Exploring the Potential of Virtual Reality Technology to Improve Safety Practices in the Construction Sector Through Network, Loop, and Critical Path Analysis
Abstract
1. Introduction
2. Research Methodology
2.1. Search Strategy
2.2. Screening Process
2.3. Data Extraction
2.4. Distribution of Publications per Year
2.5. Matrix Generator
2.6. Author–Factor Matrix
2.7. Interrelation Matrix
2.8. Causal Loop Diagram
2.9. Loop Analysis
2.10. Critical Path Analysis
2.11. Research Workflow
3. Results
3.1. Factors
3.2. Author–Factor Matrix
3.3. Interrelation Matrix
3.4. Causal Loop Diagram
3.5. SLR Frequency
3.6. Degree of Centrality
3.7. Number of Loops
3.8. Loop Cycles
3.9. Critical Paths
4. Discussion
4.1. Key Factors
4.2. Cycles
4.3. Critical Paths
- TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→COG-03→BHV-03→COG-04→HNS-04→HNS-01
- TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→HNS-03→HNS-04→BHV-03→COG-04→HNS-01
- TCH-06→SOC-03→ECO-02→STCK-01→TCH-02→COG-05→TCH-01→COG-03→BHV-03→COG-04→HNS-04→HNS-01
- TCH-06→SOC-03→ECO-02→STCK-01→TCH-02→COG-05→TCH-01→HNS-03→HNS-04→BHV-03→COG-04→HNS-01
- TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→COG-04→HNS-04→BHV-03→HNS-01
- TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→HNS-04→BHV-03→COG-04→HNS-01
- TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→COG-04→BHV-03→HNS-04→HNS-01
- TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→COG-07→HNS-01
5. Conclusions
- Safety and Hazard Awareness (COG-04)→Safety Management (HNS-04)→Worker Behaviour (BHV-03)→Safety and Hazard Awareness (COG-04).
- Visualisation (TCH-02)→VR Effectiveness (STCK-01)→Visualisation (TCH-02).
- Knowledge and Communication Flow (SOC-03)→VR Implementation Cost (ECO-02)→VR Effectiveness (STCK-01)→Knowledge and Communication Flow (SOC-03).
- Interactive and Immersive Experiences (TCH-01)→VR Implementation Cost (ECO-02)→VR Adoption (SOC-01)→Knowledge and Communication Flow (SOC-03)→VR Effectiveness (STCK-01)→Interactive and Immersive Experiences (TCH-01).
- Knowledge and Communication Flow (SOC-03)→VR Implementation Cost (ECO-02)→VR Effectiveness (STCK-01)→Language Barriers (SOC-04)→VR Adoption (SOC-01)→Knowledge and Communication Flow (SOC-03).
- VR Framework (TCH-06)→User Interaction and Navigation (TCH-04)→VR Effectiveness (STCK-01)→Visualisation (TCH-02)→Realism and Immersion (COG-05)→Interactive and Immersive Experiences (TCH-01).
- Technology Adaptability (BHV-04)→Stress Level (COG-07)→VR Effectiveness (STCK-01)→Interactive and Immersive Experiences (TCH-01)→VR Implementation Cost (ECO-02)→VR Adoption (SOC-01)→Knowledge and Communication Flow (SOC-03).
