Enhancing Seismic Displacement Prediction for Reinforced Concrete Box Girder Bridges Through Nonlinear Time History Analysis
Abstract
1. Introduction
2. Methods
3. Results and Discussions
4. Conclusions and Recommendation
- Column-to-Ground Connection: Bridges with pinned column bases exhibited higher inelastic displacement ratios than those with fixed connections. This is due to increased flexibility and rotational effects at the base, resulting in greater displacement demands.
- Column Height: As column height increased, inelastic displacement ratios also increased. Taller columns exhibit lower lateral stiffness, leading to larger displacements during seismic events.
- Deck Width: Although wider decks contributed to increased stiffness and reduced elastic displacements, their additional mass led to greater seismic forces, ultimately increasing inelastic displacement ratios.
- Number of Spans: While both elastic and inelastic displacements increased with the number of spans, the inelastic displacement ratio decreased. This indicates that multi-span bridges benefit from better load distribution and greater stiffness, reducing inelastic demands.
- Damping Ratio: Similarly to AASHTO guideline, the elastic and inelastic displacement decreased with increase in damping ratio; however, the inelastic displacement ratio increased with increase damping ratio representing the difference in damping effect in linear and nonlinear behavior of the bridges. To better reflect these behaviors, revised damping reduction factors for elastic and inelastic displacement and amplification factor for inelastic displacement ratio were suggested.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| S.N. | Earthquake Name | Year | Station Name | 5–75% Duration (s) | 5–95% Duration (s) | Arias Intensity (m/s) | Magnitude | Vs30 (m/s) |
|---|---|---|---|---|---|---|---|---|
| 1 | “Northridge-01” | 1994 | “LA—Hollywood Stor FF” | 6.4 | 12 | 2 | 6.69 | 316.5 |
| 2 | “Loma Prieta” | 1989 | “Coyote Lake Dam—Southwest Abutment” | 6 | 15.7 | 1.5 | 6.93 | 561.4 |
| 3 | “Superstition Hills-01” | 1987 | “Imperial Valley Wildlife Liquefaction Array” | 7.3 | 15.2 | 0.3 | 6.22 | 179 |
| 4 | “Superstition Hills-02” | 1987 | “Plaster City” | 9 | 13.3 | 0.6 | 6.54 | 316.6 |
| 5 | “N. Palm Springs” | 1986 | “Cranston Forest Station” | 5.2 | 7.6 | 0.2 | 6.06 | 425.2 |
| 6 | “Chalfant Valley-02” | 1986 | “Lake Crowley—Shehorn Res.” | 3.8 | 9.8 | 0.1 | 6.19 | 456.8 |
| 7 | “Morgan Hill” | 1984 | “Agnews State Hospital” | 23 | 40.9 | 0.1 | 6.19 | 239.7 |
| 8 | “Coalinga-01” | 1983 | “Cantua Creek School” | 6.2 | 12.6 | 1.2 | 6.36 | 274.7 |
| 9 | “Imperial Valley-06” | 1979 | “El Centro Array #1” | 7 | 19.5 | 0.3 | 6.53 | 237.3 |
| 10 | “San Fernando” | 1971 | “LA—Hollywood Stor FF” | 5.2 | 13.4 | 0.7 | 6.61 | 316.5 |
| 11 | “Mammoth Lakes-01” | 1980 | “Mammoth Lakes H. S.” | 5.3 | 8.2 | 0.8 | 6.06 | 346.8 |
| 12 | “Coyote Lake” | 1979 | “Coyote Lake Dam—Southwest Abutment” | 2.7 | 8.5 | 0.4 | 5.74 | 561.4 |
| 13 | “Westmorland” | 1981 | “Brawley Airport” | 3.6 | 8.8 | 0.3 | 5.9 | 208.7 |
| 14 | “Yountville” | 2000 | “APEEL 2—Redwood City” | 6.3 | 15.3 | 0 | 5 | 133.1 |
