Sustainability and Structural Integrity in Seismic Design: The Role of Reinforcement Ratios in Life Cycle Impact and Building Safety
Abstract
1. Introduction
2. Materials and Methods
2.1. Assumptions
2.2. Frames Modeling
2.3. Mechanical Calculations
2.4. Life Cycle Impact Assessment
2.4.1. Goals and Scope
2.4.2. Life Cycle Inventory
- -
- Resource demand (kg of materials, minerals, biomass, water, etc.);
- -
- Recycling or circularity rates;
- -
- Carbon footprint of the material;
- -
- Inventory optimization or more efficient use of materials.
2.4.3. Impact Assessment
3. Results
3.1. Pushover Analysis
3.2. Life Cycle Impact Assessment (LCiA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Acronyms | Description |
| ACI | American Concrete Institute |
| ASCE | American Society of Civil Engineers |
| C | Soil Class C (Eurocode 8) |
| CTE-SE-AE | Spanish Building Code—Structural Safety—Building Actions |
| EC-2 | Eurocode 2: Design of Concrete Structures |
| EC-8 | Eurocode 8: Design of Structures for Earthquake Resistance |
| EHE-08 | Spanish Concrete Standard (2008) |
| FEMA | Federal Emergency Management Agency |
| fc | Concrete Compressive Strength (mean value) |
| f′c | Concrete Compressive Strength (characteristic value) |
| FRS | Fossil Resource Scarcity/Depletion |
| Fu | Ultimate Base Shear |
| Fy | Yield Base Shear |
| GHG | Greenhouse Gas |
| GWP | Global Warming Potential |
| HCT | Human Toxicity, Cancer |
| HNCT | Human Toxicity, Non-Cancer |
| IR | Ionizing Radiation |
| LCA | Life Cycle Assessment |
| LCiA | Life Cycle Impact Assessment |
| LU | Land Use/Land Occupation |
| ME | Marine Ecotoxicity |
| MEu | Marine Eutrophication |
| MFA | Material Flow Analysis |
| MRS | Mineral Resource Scarcity/Depletion |
| OFHH | Photochemical Ozone Formation (Human Health) |
| OFTE | Ozone Formation on Terrestrial Ecosystems |
| Ø | Diameter of Reinforcing Bar |
| FP | Fine Particulate Matter Formation |
| RC | Reinforced Concrete |
| ReCiPe | LCIA Method for Midpoint and Endpoint Indicators |
| Risk-UE | European Project for Earthquake Risk Scenarios |
| SOD | Stratospheric Ozone Depletion |
| SU | Live Load (Sobrecarga de Uso) |
| TA | Terrestrial Acidification |
| TE | Terrestrial Ecotoxicity |
| FWEc | Freshwater Ecotoxicity |
| FWEu | Freshwater Eutrophication |
| WC | Water Consumption |
Appendix A


References
- Schwarz, M.; Nakhle, C.; Knoeri, C. Innovative designs of building energy codes for building decarbonization and their implementation challenges. J. Clean. Prod. 2020, 248, 119260. [Google Scholar] [CrossRef]
- Sol, D.; Bartomeus, I.; González-Lagos, C.; Pavoine, S. Urbanisation and the loss of phylogenetic diversity in birds. Ecol. Lett. 2017, 20, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Almenar, J.-B.; Petucco, C.; Sonnemann, G.; Geneletti, D.; Elliot, T.; Rugani, B. Modelling the net environmental and economic impacts of urban nature-based solutions by combining ecosystem services, system dynamics and life cycle thinking: An application to urban forests. Ecosyst. Serv. 2023, 60, 101506. [Google Scholar] [CrossRef]
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef]
- Guo, F.; Wang, J.; Song, Y. How to promote sustainable development of construction and demolition waste recycling systems: Production subsidies or consumption subsidies? Sustain. Prod. Consum. 2022, 32, 407–423. [Google Scholar] [CrossRef]
- Hosseinian, S.M.; Ghahari, S.M. The relationship between structural parameters and water footprint of residential buildings. J. Clean. Prod. 2021, 279, 123562. [Google Scholar] [CrossRef]
- Akhtar, A.; Sarmah, A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 2018, 186, 262–281. [Google Scholar] [CrossRef]
- De Barros-Martins, M.A.; Crispim, A.; Liberato-Ferreira, M.; dos Santos, I.F.; Noronha-Motta Melo, M.L.; Mambeli-Barros, R.; Tiago-Filho, G.L. Evaluating the energy consumption and greenhouse gas emissions from managing municipal, construction, and demolition solid waste. Clean. Waste Syst. 2023, 4, 100070. [Google Scholar] [CrossRef]
- Kong, M.; Ji, C.; Hong, T.; Kang, H. Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea. Renew. Sustain. Energy Rev. 2022, 155, 111891. [Google Scholar] [CrossRef]