5.1. Research Limitation
5.2. Practical and Theoretical Implications
5.3. Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| VR | Virtual Reality |
| SLR | Systematic Literature Review |
| OSH | Occupational Safety and Health |
| KOSHA | Korea Occupational Safety and Health Agency |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| CLD | Causal Loop Diagram |
Appendix A. Author–Factor Matrix. Authors Own Creation
| AN | Author | Country | BHV-01 | BHV-02 | BHV-03 | BHV-04 | BHV-05 | COG-01 | COG-02 | COG-03 | COG-04 | COG-05 | COG-06 | COG-07 | COG-08 | COG-09 | COG-10 | ECO-01 | ECO-02 | ECO-03 | ECO-04 | HNS-01 | HNS-02 | HNS-03 | HNS-04 | SOC-01 | SOC-02 | SOC-03 | SOC-04 | TCH-01 | TCH-02 | TCH-03 | TCH-04 | TCH-05 | TCH-06 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Abotaleb, Hosny, Nassar, Bader, Elrifaee, Ibrahim, El Hakim and Sherif [32] | Egypt | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||
| 2 | Abotaleb, Elhakim, El Rifaee, Bader, Hosny, Abodonya, Ibrahim, Sherif, Sorour and Soliman [12] | Egypt | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||
| 3 | Adami, Rodrigues, Woods, Becerik-Gerber, Soibelman, Copur-Gencturk and Lucas [46] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||
| 4 | Adami et al. [51] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||
| 5 | Ahn, Kim, Park and Kim [48] | Republic of Korea | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||
| 6 | Al-Khiami and Jaeger [9] | Kuwait | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||
| 7 | Alzarrad, Miller, Durham and Chowdhury [39] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||
| 8 | Bao, Tran, Nguyen, Pham, Lee and Park [43] | Republic of Korea | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||
| 9 | Bao, Tran, Yang, Pedro, Pham and Park [8] | Republic of Korea | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||
| 10 | Castañeda-Mancillas et al. [52] | Mexico | ✓ | ||||||||||||||||||||||||||||||||
| 11 | Cheng and Liao [49] | China | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||
| 12 | Comu, Kazar and Marwa [15] | Turkey | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||
| 13 | Dang, Serne and Tafazzoli [36] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||
| 14 | Eiris, Gheisari and Esmaeili [45] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||
| 15 | Eiris et al. [53] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||
| 16 | Eiris et al. [54] | USA | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||
| 17 | El Rifaee et al. [55] | Egypt | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||
| 18 | Elhakim et al. [56] | Egypt | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||
| 19 | Feng, Lovreglio, Yiu, Acosta, Sun and Li [11] | New Zealand | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||
| 20 | Feng, González, Amor, Spearpoint, Thomas, Sacks, Lovreglio and Cabrera-Guerrero [47] | New Zealand | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||
| 21 | Feng et al. [57] | New Zealand | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||
| 22 | Fusco and Zhu [34] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||
| 23 | Getuli et al. [58] | Italy | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||
| 24 | Getuli, Capone, Bruttini and Sorbi [44] | Italy | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||
| 25 | Guo et al. [59] | China | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||
| 26 | Gupta and Varghese [41] | India | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||
| 27 | Han, Yang, Diao, Jin, Guo and Adamu [18] | China | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||
| 28 | Harichandran, et al. [42] | Denmark | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||
| 29 | Harichandran and Teizer [60] | Denmark | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||
| 30 | Hussain, Sabir, Lee, Zaidi, Pedro, Abbas and Park [29] | Republic of Korea | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||
| 31 | Ismara, Supriadi and Mubarok [10] | Indonesia | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||
| 32 | Jacobsen et al. [61] | China | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||
| 33 | Jeelani et al. [23] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||