| 15 | “Santa Barbara” | 1978 | “Santa Barbara Courthouse” | 4.3 | 7.5 | 0.2 | 5.92 | 515 |
| 16 | “San Juan Bautista” | 1998 | “Hollister—City Hall Annex” | 9.8 | 19.8 | 0 | 5.17 | 272.8 |
| 17 | “Mohawk Val_ Portola” | 2001 | “Martis Creek Dam (Right Abtmnt)” | 3.6 | 9.5 | 0 | 5.17 | 553.3 |
| 18 | “Oroville-01” | 1975 | “Oroville Seismograph Station” | 1.5 | 3.4 | 0 | 5.89 | 680.4 |
| 19 | “Sierra Madre” | 1991 | “Altadena—Eaton Canyon” | 1.4 | 5.3 | 1.2 | 5.61 | 375.2 |
| 20 | “Whittier Narrows-01” | 1987 | “Alhambra—Fremont School” | 2.3 | 5.7 | 0.9 | 5.99 | 549.8 |
| 21 | “Parkfield-02_ CA” | 2004 | “Shandon-1-story High School Bldg” | 5.8 | 16.2 | 0.1 | 6 | 357.4 |
| 22 | “Joshua Tree_ CA” | 1992 | “Thousand Palms Post Office” | 5.8 | 11.1 | 0.6 | 6.1 | 333.9 |
| 23 | “San Simeon_ CA” | 2003 | “Cambria—Hwy 1 Caltrans Bridge” | 7.8 | 13.2 | 0.4 | 6.52 | 362.4 |
| 24 | “Chalfant Valley-01” | 1986 | “Benton” | 5.7 | 18.5 | 0 | 5.77 | 370.9 |
| 25 | “Hector Mine” | 1999 | “12440 Imperial Hwy_ North Grn” | 20.6 | 21.5 | 0 | 7.13 | 276.4 |
| 26 | “Cape Mendocino” | 1992 | “Cape Mendocino” | 2.9 | 9.7 | 6 | 7.01 | 567.8 |
| 27 | “Livermore-01” | 1980 | “APEEL 3E Hayward CSUH” | 3.6 | 10.3 | 0 | 5.8 | 517.1 |
| 28 | “Northern Calif-07” | 1975 | “Cape Mendocino” | 4.3 | 5.7 | 0.1 | 5.2 | 567.8 |
| Time Period for First Mode (s) | Mean | SD | Mean + SD | Mean + 3SD | RMSE |
|---|---|---|---|---|---|
| 0.206 | 5.001 | 6.079 | 11.080 | 23.239 | 5.995 |
| 0.314 | 5.040 | 5.555 | 10.595 | 21.706 | 5.472 |
| 0.282 | 3.653 | 3.566 | 7.218 | 14.350 | 3.503 |
| 0.325 | 5.052 | 5.971 | 11.023 | 22.965 | 5.881 |
| 0.288 | 3.343 | 3.239 | 6.582 | 13.060 | 3.187 |
| 0.400 | 3.791 | 3.907 | 7.699 | 15.513 | 3.848 |
| 0.330 | 2.562 | 2.197 | 4.759 | 9.154 | 2.160 |
| 0.391 | 2.827 | 2.599 | 5.426 | 10.624 | 2.551 |
| 0.395 | 2.002 | 1.699 | 3.702 | 7.101 | 1.671 |
| 0.403 | 2.381 | 2.148 | 4.529 | 8.825 | 2.085 |
| 0.412 | 2.041 | 1.855 | 3.896 | 7.606 | 1.829 |
| 0.440 | 3.336 | 3.008 | 6.344 | 12.361 | 2.959 |
| 0.451 | 2.710 | 2.449 | 5.159 | 10.057 | 2.401 |
| 0.463 | 2.713 | 2.386 | 5.099 | 9.870 | 2.341 |
| 0.465 | 2.480 | 2.104 | 4.584 | 8.792 | 2.069 |
| 0.488 | 2.983 | 2.469 | 5.452 | 10.390 | 2.413 |
| 0.495 | 2.863 | 2.824 | 5.686 | 11.334 | 2.768 |
| 0.498 | 2.984 | 2.912 | 5.896 | 11.720 | 2.861 |
| 0.526 | 2.419 | 2.033 | 4.451 | 8.517 | 2.000 |
| 0.433 | 2.001 | 1.488 | 3.489 | 6.465 | 1.438 |
| 0.450 | 1.666 | 1.297 | 2.963 | 5.557 | 1.279 |
| 0.423 | 1.729 | 1.236 | 2.965 | 5.436 | 1.203 |
| 0.319 | 1.716 | 1.221 | 2.937 | 5.379 | 1.202 |
| 0.528 | 2.477 | 1.931 | 4.408 | 8.271 | 1.897 |
| 0.579 | 1.851 | 1.375 | 3.226 | 5.975 | 1.352 |
| 0.560 | 2.001 | 1.409 | 3.410 | 6.229 | 1.385 |
| 0.499 | 1.742 | 1.037 | 2.779 | 4.854 | 1.013 |
| 0.573 | 2.250 | 1.524 | 3.775 | 6.824 | 1.494 |
| 0.628 | 2.462 | 2.761 | 5.222 | 10.744 | 2.723 |
| 0.688 | 2.274 | 2.048 | 4.322 | 8.418 | 2.017 |
| 0.700 | 1.782 | 1.101 | 2.883 | 5.086 | 1.075 |
| 0.808 | 1.737 | 1.008 | 2.746 | 4.762 | 0.990 |
| 0.990 | 1.776 | 1.010 | 2.786 | 4.807 | 0.990 |
References
- Moehle, J.P. Displacement-based design of RC structures subjected to earthquakes. Earthq. Spectra 1992, 8, 403–428. [Google Scholar] [CrossRef]