- Muñoz, P.; Morales, P.; Letelier, V.; Muñoz, L.; Mora, D. Implications of Life Cycle Energy Assessment of a new school building, regarding the nearly Zero Energy Buildings targets in EU: A case of Study. Sustain. Cities Soc. 2017, 32, 142–152. [Google Scholar] [CrossRef]
- Belleri, A.; Marini, A. Does seismic risk affect the environmental impact of existing buildings? Energy Build. 2016, 110, 149–158. [Google Scholar] [CrossRef]
- López-Almansa, F.; Domínguez, D.; Benavent-Climent, A. Vulnerability analysis of RC buildings with wide beams located in moderate seismicity regions. Eng. Struct. 2013, 46, 687–702. [Google Scholar] [CrossRef]
- ACI 318-19; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2019.
- Dominguez-Santos, D.; Ballesteros-Perez, P.; Mora-Melia, D. Structural Resistance of Reinforced Concrete Buildings in Areas of Moderate Seismicity and Assessment of Strategies for Structural Improvement. Buildings 2017, 7, 89. [Google Scholar] [CrossRef]
- Xiamuxi, A.; Wang, A.; Yang, B. Optimum reinforcement ratio of axially loaded reinforced concrete-filled square steel tube column. J. Constr. Steel Res. 2023, 203, 107805. [Google Scholar] [CrossRef]
- Hasan, H.A.; Karim, H.; Goaiz, H.A.; Cabe, A.M.; Sheikh, M.N.; Hadi, M.N.S. Performance evaluation of normal- and high-strength concrete column specimens reinforced longitudinally with different ratios of GFRP bars. Structures 2023, 47, 1428–1440. [Google Scholar] [CrossRef]
- Bastami, M.; Abbasnejadfard, M.; Motamed, H.; Ansari, A.; Garakaninezhad, A. Development of hybrid earthquake vulnerability functions for typical residential buildings in Iran. Int. J. Disaster Risk Reduct. 2022, 77, 103087. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Liu, J.; Wu, H.; Ye, P. Seismic performance and shear capacity theory of assembled steel reinforced recycled concrete frame under earthquake action. Structures 2025, 71, 108106. [Google Scholar] [CrossRef]
- Guggemos, A.A.; Horvath, A. Comparison of environmental effects of steel-and concrete-framed buildings. J. Infrastruct. Syst. 2005, 11, 93–101. [Google Scholar] [CrossRef]
- Mehra, S.; Singh, M.; Sharma, G.; Kumar, S.; Navishi; Chadha, P. Impact of construction material on environment. In Ecological and Health Effects of Building Materials; Springer International Publishing: Cham, The Netherland, 2021; pp. 427–442. [Google Scholar]
- Burgan, B.A.; Sansom, M.R. Sustainable steel construction. J. Constr. Steel Res. 2006, 62, 1178–1183. [Google Scholar] [CrossRef]
- Horvath, A.; Hendrickson, C. Steel versus steel-reinforced concrete bridges: Environmental assessment. J. Infrastruct. Syst. 1998, 4, 111–117. [Google Scholar] [CrossRef]
- Xing, S.; Xu, Z.; Jun, G. Inventory analysis of LCA on steel- and concrete-construction office buildings. Energy Build. 2008, 40 Pt 7, 1188–1193. [Google Scholar] [CrossRef]
- Eckelman, M.J.; Brown, C.; Troup, L.N.; Wang, L.; Webster, M.D.; Hajjar, J.F. Life cycle energy and environmental benefits of novel design-for-deconstruction structural systems in steel buildings. Build. Environ. 2018, 143, 421–430. [Google Scholar] [CrossRef]
- Aksel, H.; Eren, Ö. A discussion on the advantages of steel structures in the context of sustainable construction. Int. J. Contemp. Archit. New ARCH 2015, 2, 46–53. [Google Scholar]
- Demirel, I.O.; Yakut, A.; Binici, B. Seismic performance of mid-rise reinforced concrete buildings in Izmir Bayrakli after the 2020 Samos earthquake. Eng. Fail. Anal. 2022, 137, 106277. [Google Scholar] [CrossRef]
- Le, A.T.; To, M.D.; Vo, N.H. Sustainable concrete using estuarine sand and fly ash with polypropylene fibres. Eur. J. Environ. Civ. Eng. 2025, 1–39. [Google Scholar] [CrossRef]
- Le, A.T.; Le, T.T. Predicting flexural strength of steel fiber reinforced concrete using Random Forest and Sobol’s sensitivity analysis. Asian J. Civ. Eng. 2025, 26, 5039–5048. [Google Scholar] [CrossRef]
- Ramos, A.; León, J. Clasificación morfológica de los rellenos en el trasdós de bóvedas de fábrica. Inf. Construcción 2013, 65, 471–480. [Google Scholar] [CrossRef]
- EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization (CEN): Brussels, Belgium, 2013.