| 34 | Jiang et al. [62] | Australia | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||
| 35 | Joshi, Hamilton, Warren, Faucett, Tian, Wang and Ma [17] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||
| 36 | Kang et al. [63] | Canada | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||
| 37 | Kim, Ahn, Miller, Dibello, Lobello, Oh and McNamara [50] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||
| 38 | Kwegyir-Afful and Kantola [64] | Finland | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||
| 39 | Liu and Li [20] | China | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||
| 40 | Lu et al. [65] | China | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||
| 41 | Mondragón-Bernal [66] | Colombia | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||
| 42 | Noghabaei and Han [37] | USA | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||
| 43 | Noghabaei and Han [67] | USA | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||
| 44 | Nykänen et al. [68] | Finland | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||
| 45 | Ouyang and Luo [69] | China | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||
| 46 | Pedro et al. [70] | Republic of Korea | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||
| 47 | Rey-Becerra et al. [71] | Germany | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||
| 48 | Rokooei, Shojaei, Alvanchi, Azad and Didehvar [7] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||
| 49 | Seo, Park and Koo [27] | Republic of Korea | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||
| 50 | Shi et al. [72] | USA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||
| 51 | Shin et al. [73] | Republic of Korea | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||
| 52 | Shringi, Arashpour, Dwyer, Prouzeau and Li [38] | Australia | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||
| 53 | Shringi et al. [74] | Australia | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||
| 54 | Smuts, Manga and Smallwood [35] | South Africa | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||
| 55 | Wu, Yu et al. [40] | China | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||
| 56 | Yu et al. [75] | China | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||
| 57 | Zhang et al. [76] | China | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||
| 58 | Zhang and Pan [77] | China | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Appendix B. Interrelation Matrix. Authors Own Creation
| Factors | BHV-01 | BHV-02 | BHV-03 | BHV-05 | COG-01 | COG-02 | COG-03 | COG-04 | COG-05 | COG-06 | COG-07 | COG-08 | COG-10 | ECO-02 | ECO-03 | ECO-04 | HNS-01 | HNS-02 | HNS-03 | HNS-04 | SOC-01 | SOC-03 | SOC-04 | TCH-01 | TCH-03 | TCH-04 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BHV-02 | {1} {42} | {9} {47} | ||||||||||||||||||||||||
| BHV-03 | {25} | {2} {5} {11} {15} {21} {25} {37} {42} {55} | {33} | |||||||||||||||||||||||
| BHV-04 | {6} | {1} | ||||||||||||||||||||||||
| COG-01 | {1} | {1} | {21} {22} {25} | |||||||||||||||||||||||
| COG-02 | {1} | |||||||||||||||||||||||||
| COG-03 | {3} | |||||||||||||||||||||||||
| COG-04 | {15} | {7} {22} {42} {52} {53} {55} | {45} | |||||||||||||||||||||||
| COG-05 | {7} | {7} | {1} | {1} {40} | {4} | {4} {24} | ||||||||||||||||||||
| COG-06 | {47} | |||||||||||||||||||||||||
| COG-07 | {12} | {51} | ||||||||||||||||||||||||
| ECO-02 | {4} | {3} {4} {7} {8} {14} {15} {23} {24} {28} {32} {48} {57} | {4} {22} | |||||||||||||||||||||||
| ECO-04 | {1} | |||||||||||||||||||||||||
| HNS-02 | {1} | |||||||||||||||||||||||||
| HNS-03 | {3} | |||||||||||||||||||||||||
| HNS-04 | {5} | {2} | ||||||||||||||||||||||||
| SOC-01 | {1} | |||||||||||||||||||||||||
| SOC-02 | {1} | {1} | {7} {48} | |||||||||||||||||||||||
| SOC-03 | {30} | {36} {51} | {3} | {2} {43} | {7} | {8} | ||||||||||||||||||||
| SOC-04 | {8} | |||||||||||||||||||||||||
| TCH-01 | {3} {47} | {13} {55} | {13} {54} | {4} {26} | {12} {58} | {24} | {47} | {28} | ||||||||||||||||||
| TCH-02 | {37} | {16} | {5} | {1} {18} {52} | {5} | |||||||||||||||||||||
| TCH-04 | {7} | |||||||||||||||||||||||||
| TCH-05 | {33} | {12} | ||||||||||||||||||||||||
| TCH-06 | {9} | {8} | {8} | {8} {9} | {8} {9} | {8} | {8} {9} | {9} |