- Whittaker, T.P.; Constantinou, M.; Tsopelas, P. Displacement estimates for performance-based seismic design. J. Struct. Eng. 1998, 124, 905–912. [Google Scholar] [CrossRef]
- Malekzadeh, H.; Eslamnia, H.; Moghadam, A.S. Probabilistic seismic demand modeling of continuous concrete box-girder bridges: Emphasizing hysteretic energy and residual demands. Adv. Bridge Eng. 2025, 6, 17. [Google Scholar] [CrossRef]
- Li, W.; Huang, Y.; Xie, Z. Machine Learning-Based Probabilistic Seismic Demand Model of Continuous Girder Bridges; Hindawi Publishing Corporation: London, UK, 2022. [Google Scholar]
- Zhang, J.; Yu SYTang, Y.C. Inelastic displacement demand of bridge columns considering shear-flexure interaction. Earthq. Eng. Struct. Dyn. 2011, 40, 731–748. [Google Scholar] [CrossRef]
- ATC. Tentative Provisions for the Development of Seismic Regulations for Buildings; Report ATC 3-06; ATC: Washington, DC, USA, 1978. [Google Scholar]
- ATC. Structural Response Modification Factors; Report ATC-19; ATC: Washington, DC, USA, 1995. [Google Scholar]
- Miranda, E. Evaluation of site-dependent inelastic seismic design spectra. J. Struct. Eng. 1993, 119, 1319–1338. [Google Scholar] [CrossRef]
- AASHTO. AASHTO LRFD Bridge Design Specifications, 10th ed.; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2024. [Google Scholar]
- Rosenblueth, E.; Herrera, I. On a kind of hysteretic damping. J. Eng. Mech. Div. 1964, 90, 37–48. [Google Scholar] [CrossRef]
- Gulkan, P.; Sozen, M.A. Inelastic Responses of Reinforced Concrete Structure to Earthquake Motions. J. Proc. 1974, 71, 604–610. [Google Scholar]
- Iwan, W.D. Estimating inelastic response spectra from elastic spectra. Earthq. Eng. Struct. Dyn. 1980, 8, 375–388. [Google Scholar] [CrossRef]
- ATC. Seismic Evaluation and Retrofit of Concrete Buildings; Report ATC-40; ATC: Washington, DC, USA, 1996. [Google Scholar]
- Freeman, S.A. Evaluations of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard. In Proceedings of the 1st U.S. National Conference on Earthquake Engineering, Ann Arbor, MI, USA, 18–20 June 1975; Earthquake Engineering Research Institute: Berkeley, CA, USA, 1975. [Google Scholar]
- Freeman, S.A. Development and use of the capacity spectrum method. In Proceedings of the 6th U.S. National Conference on Earthquake Engineering, Seattle, WA, USA, 31 May–4 June 1998; Earthquake Engineering Research Institute: Oakland, CA, USA, 1998. [Google Scholar]
- Newmark, N.M.; Hall, W.J. Seismic Design Criteria for Nuclear Reactor Facilities. In Proceedings of the Fourth World Conference on Earthquake Engineering, Santiago, Chile, 13–18 January 1969; Volume II, pp. B4-37–B4-50. [Google Scholar]
- Miranda, E. Inelastic displacement ratios for structures on firm sites. J. Struct. Eng. 2000, 126, 1150–1159. [Google Scholar] [CrossRef]
- Miranda, E. Estimation of inelastic deformation demands of SDOF systems. J. Struct. Eng. 2001, 127, 1005–1012. [Google Scholar] [CrossRef]
- Rahnama, M.; Krawinkler, H. Effects of Soft Soil and Hysteresis Model on Seismic Demands; John, A., Ed.; Blume Earthquake Engineering Center Standford: Standford, CA, USA, 1993. [Google Scholar]