- EHE-08; Instrucción de Hormigón Estructural. Ministerio de Fomento: Madrid, Spain, 2008.
- Lagomarsino, S.; Penna, A. Guidelines for the Implementation of the II Level Vulnerability Methodology. WP4: Vulnerability Assessment of Current Buildings. Technical Presentation RISK-UE Project: An Advanced Approach to Earthquake Risk Scenarios with Application to Different European Towns. 2003. Available online: https://cordis.europa.eu/project/rcn/54199/factsheet/en (accessed on 13 April 2023).
- Antoniou, S.; Pinho, R. Development and verification of a displacement-based adaptive pushover procedure. J. Earthq. Eng. 2004, 8, 643–661. [Google Scholar] [CrossRef]
- Ferracuti, B.; Pinho, R.; Savoia, M.; Francia, R. Verification of displacement-based adaptive pushover through multi-ground motion incremental dynamic analyses. Eng. Struct. 2009, 31, 1789–1799. [Google Scholar] [CrossRef]
- EN 1998-1; Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- Neuenhofer, A.; Filippou, F.C. Evaluation of nonlinear frame finite-element models. J. Struct. Eng. 1997, 123, 958–966. [Google Scholar] [CrossRef]
- Spacone, E.; Filippou, F.C.; Taucer, F.F. Fibre beam–column model for non-linear analysis of R/C frames: Part I. Formulation. Earthq. Eng. Struct. Dyn. 1996, 25, 711–725. [Google Scholar] [CrossRef]
- Bathe, K.J.; Wilson, E.L. Numerical Methods in Finite Element Analysis; Prentice-Hall: Hoboken, NJ, USA, 1976. [Google Scholar]
- Bento, R.; Pinho, R.; Bhatt, C. Using nonlinear static procedures for seismic assessment of the 3D irregular SPEAR building. Earthq. Struct. 2008, 1, 177–195. [Google Scholar] [CrossRef]
- Bae, S.; Bayrak, O. Plastic hinge length of reinforced concrete columns. ACI Struct. J. 2008, 105, 290. [Google Scholar] [CrossRef]
- Inel, M.; Ozmen, H.B. Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings. Eng. Struct. 2006, 28, 1494–1502. [Google Scholar] [CrossRef]
- Scott, M.H.; Fenves, G.L. Plastic Hinge Integration Methods for Force-Based Beam. J. Struct. Eng. 2006, 132, 244–252. [Google Scholar] [CrossRef]
- SeismoStruct, v2021; A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures; Seismosoft: Pavia, Italy, 2021. Available online: https://seismosoft.com/product/seismostruct/ (accessed on 4 November 2025).
- Mander, J.B.; Priestley, M.J.; Park, R. Theoretical stress-strain model for confined concrete. J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef]
- Bosco, M.; Ferrara, E.; Ghersi, A.; Marino, E.M.; Rossi, P.P. Improvement of the model proposed by Menegotto and Pinto for steel. Eng. Struct. 2016, 124, 442–456. [Google Scholar] [CrossRef]
- FEMA 356; Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Emergency Management Agency: Washington, DC, USA, 2000.
- ASCE/SEI 41-17; Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers: Reston, VA, USA, 2017.