Appendix C. Critical Paths Analysis. Authors Own Creation
Appendix C.1. Top 16 Positive Unit Weight Critical Paths
| Path | Unit Weight |
|---|---|
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→COG-03→BHV-03→COG-04→HNS-04→HNS-01 | 10 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→HNS-03→HNS-04→BHV-03→COG-04→HNS-01 | 10 |
| TCH-06→SOC-03→ECO-02→STCK-01→TCH-02→COG-05→TCH-01→COG-03→BHV-03→COG-04→HNS-04→HNS-01 | 9 |
| TCH-06→SOC-03→ECO-02→STCK-01→TCH-02→COG-05→TCH-01→HNS-03→HNS-04→BHV-03→COG-04→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→COG-04→HNS-04→BHV-03→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→HNS-04→BHV-03→COG-04→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→COG-05→TCH-01→COG-03→BHV-03→COG-04→HNS-04→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→COG-05→TCH-01→HNS-03→HNS-04→BHV-03→COG-04→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→TCH-02→TCH-01→COG-03→BHV-03→COG-04→HNS-04→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→TCH-02→TCH-01→HNS-03→HNS-04→BHV-03→COG-04→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→COG-03→BHV-03→COG-04→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→HNS-03→HNS-04→BHV-03→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→COG-03→BHV-03→COG-04→HNS-04→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→HNS-03→HNS-04→BHV-03→COG-04→HNS-01 | 9 |
| TCH-04→STCK-01→TCH-02→COG-05→TCH-01→COG-03→BHV-03→COG-04→HNS-04→HNS-01 | 9 |
| TCH-04→STCK-01→TCH-02→COG-05→TCH-01→HNS-03→HNS-04→BHV-03→COG-04→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→TCH-02→TCH-01→COG-03→BHV-03→COG-04→HNS-04→HNS-01 | 9 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→HNS-03→HNS-04→BHV-03→HNS-01 | 9 |
Appendix C.2. Top 4 Negative Unit Weight Critical Paths. Authors Own Creation
Appendix C.3. Top 10 Positive Centrality Weight Critical Paths. Authors Own Creation
| Path | Centrality Weight |
|---|---|
| TCH-06→SOC-03→ECO-02→STCK-01→TCH-02→COG-05→TCH-01→COG-03→BHV-03→COG-04→HNS-04→HNS-01 | 5.82 |
| TCH-06→SOC-03→ECO-02→STCK-01→TCH-02→COG-05→TCH-01→HNS-03→HNS-04→BHV-03→COG-04→HNS-01 | 5.82 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→COG-03→BHV-03→COG-04→HNS-04→HNS-01 | 5.73 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→HNS-03→HNS-04→BHV-03→COG-04→HNS-01 | 5.73 |
| TCH-06→SOC-03→ECO-02→STCK-01→TCH-02→COG-05→TCH-01→COG-04→HNS-04→BHV-03→HNS-01 | 5.55 |
| TCH-06→SOC-03→ECO-02→STCK-01→TCH-02→COG-05→TCH-01→HNS-04→BHV-03→COG-04→HNS-01 | 5.55 |
| TCH-06→BHV-05→STCK-01→TCH-02→COG-05→TCH-01→COG-03→BHV-03→COG-04→HNS-04→HNS-01 | 5.45 |
| TCH-06→BHV-05→STCK-01→TCH-02→COG-05→TCH-01→HNS-03→HNS-04→BHV-03→COG-04→HNS-01 | 5.45 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→COG-04→HNS-04→BHV-03→HNS-01 | 5.45 |
| TCH-06→TCH-04→STCK-01→TCH-02→COG-05→TCH-01→HNS-04→BHV-03→COG-04→HNS-01 | 5.45 |
Appendix C.4. Top 12 Negative Centrality Weight Critical Paths. Authors Own Creation
| Path | Centrality Weight |
|---|---|
| TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→COG-04→BHV-03→HNS-04→HNS-01 | −3.45 |
| TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→COG-01→COG-04→BHV-03→HNS-04→HNS-01 | −3.09 |
| TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→COG-07→HNS-01 | −3 |
| TCH-02→TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→COG-04→BHV-03→HNS-04→HNS-01 | −3 |
| COG-05→STCK-01→TCH-01→ECO-02→SOC-01→SOC-03→COG-02→HNS-01 | −2.91 |
| TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→COG-04→BHV-03→HNS-01 | −2.82 |
| COG-05→TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→COG-04→BHV-03→HNS-04→HNS-01 | −2.73 |
| COG-05→STCK-01→TCH-01→ECO-02→SOC-01→SOC-03→COG-04→BHV-03→HNS-04→HNS-01 | −2.73 |
| TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→HNS-01 | −2.73 |
| TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→COG-05→COG-04→BHV-03→HNS-04→HNS-01 | −2.73 |
| TCH-06→TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→COG-04→BHV-03→HNS-04→HNS-01 | −2.73 |
| TCH-04→COG-05→STCK-01→TCH-01→ECO-02→SOC-01→SOC-03→COG-02→HNS-01 | −2.73 |
References
- International Labour Organization. Employment by Sex and Economic Activity (Thousands)—Annual. Available online: https://rshiny.ilo.org/dataexplorer15/?lang=en&segment=indicator&id=EMP_TEMP_SEX_ECO_NB_A (accessed on 3 August 2024).