- Seneviratna, G.D.P.K.; Krawinkler, H. Evaluation of Inelastic MDOF Effects for Seismic Design; John, A., Ed.; Blume Earthquake Engineering Centre, Department of Civil Environmental Engineering, Stanford University: Standford, CA, USA, 1997. [Google Scholar]
- FEMA. NEHRP Guidelines for the Seismic Rehabilitation of Buildings; Reports FEMA 273 (Guidelines) and FEMA 274 (Commentary); FEMA: Washington, DC, USA, 1997.
- FEMA. Prestandard and Commentary for the Seismic Rehabilitation of Buildings; Report No. FEMA-356; FEMA: Washington, DC, USA, 2000.
- FEMA. Improvement of Nonlinear Static Seismic Analysis Procedures; Report No. FEMA 440; FEMA: Washington, DC, USA, 2005.
- Veletsos, A.S.; Newmark, N.M. Effect of inelastic behavior on the response of simple systems to earthquake motions. In Proceedings of the Second World Conference on Earthquake Engineering, Tokyo, Japan, 11–18 July 1960. [Google Scholar]
- Veletsos, A.S.; Newmark, N.M.; Chelapati, C.V. Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motions. In Proceedings of the Third World Conference on Earthquake Engineering, Auckland-Wellington, New Zealand, 13–18 January 1965. [Google Scholar]
- Veletsos, A.S.; Vann, W.P. Response of ground-excited elastoplastic systems. J. Struct. Div. 1971, 97, 1257–1281. [Google Scholar] [CrossRef]
- Riddell, R. Statistical Analysis of the Response of Nonlinear Systems Subjected to Earthquakes; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1979. [Google Scholar]
- Ruiz-García, J.; Miranda, E. Inelastic displacement ratios for evaluation of existing structures. Earthq. Eng. Struct. Dyn. 2003, 32, 1237–1258. [Google Scholar] [CrossRef]
- Hatzigeorgiou, G.D.; Beskos, D.E. Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes. Eng. Struct. 2009, 31, 2744–2755. [Google Scholar] [CrossRef]
- Wu, Y.-F.; Li, A.-Q.; Wang, H. Inelastic displacement spectra for Chinese highway bridges characterized by single-degree-of-freedom bilinear systems. Adv. Struct. Eng. 2019, 22, 3066–3085. [Google Scholar] [CrossRef]
- Bozorgnia, Y.; Mahmoud, M.H.; Kenneth, W.C. Deterministic and probabilistic predictions of yield strength and inelastic displacement spectra. Earthq. Spectra 2010, 26, 25–40. [Google Scholar] [CrossRef]
- AASHTO. AASHTO Guide Specifications for LRFD Seismic Bridge Design; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2011. [Google Scholar]
- Martinez, D.R.; Kowalsky, M.J. Comparison of Seismic Demands on RC Bridge Columns Using the AASHTO Guide Specification, DDBA, and Nonlinear Analysis for Shallow Crustal and Subduction Tectonic Regimes. J. Bridge Eng. 2022, 27, 04022033. [Google Scholar] [CrossRef]
- NCHRP. Proposed Guidelines for Performance-Based Seismic Bridge Design; NCHRP Project 12-106; NCHPR: Washington, DC, USA, 2020. [Google Scholar]
- Aviram, A.; Mackie, K.R.; Stojadinović, B. Guidelines for Nonlinear Analysis of Bridge Structures in California; Pacific Earthquake Engineering Research Center: Berkeley, CA, USA, 2008. [Google Scholar]
- Omrani, R.; Mobasher, B.; Lian, X.; Gunay, S.; Mosalam, K.M.; Zareian, F.; Taciroglu, E. Guidelines for Nonlinear Seismic Analysis of Ordinary Bridges: Version 2.0; State of California Department of Transportation: Sacramento, CA, USA, 2015.