- Scott, M.H.; Fenves, G.L.; McKenna, F.; Filippou, F.C. Software patterns for nonlinear beam-column models. J. Struct. Eng. 2008, 134, 562–571. [Google Scholar] [CrossRef]
- Mergos, P.E.; Kappos, A.J. Estimating fixed-end rotations of reinforced concrete members at yielding and ultimate. Struct. Concr. 2015, 16, 537–545. [Google Scholar] [CrossRef]
- Shrestha, J.K. Assessment of energy demand and greenhouse gas emissions in low rise building systems: Case study of five building systems built after the Gorkha Earthquake in Nepal. J. Build. Eng. 2021, 34, 101831. [Google Scholar] [CrossRef]
- Li, Y.; Lu, X.; Guan, H.; Ren, P.; Qian, L. Probability-based progressive collapse-resistant assessment for reinforced concrete frame structures. Adv. Struct. Eng. 2016, 19, 1723–1735. [Google Scholar] [CrossRef]
- Bn-Mohammed, T.; Greenough, R.; Taylor, S.; Ozawa-Meida, L.; Acquaye, A. Operational vs. embodied emissions in buildings: A review. Energy Build. 2013, 66, 232–245. [Google Scholar] [CrossRef]
- Hart, R.; Pomponi, F.; D’Amico, B. Whole-life embodied carbon in multistory buildings: Steel, concrete and timber structures. J. Ind. Ecol. 2021, 25, 403–418. [Google Scholar] [CrossRef]
- Lützkendorf, T.; Frischknecht, R.; Balouktsi, M. Embodied carbon in buildings: Guidance and overview. Build. Cities 2022, 3, 198–216. [Google Scholar]
- Suer, J.; Traverso, M.; Jäger, N. Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios. Sustainability 2022, 14, 14131. [Google Scholar] [CrossRef]
- Pavlović, A.; Donchev, T.; Petkova, D.; Staletović, N. Sustainability of alternative reinforcement for concrete structures: Life cycle assessment of basalt FRP bars. Constr. Build. Mater. 2022, 334, 127424. [Google Scholar] [CrossRef]
- Madrid, M.; García-Frómeta, Y.; Cuadrado, J.; María Blanco, J. Análisis de ciclo de vida en bloques de hormigón: Comparación del impacto producido entre bloques tradicionales y con subproductos. Inf. Construcción 2022, 74, e438. [Google Scholar] [CrossRef]
- Ecoinvent 3.6; Life Cycle Inventory Database. Ecoinvent Association: Zurich, Switzerland, 2019. Available online: https://ecoinvent.org/database/ (accessed on 4 November 2025).
- Farina, I.; Colangelo, F.; Petrillo, A.; Ferraro, A.; Moccia, I.; Cioffi, R. Chapter 24—LCA of concrete with construction and demolition waste, Woodhead Publishing Series in Civil and Structural Engineering. In Advances in Construction and Demolition Waste Recycling; Woodhead Publishing: Delhi, India, 2020; pp. 501–513. [Google Scholar] [CrossRef]
- Marceau Medgar, L.; Nisbet Michael, A.; VanGeem Martha, G. Life Cycle Inventory of Portland Cement Manufacture; SN2095b; Portland Cement Association: Skokie, IL, USA, 2006; 69p, Available online: http://www.vangeemconsulting.com/37_Life_Cycle_Inventory_of_Portland_Cement_Manufacture_SN2095b.pdf (accessed on 13 April 2023).