- Ministry of Business‚ Innovation and Employment. Building and Construction Sector Trends—Annual Report 2023. 2024. Available online: https://www.mbie.govt.nz/building-and-energy/building/building-system-insights-programme/sector-trends-reporting/building-and-construction-sector-trends-annual-report/2023 (accessed on 5 August 2024).
- Statista Research Department. GDP Construction Industry New Zealand 2018–2023. 15 February 2024. Available online: https://www.statista.com/statistics/1026508/new-zealand-construction-industry-gross-domestic-product/ (accessed on 5 August 2024).
- Abbas, M.; Mneymneh, B.E.; Khoury, H. Assessing on-site construction personnel hazard perception in a Middle Eastern developing country: An interactive graphical approach. Saf. Sci. 2018, 103, 183–196. [Google Scholar] [CrossRef]
- U.S. Bureau of Labor Statistics. Number and Rate of Fatal Work Injuries, by Private Industry Sector 2023. 20 January 2025. Available online: https://www.bls.gov/charts/census-of-fatal-occupational-injuries/number-and-rate-of-fatal-work-injuries-by-industry.htm (accessed on 4 August 2024).
- Stats NZ. Injury Statistics—Work-Related Claims: 2022. 25 September 2023. Available online: https://www.stats.govt.nz/information-releases/injury-statistics-work-related-claims-2022/ (accessed on 5 August 2024).
- Rokooei, S.; Shojaei, A.; Alvanchi, A.; Azad, R.; Didehvar, N. Virtual reality application for construction safety training. Saf. Sci. 2023, 157, 105925. [Google Scholar] [CrossRef]
- Bao, Q.L.; Tran, S.V.T.; Yang, J.; Pedro, A.; Pham, H.C.; Park, C. Token incentive framework for virtual-reality-based construction safety training. Autom. Constr. 2024, 158, 105167. [Google Scholar] [CrossRef]
- Al-Khiami, M.I.; Jaeger, M. Safer Working at Heights: Exploring the Usability of Virtual Reality for Construction Safety Training among Blue-Collar Workers in Kuwait. Safety 2023, 9, 63. [Google Scholar] [CrossRef]
- Ismara, K.I.; Supriadi, M.; Mubarok, S.A.A. Enhancing Basic Electrical Safety of Heavy Equipment in Indonesian Vocational Schools Using Virtual Reality Technology. IEEE Access 2024, 12, 117899–117907. [Google Scholar] [CrossRef]
- Feng, Z.; Lovreglio, R.; Yiu, T.W.; Acosta, D.M.; Sun, B.; Li, N. Immersive virtual reality training for excavation safety and hazard identification. Smart Sustain. Built Environ. 2024, 13, 883–907. [Google Scholar] [CrossRef]
- Abotaleb, I.; Elhakim, Y.; El Rifaee, M.; Bader, S.; Hosny, O.; Abodonya, A.; Ibrahim, S.; Sherif, M.; Sorour, A.; Soliman, M. A framework to integrate virtual reality into international standard safety trainings. Eng. Constr. Archit. Manag. 2023, 32, 2320–2341. [Google Scholar] [CrossRef]
- Ahmed, K.; Leung, M.-Y.; Ojo, L.D. An Exploratory Study to Identify Key Stressors of Ethnic Minority Workers in the Construction Industry. J. Constr. Eng. Manag. 2022, 148, 0402214. [Google Scholar] [CrossRef]
- Oke, A.E.; Aliu, J.; Ehiosun, L.U.; Kineber, A.F.; Stephen, S.S. Adoption of distributed ledger technology for construction projects: A study of the challenges in a developing country. J. Eng. Des. Technol. 2024, 23, 1364–1383. [Google Scholar] [CrossRef]
- Comu, S.; Kazar, G.; Marwa, Z. Evaluating the attitudes of different trainee groups towards eye tracking enhanced safety training methods. Adv. Eng. Inf. 2021, 49, 101353. [Google Scholar] [CrossRef]
- Mubita, K.; Milupi, I.; Monde, P.N.; Simooya, S.M. A Proposed Holistic Approach to Fire Safety Management in Zambian Markets. Int. J. Humanit. Soc. Sci. Educ. IJHSSE 2020, 7, 93–101. [Google Scholar] [CrossRef]
