressive strength of brickwork walls from collected test results. Mason. Int. 1986, 7, 15–24. [Google Scholar]
- López, K.; Ushiña, W. Determinación del Módulo de Elasticidad de Mampostería de Bloque no Estructural Utilizada en la Vivienda Ecuatoriana; National Polytechnic School: El Harrach, Algeria, 2017. [Google Scholar]
- Lima, K.; Paredes, J. Estudio Analítico-Experimental del Desempeño de un Pórtico de Hormigón Armado con Panel de Relleno de Bloque de Baja Resistencia, a Través de un Ensayo a Carga Lateral y Modelo Computacional; National Polytechnic School: El Harrach, Algeria, 2017. [Google Scholar]
- Chopra, A.K. Dynamics of Structures: Theory and Applications to Earthquake Engineering Fifth Edition in SI Units; Pearson: Harlow, UK, 2020. [Google Scholar]
- Guevara-Perez, L.T. “Soft Story” and “Weak Story” in Earthquake Resistant Design: A Multidisciplinary Approach. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Pesaralanka, V.; Challagulla, S.P.; Vicencio, F.; Babu, P.S.C.; Hossain, I.; Jameel, M.; Ramakrishna, U. Influence of a Soft Story on the Seismic Response of Non-Structural Components. Sustainability 2023, 15, 2860. [Google Scholar] [CrossRef]
- Alhalil, I.; Gullu, M.F. Investigating Infill Wall Configurations on 3-D Structural Systems with a Generalized Modeling Approach. Arab. J. Sci. Eng. 2023, 48, 13523–13551. [Google Scholar] [CrossRef]
- Suresh Kannan, S. Seismic Analysis of Soft Storey Building in Earthquake Zones. IOP Conf. Ser. Earth Environ. Sci. 2023, 1130, 012023. [Google Scholar] [CrossRef]
- Bai, J.; Chen, H.; Jia, J.; Sun, B.; Jin, S. New lateral load distribution pattern for seismic design of deteriorating shear buildings considering soil-structure interaction. Soil Dyn. Earthq. Eng. 2020, 139, 106344. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, B.Y.; Seo, S.Y. A seismic strengthening technique for reinforced concrete columns using sprayed FRP. Polymers 2016, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Bourahla, N. Equivalent Static Analysis of Structures Subjected to Seismic Actions. In Encyclopedia of Earthquake Engineering; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–13. [Google Scholar]
- Mostafaei, H.; Barmchi, M.A.; Bahmani, H. Seismic Resilience and Sustainability: A Comparative Analysis of Steel and Reinforced Structures. Buildings 2025, 15, 1613. [Google Scholar] [CrossRef]
- Gkournelos, P.D.; Triantafillou, T.; Bournas, D. Seismic upgrading of existing reinforced concrete buildings: A state-of-the-art review. Eng. Struct. 2021, 240, 112273. [Google Scholar] [CrossRef]
- Ismaeil, M.A. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls. IOSR J. Mech. Civ. Eng. 2013, 7, 49–62. [Google Scholar] [CrossRef]

















| Parameter | Unit | Value |
|---|---|---|
| City | - | Quito |
| Soil Type | - | D |
| Use | - | Residential |
| Seismic zone | ° | V |
| Response modification factor (R) | - | 8 |
| Seismic coefficient | % | 0.1488 |
| Dead load (typical floor) | kN/m2 | 6.86 |
| Dead load (terrace) | kN/m2 | 4.22 |
| Live load (typical floor) | kN/m2 | 1.96 |
| Live load (terrace) | kN/m2 | 0.98 |
| Parameter | Unit | Value |
|---|---|---|
| Compressive strength f′c | MPa | 21 |
| Modulus of elasticity Ec | MPa | 18,474.54 |
| Yield strength fy | MPa | 420 |
| Parameter | Unit | Value |
|---|---|---|
| Number of stories | u | 3 |
| Number of bays | u | 3 |
| Storey height | m | 3 |
| Floor area | m2 | 182.25 |
| Parameter | Unit | Value |
|---|---|---|
| Wall thickness (tw) | mm | 150.00 |
| Modulus of elasticity (Emθ) | MPa | 1600.546 |
| Equivalent strut width (bw) | Mm | 169.454 |
| Shear strength (fws) | MPa | 0.670 |
| Compressive strength (f′w) | MPa | 2.040 |
| Masonry strength (fmθ) | MPa | 1.042 |
| Strain at max stress (ε′m) | mm/mm | 0.0020 |
| Ultimate strain (ε′u) | mm/mm | 0.0150 |
| Initial shear strength (τ0) | MPa | 0.0462 |
| Friction coefficient (μ) | - | 0.23 |
| Maximum shear stress (τmax) | MPa | 0.1151 |
| Performance Level | Strain Limit | Observation |
|---|---|---|
| Yielding of reinforcing steel | 0.002 | Onset of yielding |
| Service compression of concrete | 0.004 | Onset of cover spalling |
| Service tension of reinforcing steel | 0.015 (1) | (1) Elements subjected to axial loads |