- Manjunatha, M.; Preethi, S.; Malingaraya; Mounika, H.G.; Niveditha, K.N.; Ravi. Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Mater. Today Proc. 2021, 47 Pt 13, 3637–3644. [Google Scholar] [CrossRef]
- Colangelo, F.; Forcina, A.; Farina, I.; Petrillo, A. Life Cycle Assessment (LCA) of Different Kinds of Concrete Containing Waste for Sustainable Construction. Buildings 2018, 8, 70. [Google Scholar] [CrossRef]
- Valderrama, C.; Granados, R.; Cortina, J.L.; Gasol, C.M.; Guillem, M.; Josa, A. Implementation of best available techniques in cement manufacturing: A life-cycle assessment study. J. Clean. Prod. 2012, 25, 60–67. [Google Scholar] [CrossRef]
- Hardaker, A.; Styles, D.; Williams, P.; Chadwick, D.; Dandy, N. A framework for integrating ecosystem services as endpoint impacts in life cycle assessment. J. Clean. Prod. 2022, 370, 133450. [Google Scholar] [CrossRef]
- De Luca Peña, L.V.; Taelman, S.E.; Préat, N.; Boone, L.; Van der Biest, K.; Custódio, M.; Hernandez Lucas, S.; Everaert, G.; Dewulf, J. Towards a comprehensive sustainability methodology to assess anthropogenic impacts on ecosystems: Review of the integration of Life Cycle Assessment, Environmental Risk Assessment and Ecosystem Services Assessment. Sci. Total Environ. 2022, 808, 152125. [Google Scholar] [CrossRef]
- Bare, J.C.; Gloria, T.P. Environmental impact assessment taxonomy providing comprehensive coverage of midpoints, endpoints, damages, and areas of protection. J. Clean. Prod. 2008, 16, 1021–1035. [Google Scholar] [CrossRef]
- Brunesi, E.; Nascimbene, R.; Parisi, F.; Augenti, N. Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis. Eng. Struct. 2015, 104, 65–79. [Google Scholar] [CrossRef]
- Goel, R.K.; Chopra, A.K. Evaluation of modal and FEMA pushover analyses: SAC buildings. Earthq. Spectra 2004, 20, 225–254. [Google Scholar] [CrossRef]
- Hakim, R.A.; Alama, M.S.; Ashour, S.A. Seismic assessment of RC building according to ATC 40, FEMA 356 and FEMA 440, Arab. J. Sci. Eng. 2014, 39, 7691–7699. [Google Scholar]
- Lagaros, N.D.; Fragiadakis, M. Evaluation of ASCE-41, ATC-40 and N2 static pushover methods based on optimally designed buildings. Soil Dyn. Earthq. Eng. 2011, 31, 77–90. [Google Scholar] [CrossRef]
- Crisfield, M.A. Non-Linear Finite Element Analysis of Solids and Structures; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Hoxha, E.; Habert, G.; Lasvaux, S.; Chevalier, J.; Le Roy, R. Influence of construction material uncertainties on residential building LCA reliability. J. Clean. Prod. 2017, 144, 33–47. [Google Scholar] [CrossRef]
- Schneider, L.; Berger, M.; Finkbeiner, M. The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int. J. Life Cycle Assess. 2011, 16, 929–936. [Google Scholar] [CrossRef]
- Oladazimi, A.; Mansour, S.; Hosseinijou, S.A. Comparative Life Cycle Assessment of Steel and Concrete Construction Frames: A Case Study of Two Residential Buildings in Iran. Buildings 2020, 10, 54. [Google Scholar] [CrossRef]