- Joshi, S.; Hamilton, M.; Warren, R.; Faucett, D.; Tian, W.; Wang, Y.; Ma, J. Implementing Virtual Reality technology for safety training in the precast/prestressed concrete industry. Appl. Ergon. 2021, 90, 103286. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Diao, Y.; Jin, R.; Guo, B.; Adamu, Z. Process and outcome-based evaluation between virtual really-driven and traditional construction safety training. Adv. Eng. Inf. 2022, 52, 101634. [Google Scholar] [CrossRef]
- Man, S.S.; Wen, H.; So, B.C.L. Are virtual reality applications effective for construction safety training and education? A systematic review and meta-analysis. J. Saf. Res. 2024, 88, 230–243. [Google Scholar] [CrossRef]
- Liu, D.; Li, C. Construction hazard-recognition training for generation Z students: A comparison study based on eye-movement data. Eng. Constr. Archit. Manag. 2024, 32, 882. [Google Scholar] [CrossRef]
- Johnson, T. New Civil Engineer: National Highways Builds Model Construction Site to Train Staff. Available online: https://www.newcivilengineer.com/latest/national-highways-builds-model-construction-site-to-train-staff-27-09-2022/ (accessed on 13 November 2025).
- Gao, Y.; Gonzalez, V.A.; Yiu, T.W. The effectiveness of traditional tools and computer-aided technologies for health and safety training in the construction sector: A systematic review. Comput. Educ. 2019, 138, 101–115. [Google Scholar] [CrossRef]
- Jeelani, I.; Han, K.; Albert, A. Development of virtual reality and stereo-panoramic environments for construction safety training. Eng. Constr. Archit. Manag. 2020, 27, 1853–1876. [Google Scholar] [CrossRef]
- Habibnezhad, M.; Puckett, J.; Fardhosseini, M.S.; Pratama, L.A.; Habibnezhad, M.; Puckett, J.; Fardhosseini, M.S.; Pratama, L.A. A Mixed VR and Physical Framework to Evaluate Impacts of Virtual Legs and Elevated Narrow Working Space on Construction Workers Gait Pattern. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC), Banff, AB, Canada, 21–24 May 2019. [Google Scholar]
- Polmear, M.; Simmons, D.R. Industry Perspective on the Role of Visualization Technology in Construction Safety Training. Int. J. Constr. Educ. Res. 2022, 18, 352–373. [Google Scholar] [CrossRef]
- Stefan, H.; Mortimer, M.; Horan, B.; Kenny, G. Evaluating the preliminary effectiveness of industrial virtual reality safety training for ozone generator isolation procedure. Saf. Sci. 2023, 163, 106125. [Google Scholar] [CrossRef]
- Seo, S.; Park, H.; Koo, C. Impact of interactive learning elements on personal learning performance in immersive virtual reality for construction safety training. Expert Syst. Appl. 2024, 251, 124099. [Google Scholar] [CrossRef]
- Szóstak, M.; Mahamadu, A.M.; Prabhakaran, A.; Caparros Pérez, D.; Agyekum, K. Development and testing of immersive virtual reality environment for safe unmanned aerial vehicle usage in construction scenarios. Saf. Sci. 2024, 176, 106547. [Google Scholar] [CrossRef]
- Hussain, R.; Sabir, A.; Lee, D.Y.; Zaidi, S.F.A.; Pedro, A.; Abbas, M.S.; Park, C. Conversational AI-based VR system to improve construction safety training of migrant workers. Autom. Constr. 2024, 160, 105315. [Google Scholar] [CrossRef]
- WorkSafe New Zealand. WorkSafe Incidents. 18 March 2024. Available online: https://data.worksafe.govt.nz/graph/detail/incidents?startDate=2016-04&endDate=2023-09&industry=Construction (accessed on 4 August 2024).