| 0.010 (2) | (2) Elements subjected to non-axial loads | |
| Damage control in confined concrete compression | 0.025 | Fracture of transverse confinement reinforcement |
| Damage control in reinforcing steel tension | 0.060 | Slip between reinforcing steel and concrete at the critical section |
| Ultimate strain limit of reinforcing steel | 0.100 | Fracture of reinforcing steel, therefore the section is no longer capable of carrying gravitational load |
| Drift Distortion | Damage Level | Type of Response | Damage Description |
|---|---|---|---|
| ≤0.10 | No damage | Elastic | Slight cracks at the corners |
| ≤0.28 | Slight | Inelastic, with stiffness degradation, maximum strength reached | Growth of initial cracks and appearance of localised compression cracks in both directions |
| ≤0.40 | Moderate | Inelastic, post-peak with strength and stiffness degradation | Cracks of appreciable length |
| ≤1.00 | Severe | Inelastic, post-peak with marked strength degradation | Extended cracking and crushing, portions of surface spalling |
| ≥1.00 | Collapse prevention | Inelastic, post-peak with marked strength degradation until total loss | Partial detachment of masonry units |
| Damage Index (D.I.) | Performance Limit State |
|---|---|
| D.I. ≤ 0.33 | Serviceable |
| 0.33 ≤ D.I. ≤ 0.66 | Repairable |
| 0.66 ≤ D.I. ≤ 1.00 | Irreparable |
| D.I. ≥ 1.00 | Collapse |
| Floor Level | Inertial Force kN | Displacement m | Storey-Drift % |
|---|---|---|---|
| 3 | 279.29 | 0.0235 | 1.25 |
| 2 | 279.78 | 0.0173 | 1.96 |
| 1 | 139.84 | 0.0075 | 1.50 |
| Ground floor | 698.92 | - | - |
| Estimator | Initial Sample | Final Sample | ||
|---|---|---|---|---|
| Nv. + 3.00 | Nv. + 3.00 | Nv. + 6.00 | Nv. + 9.00 | |
| No | 243 | 235 | 235 | 235 |
| Mean | 0.006165 | 0.006106 | 0.008177 | 0.008706 |
| Mode | 0.005873 | 0.005873 | 0.006991 | 0.007232 |
| Median | 0.006073 | 0.006068 | 0.007925 | 0.00834 |
| Variance | 1.38 × 10−7 | 3.78 × 10−8 | 9.33 × 10−7 | 1.23 × 10−6 |
| Deviation | 0.000372 | 0.000194 | 0.000966 | 0.001109 |
| % Standard Deviation | 6.0 | 3.2 | 11.8 | 12.7 |
| Kurtosis | 12.87 | 0.44 | 0.49 | 0.43 |
| Skewness | 3.32 | 0.88 | 1.14 | 1.09 |
| Storey Floor | Inertial Forces (kN) | Shear Forces (kN) | Mean Displacement (m) | (m) | (kN/m) | |
|---|---|---|---|---|---|---|
| 3 | 279.29 | 279.29 | 0.00533 | 0.00046 | 607,159.54 | - |
| 2 | 279.78 | 559.07 | 0.00487 | 0.00104 | 537,574.15 | 0.89 |
| 1 | 139.84 | 698.92 | 0.00383 | 0.00383 | 182,408.81 | 0.34 |
| Floor Level | SMF | SMF + IMmin | SMF + IMFmean | SMF + IMmax |
|---|---|---|---|---|
| 3 | 0.399 | 0.07 | 0.03 | 0.06 |
| 2 | 0.400 | −0.15 | −0.15 | −0.30 |
| 1 | 0.200 | 1.08 | 1.12 | 1.23 |
| Base | - | - | - | - |
| Floor | ELF NEC | ELF NEC * | ELFi1 | |||
|---|---|---|---|---|---|---|
| Level | Fi/V | Fi (kN) | Fi/V | Fi (kN) | Fi/V | Fi (kN) |
| 3 | 0.399 | 279.29 | 0.40 | 309.89 | 0.03 | 33.54 |
| 2 | 0.400 | 279.78 | 0.40 | 310.87 | −0.15 | −169.79 |
| 1 | 0.200 | 139.84 | 0.20 | 155.34 | 1.12 | 1252.51 |
| Base shear (kN) | 698.92 | 776.58 | 1118.25 | |||
| Difference% | 160.0% | 144.0% | - | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rios, D.; Altamirano, M.; Ilbay, D.; Tlapanco, J.; Rivera-Tapia, D.; Avila, C. Beyond Prescriptive Codes: A Validated Linear–Static Methodology for Seismic Design of Soft-Storey RC Structures. Buildings 2026, 16, 60. https://doi.org/10.3390/buildings16010060
Rios D, Altamirano M, Ilbay D, Tlapanco J, Rivera-Tapia D, Avila C. Beyond Prescriptive Codes: A Validated Linear–Static Methodology for Seismic Design of Soft-Storey RC Structures. Buildings. 2026; 16(1):60. https://doi.org/10.3390/buildings16010060
Chicago/Turabian StyleRios, Daniel, Marco Altamirano, Daniel Ilbay, Juan Tlapanco, David Rivera-Tapia, and Carlos Avila. 2026. "Beyond Prescriptive Codes: A Validated Linear–Static Methodology for Seismic Design of Soft-Storey RC Structures" Buildings 16, no. 1: 60. https://doi.org/10.3390/buildings16010060
APA StyleRios, D., Altamirano, M., Ilbay, D., Tlapanco, J., Rivera-Tapia, D., & Avila, C. (2026). Beyond Prescriptive Codes: A Validated Linear–Static Methodology for Seismic Design of Soft-Storey RC Structures. Buildings, 16(1), 60. https://doi.org/10.3390/buildings16010060