- Ismaeel, W.S.E. Midpoint and endpoint impact categories in Green building rating systems. J. Clean. Prod. 2018, 182, 783–793. [Google Scholar] [CrossRef]
- de Souza, D.M.; Lafontaine, M.; Charron-Doucet, F.; Chappert, B.; Kicak, K.; Duarte, F.; Lima, L. Comparative life cycle assessment of ceramic brick, concrete brick and cast-in-place reinforced concrete exterior walls. J. Clean. Prod. 2016, 137, 70–82. [Google Scholar] [CrossRef]







| Reinforcing Ratio | Story | Column Cross-Section [cm] | Beam Cross-Section [cm] | Structure Weight [kN] | |
|---|---|---|---|---|---|
| Case #1 | 1% | 1 to 3 | 30 × 30 (8Ø12) a | 40 × 30 (6Ø16) a | 953 |
| 3% (−15%/+154%) ** | 1 to 3 | 23 × 23 (20Ø10) a | 40 × 30 (18Ø16) a | 942 (−2%) * | |
| 5% (−19%/+308%) ** | 1 to 3 | 21 × 21 (20Ø8 + 6Ø16) a | 40 × 30 (30Ø16) a | 937 (−2%) * | |
| Case #2 | 1% | 1 to 3 | 45 × 45 (18Ø12) a | 40 × 30 (6Ø16) a | 1058 |
| 3% (−31%/+108%) ** | 1 to 3 | 30 × 30 (18Ø14) a | 40 × 30 (18Ø16) a | 970 (−9%) * | |
| 5% (−36%/+222%) ** | 1 to 3 | 27 × 27 (24Ø14) a | 40 × 30 (30Ø16) a | 957 (−10%) * | |
| Case #3 | 1% | 1 to 3 | 60 × 60 (18Ø16) a | 40 × 30 (6Ø16) a | 1205 |
| 3% (−46%/+63%) ** | 1 to 3 | 35 × 35 (24Ø14) a | 40 × 30 (18Ø16) a | 1002 (−17%) * | |
| 5% (−52%/+140%) ** | 1 to 3 | 30 × 30 (8Ø20 + 10Ø16) a | 40 × 30 (30Ø16) a | 985 (−19%) * |
| Reinforcing Ratio | Story | Column Cross-Section [cm] | Beam Cross-Section [cm] | Structure Weight [kN] | |
|---|---|---|---|---|---|
| Case #1 | 1% | 1 to 3 | 50 × 50 (8Ø20) a | 40 × 30 (6Ø16) a | |
| 4 to 6 | 40 × 40 (8Ø16) a | 40 × 30 (6Ø16) a | 3074 | ||
| 7 to 9 | 30 × 30 (8Ø12) a | 40 × 30 (6Ø16) a | |||
| 3% (−29%/+114%) ** | 1 to 3 | 30 × 30 (18Ø14) a | 40 × 30 (18Ø16) a | ||
| 4 to 6 | 26 × 26 (18Ø12) a | 40 × 30 (18Ø16) a | 2858 (−7%) * | ||
| 7 to 9 | 25 × 25 (6Ø20) a | 40 × 30 (18Ø16) a | |||
| 5% (−35%/+228%) ** | 1 to 3 | 25 × 25 (10Ø20) a | 40 × 30 (30Ø16) a | ||
| 4 to 6 | 23 × 23 (34Ø10) a | 40 × 30 (30Ø16) a | 2843 (−8%) * | ||
| 7 to 9 | 22 × 22 (16Ø14) a | 40 × 30 (30Ø16) a | |||
| Case #2 | 1% | 1 to 3 | 95 × 95 (10Ø32 + 20Ø8) a | 40 × 30 (6Ø16) a | |
| 4 to 6 | 75 × 75 (18Ø20) a | 40 × 30 (6Ø16) a | 4367 | ||
| 7 to 9 | 65 × 65 (28Ø14) a | 40 × 30 (6Ø16) a | |||
| 3% (−59%/+24%) ** | 1 to 3 | 50 × 50 (6Ø40) a | 40 × 30 (18Ø16) a | ||
| 4 to 6 | 40 × 40 (6Ø32) a | 40 × 30 (18Ø16) a | 3137 (−18%) * | ||
| 7 to 9 | 30 × 30 (18Ø14) a | 40 × 30 (18Ø16) a | |||
| 5% (−64%/+80%) ** | 1 to 3 | 40 × 40 (10Ø32) a | 40 × 30 (30Ø16) a | ||
| 4 to 6 | 35 × 35 (20Ø20) a | 40 × 30 (30Ø16) a | 3064 (−20%) * | ||
| 7 to 9 | 30 × 30 (22Ø16) a | 40 × 30 (30Ø16) a | |||
| Case #3 | 1% | 1 to 3 | 120 × 120 (18Ø32) a | 40 × 30 (6Ø16) a | |
| 4 to 6 | 90 × 90 (10Ø32) a | 40 × 30 (6Ø16) a | 4073 | ||
| 7 to 9 | 60 × 60 (18Ø16) a | 40 × 30 (6Ø16) a | |||
| 3% (−57%/+31%) ** | 1 to 3 | 70 × 70 (30Ø25) a | 40 × 30 (18Ø16) a | ||
| 4 to 6 | 47 × 47 (16Ø16 + 30Ø12) a | 40 × 30 (18Ø16) a | 3506 (−14%) * | ||
| 7 to 9 | 40 × 40 (6Ø32) a | 40 × 30 (18Ø16) a | |||