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Abotaleb, I.; Hosny, O.; Nassar, K.; Bader, S.; Elrifaee, M.; Ibrahim, S.; El Hakim, Y.; Sherif, M. An interactive virtual reality model for enhancing safety training in construction education. Comput Appl Eng Educ 2023, 31, 324–345. [Google Scholar] [CrossRef]
- Purushothaman, M.B.; Jessica, P.; Rotimi, F.E. Analysis of Cognitive Biases in Construction Health and Safety in New Zealand. Buildings 2025, 15, 1033. [Google Scholar] [CrossRef]
- Fusco, G.; Zhu, J. Enhancing hurricane risk perception and mitigation behavior through customized virtual reality. Adv. Eng. Inf. 2023, 58, 102212. [Google Scholar] [CrossRef]
- Smuts, D.; Manga, A.; Smallwood, J. Leveraging Virtual Reality for Improved Construction Health and Safety Training. In Advances in Information Technology in Civil and Building Engineering, Proceedings of the ICCCBE 2022, Cape Town, South Africa, 26–28 October 2022; Lecture Notes in Civil Engineering; Skatulla, S., Beushausen, H., Eds.; Springer: Cham, Switzerland, 2023; pp. 257–268. [Google Scholar]
- Dang, H.; Serne, J.; Tafazzoli, M. Virtual Reality Safety Training Assessment in Construction Management and Safety and Health Management Programs. In Proceedings of the ASCE International Conference on Computing in Civil Engineering, Corvallis, OR, USA, 25–28 June 2023; Turkan, Y., Louis, J., Leite, F., Ergan, S., Eds.; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2024; pp. 28–35. [Google Scholar]
- Noghabaei, M.; Han, K. Hazard Recognition in an Immersive Virtual Environment: Framework for the Simultaneous Analysis of Visual Search and EEG Patterns. In Construction Research Congress 2020: Computer Applications; Tang, P., Grau, D., El Asmar, M., Eds.; American Society of Civil Engineers (ASCE): Tempe, AZ, USA, 2020; pp. 934–943. [Google Scholar]
- Shringi, A.; Arashpour, M.; Dwyer, T.; Prouzeau, A.; Li, H. Safety in Off-Site Construction: Simulation of Crane-Lifting Operations Using VR and BIM. J. Archit. Eng. 2023, 29, 1. [Google Scholar] [CrossRef]
- Alzarrad, A.; Miller, M.; Durham, L.; Chowdhury, S. Revolutionizing construction safety: Introducing a cutting-edge virtual reality interactive system for training US construction workers to mitigate fall hazards. Front. Built Environ. 2024, 10, 1320175. [Google Scholar] [CrossRef]
- Wu, H.T.; Yu, W.D.; Gao, R.J.; Wang, K.C.; Liu, K.C. Measuring the effectiveness of VR technique for safety training of hazardous construction site scenarios. In Proceedings of the 2020 IEEE 2nd International Conference on Architecture, Construction, Environment and Hydraulics (ICACEH), Hsinchu, Taiwan, 25–27 December 2020; Meen, T.H., Ed.; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020; pp. 36–39. [Google Scholar]
- Gupta, A.; Varghese, K. Scenario-based construction safety training platform using virtual reality. In Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC), Kitakyushu, Japan, 27–29 October 2020; pp. 892–899. [Google Scholar]