- Mackie, K.R.; Scott, M.H.; Johnsohn, K.; A-Ramahee, M.; Steijlen, M. Nonlinear Time History Analysis of Ordinary Standard Bridges California; Department of Transportation, Division of Engineering Services: Sacramento, CA, USA, 2017.
- Lu, J.; Elgamal, A.; Mackie, K.R. Parametric Study of Ordinary Standard Bridges Using OpenSees and CSiBridge; University of California: San Diego, CA, USA, 2015. [Google Scholar]
- Gyawali, B. Earthquake-Induced Inelastic Displacement Ratio in Reinforced Concrete Box Girder Bridges in California. Master’s Thesis, North Dakota State University, Fargo, ND, USA, 2024. [Google Scholar]
- Caltrans. Seismic Design Criteria Version 1.3; Caltrans: Sacramento, CA, USA, 2004.
- Caltrans. Seismic Design Criteria Version 1.7; Caltrans: Sacramento, CA, USA, 2013.
- Caltrans. Caltrans Seismic Design Criteria Version 2.0; Caltrans: Sacramento, CA, USA, 2019.
- Chopra, A.K. Dynamics of Structures: Theory and Applications to Earthquake Engineering, 3rd ed.; Prentice Hall: New Jersey, NJ, USA, 2006. [Google Scholar]
- Huff, T.; Pezeshk, S. Inelastic Displacement Spectra for Bridges Using the Substitute-Structure Method. Pract. Period. Struct. Des. Constr. 2016, 21, 04015020. [Google Scholar] [CrossRef]







| Geometry and Material Strength | Unit | Bridge Name | |||||
|---|---|---|---|---|---|---|---|
| R14_L | R14_R | Adobe | La Veta | OSB1 | OSB2 | ||
| Deck section | |||||||
| Total length | ft | 285.43 | 285.43 | 203.08 | 299.87 | 300.00 | 300.00 |
| Number of spans | - | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
| Span 1 | ft | 144.36 | 144.36 | 102.79 | 154.86 | 150.00 | 150.00 |
| Span 2 | ft | 141.08 | 141.08 | 100.30 | 145.01 | 150.00 | 150.00 |
| Total deck width | ft | 53.71 | 41.90 | 41.51 | 75.49 | 47.50 | 37.50 |
| Deck depth | ft | 5.74 | 5.74 | 4.10 | 6.23 | 6.00 | 6.00 |
| Concrete material | ksi | 4.00 | 4.00 | 4.00 | 4.00 | 3.60 | 4.00 |
| Young’s modulus | ksi | 3605.00 | 3605.00 | 3605.00 | 3605.00 | 3420.00 | 3605.00 |
| Cap Beam | |||||||
| Cap beam width | ft | 7.55 | 7.55 | 7.00 | 7.55 | 8.67 | 8.67 |
| Cap beam depth | ft | 5.74 | 5.74 | 4.10 | 6.23 | 6.00 | 6.00 |
| Cap beam length | ft | 43.32 | 31.64 | 35.49 | 64.99 | 41.50 | 31.50 |
| Column | |||||||
| Number of columns | - | 2.00 | 1.00 | 2.00 | 2.00 | 2.00 | 1.00 |
| Location of column 1 | ft | 10.51 | 15.82 | 11.83 | 21.66 | 8.75 | 15.75 |
| Location of column 2 | ft | 32.82 | 23.66 | 43.33 | 32.75 | ||
| Height of column | ft | 37.97 | 37.97 | 26.60 | 25.40 | 20.00 | 20.00 |
| Diameter | ft | 5.41 | 5.41 | 4.00 | 5.58 | 5.50 | 5.50 |
| Plastic hinge | |||||||
| Length | ft | 4.31 | 4.31 | 3.08 | 3.09 | 2.80 | 2.80 |