| 5% (−69%/+59%) ** | 1 to 3 | 50 × 50 (10Ø40) a | 40 × 30 (30Ø16) a | ||
| 4 to 6 | 40 × 40 (10Ø32) a | 40 × 30 (30Ø16) a | 3201 (−22%) * | ||
| 7 to 9 | 30 × 30 (8Ø20 + 10Ø16) a | 40 × 30 (30Ø16) a |
| Reinforcing Ratio | ||||
|---|---|---|---|---|
| 1% | 3% | 5% | ||
| Case #1 | Fy (kN) | 187 | 189 | 190 |
| Fu (kN) B.S. | 214 (350) | 208 (342) | 210 (324) | |
| Dy (m) | 0.079 | 0.096 | 0.112 | |
| Du (m) | 0.134 | 0.141 | 0.157 | |
| Ductility (μ) | 1.70 | 1.47 | 1.40 | |
| Kel. (kN/m) | 10,816 | 5447 | 4206 | |
| Case #2 | Fy (kN) | 481 | 469 | 501 |
| Fu (kN) B.S. | 540 (623) | 520 (570) | 550 (566) | |
| Dy (m) | 0.095 | 0.104 | 0.109 | |
| Du (m) | 0.234 | 0.180 | 0.167 | |
| Ductility (μ) | 2.46 | 1.74 | 1.52 | |
| Kel. (kN/m) | 24,690 | 12,421 | 10,355 | |
| Case #3 | Fy (kN) | 744 | 729 | 683 |
| Fu (kN) B.S. | 809 (887) | 815 (737) | 752 (723) | |
| Dy (m) | 0.082 | 0.119 | 0.111 | |
| Du (m) | 0.359 | 0.237 | 0.171 | |
| Ductility (μ) | 4.39 | 2.00 | 1.54 | |
| Kel. (kN/m) | 37,594 | 17,858 | 13,939 | |
| Reinforcing Ratio | ||||
|---|---|---|---|---|
| 1% | 3% | 5% | ||
| Case #1 | Fy (kN) | 341 | 340 | 335 |
| Fu (kN) B.S. | 381 (453) | 378 (420) | 370 (418) | |
| Dy (m) | 0.234 | 0.252 | 0.297 | |
| Du (m) | 0.513 | 0.323 | 0.367 | |
| Ductility (μ) | 2.19 | 1.29 | 1.24 | |
| Kel. (kN/m) | 6297 | 3317 | 2362 | |
| Case #2 | Fy (kN) | 841 | 876 | 962 |
| Fu (kN) B.S. | 976 (1280) | 978 (924) | 1011 (903) | |
| Dy (m) | 0.273 | 0.322 | 0.272 | |
| Du (m) | 0.720 | 0.479 | 0.288 | |
| Ductility (μ) | 2.64 | 1.49 | 1.06 | |
| Kel. (kN/m) | 13,168 | 7357 | 6878 | |
| Case #3 | Fy (kN) | 1250 | 1210 | 1307 |
| Fu (kN) B.S. | 1437 (1573) | 1393 (1565) | 1414 (1428) | |
| Dy (m) | 0.289 | 0.360 | 0.318 | |
| Du (m) | 0.981 | 0.668 | 0.403 | |
| Ductility (μ) | 3.40 | 1.86 | 1.27 | |
| Kel. (kN/m) | 17,197 | 10,121 | 8420 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez, D.; Muñoz, P.; Morales, M.P.; Figueroa, J.; Vasić, M. Sustainability and Structural Integrity in Seismic Design: The Role of Reinforcement Ratios in Life Cycle Impact and Building Safety. Buildings 2025, 15, 4484. https://doi.org/10.3390/buildings15244484
Dominguez D, Muñoz P, Morales MP, Figueroa J, Vasić M. Sustainability and Structural Integrity in Seismic Design: The Role of Reinforcement Ratios in Life Cycle Impact and Building Safety. Buildings. 2025; 15(24):4484. https://doi.org/10.3390/buildings15244484
Chicago/Turabian StyleDominguez, David, Pedro Muñoz, María Pilar Morales, Juan Figueroa, and Milica Vasić. 2025. "Sustainability and Structural Integrity in Seismic Design: The Role of Reinforcement Ratios in Life Cycle Impact and Building Safety" Buildings 15, no. 24: 4484. https://doi.org/10.3390/buildings15244484
APA StyleDominguez, D., Muñoz, P., Morales, M. P., Figueroa, J., & Vasić, M. (2025). Sustainability and Structural Integrity in Seismic Design: The Role of Reinforcement Ratios in Life Cycle Impact and Building Safety. Buildings, 15(24), 4484. https://doi.org/10.3390/buildings15244484