| Bridge Dimension | Longitudinal Stiffness | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bridge | (ft) | (ft) | (ft) | (ft) | (kip/in) | (kip) | (in) | (in) | (in) | (kip/in) | (kip) | (kip/in) |
| R14L | 53.7 | 5.7 | 42.2 | 17.9 | 2177.9 | 1255.8 | 2.0 | 0.58 | 2.58 | 487.4 | 627.9 | 1088.9 |
| R14R | 41.9 | 5.7 | 30.4 | 14.0 | 1568.7 | 904.5 | 2.0 | 0.58 | 2.58 | 351.1 | 452.3 | 784.3 |
| Adobe | 41.5 | 4.1 | 33.3 | 13.8 | 1417.2 | 581.8 | 2.0 | 0.41 | 2.41 | 241.4 | 290.9 | 708.6 |
| La Veta | 75.5 | 6.2 | 63.0 | 25.2 | 3421.3 | 2132.0 | 2.0 | 0.62 | 2.62 | 812.8 | 1066.0 | 1710.7 |
| OSB1 | 47.5 | 6.0 | 35.5 | 15.8 | 1881.5 | 1131.2 | 2.0 | 0.60 | 2.60 | 434.9 | 565.6 | 940.8 |
| OSB2 | 37.6 | 6.0 | 25.6 | 12.5 | 1356.8 | 815.8 | 2.0 | 0.60 | 2.60 | 313.6 | 407.9 | 678.4 |
| Transverse Stiffness | Vertical Stiffness | |||||
|---|---|---|---|---|---|---|
| Bridge | (kip/in) | (kip) | (in) | (kip) | (kip/in) | (kip/in) |
| R14L | 820.78 | 473.27 | 0.58 | 236.64 | 410.39 | 481.19 |
| R14R | 640.28 | 369.19 | 0.58 | 184.60 | 320.14 | 481.19 |
| Adobe | 523.28 | 214.83 | 0.41 | 107.41 | 261.64 | 415.80 |
| La Veta | 1214.24 | 756.67 | 0.62 | 378.33 | 607.12 | 755.91 |
| OSB1 | 745.93 | 448.48 | 0.60 | 224.24 | 372.96 | 720.00 |
| OSB2 | 590.46 | 355.01 | 0.60 | 177.50 | 295.23 | 720.00 |
| Mode | Time Period (s) | |
|---|---|---|
| Mackie et al. [37] | Analysis | |
| 1 | 0.614 | 0.61054 |
| 2 | 0.609 | 0.60831 |
| 3 | 0.403 | 0.40246 |
| 4 | 0.352 | 0.35204 |
| 5 | 0.283 | 0.28312 |
| 6 | 0.157 | 0.15732 |
| Description | Displacement (in.) | |||
|---|---|---|---|---|
| Earthquake Name | CLAYN1N1 | SANDN1N1 | ||
| U1 (P-090) | U2 (N-000) | U1 (P-090) | U2 (N-000) | |
| Analysis | 5.796 | 4.941 | 3.234 | 5.530 |
| Mackie et al. [37] | 4.850 | 2.800 | 5.410 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyawali, B.; Khanal, L.; Yang, M.; Harirchi, P. Enhancing Seismic Displacement Prediction for Reinforced Concrete Box Girder Bridges Through Nonlinear Time History Analysis. Buildings 2025, 15, 4458. https://doi.org/10.3390/buildings15244458
Gyawali B, Khanal L, Yang M, Harirchi P. Enhancing Seismic Displacement Prediction for Reinforced Concrete Box Girder Bridges Through Nonlinear Time History Analysis. Buildings. 2025; 15(24):4458. https://doi.org/10.3390/buildings15244458
Chicago/Turabian StyleGyawali, Bigya, Laxman Khanal, Mijia Yang, and Peyman Harirchi. 2025. "Enhancing Seismic Displacement Prediction for Reinforced Concrete Box Girder Bridges Through Nonlinear Time History Analysis" Buildings 15, no. 24: 4458. https://doi.org/10.3390/buildings15244458
APA StyleGyawali, B., Khanal, L., Yang, M., & Harirchi, P. (2025). Enhancing Seismic Displacement Prediction for Reinforced Concrete Box Girder Bridges Through Nonlinear Time History Analysis. Buildings, 15(24), 4458. https://doi.org/10.3390/buildings15244458