- Harichandran, A.; Johansen, K.W.; Jacobsen, E.L.; Teizer, J. A Conceptual Framework for Construction Safety Training using Dynamic Virtual Reality Games and Digital Twins. In ISARC Archives, Proceedings of the 38th International Symposium on Automation and Robotics in Construction (ISARC 2021), Dubai, United Arab Emirates, 2–4 November 2021; Feng, C., Linner, T., Brilakis, I., Eds.; International Association for Automation and Robotics in Construction (IAARC): Dubai, United Arab Emirates, 2021; pp. 621–628. [Google Scholar]
- Bao, L.; Tran, S.V.T.; Nguyen, T.L.; Pham, H.C.; Lee, D.; Park, C. Cross-platform virtual reality for real-time construction safety training using immersive web and industry foundation classes. Autom. Constr. 2022, 143, 104565. [Google Scholar] [CrossRef]
- Getuli, V.; Capone, P.; Bruttini, A.; Sorbi, T. A smart objects library for BIM-based construction site and emergency management to support mobile VR safety training experiences. Constr. Innov. 2022, 22, 504–530. [Google Scholar] [CrossRef]
- Eiris, R.; Gheisari, M.; Esmaeili, B. Desktop-based safety training using 360-degree panorama and static virtual reality techniques: A comparative experimental study. Autom. Constr. 2020, 109, 102969. [Google Scholar] [CrossRef]
- Adami, P.; Rodrigues, P.B.; Woods, P.J.; Becerik-Gerber, B.; Soibelman, L.; Copur-Gencturk, Y.; Lucas, G. Effectiveness of VR-based training on improving construction workers’ knowledge, skills, and safety behavior in robotic teleoperation. Adv. Eng. Inf. 2021, 50, 101431. [Google Scholar] [CrossRef]
- Feng, Z.; González, V.A.; Amor, R.; Spearpoint, M.; Thomas, J.; Sacks, R.; Lovreglio, R.; Cabrera-Guerrero, G. An immersive virtual reality serious game to enhance earthquake behavioral responses and post-earthquake evacuation preparedness in buildings. Adv. Eng. Inf. 2020, 45, 101118. [Google Scholar] [CrossRef]
- Ahn, S.; Kim, T.; Park, Y.J.; Kim, J.M. Improving Effectiveness of Safety Training at Construction Worksite Using 3D BIM Simulation. Adv. Civ. Eng. 2020, 2020, 2473138. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Liao, H.Y. Task-oriented VR Safety Training in Construction Falls. In Proceedings of the 2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 7–10 December 2021; pp. 1518–1525. [Google Scholar]
- Kim, N.; Ahn, C.R.; Miller, A.; Dibello, R.; Lobello, D.; Oh, S.; McNamara, A. Enhancing Workers Vigilance to Electrical Hazards through a Virtually Simulated Accident. In Construction Research Congress 2022; Jazizadeh, F., Shealy, T., Garvin, M.J., Eds.; American Society of Civil Engineers (ASCE): Arlington, VA, USA, 2022; pp. 651–659. [Google Scholar]
- Adami, P.; Singh, R.; Borges Rodrigues, P.; Becerik-Gerber, B.; Soibelman, L.; Copur-Gencturk, Y.; Lucas, G. Participants matter: Effectiveness of VR-based training on the knowledge, trust in the robot, and self-efficacy of construction workers and university students. Adv. Eng. Inf. 2023, 55, 101837. [Google Scholar] [CrossRef]
- Castañeda-Mancillas, E.E.; Sanchez-Rentería, E.; Torres-Guerreo, F.; Buń, P. A Design Proposal: Virtual Reality Environment for Safety Training in Electrical Substations. In Advances in Manufacturing III, Proceedings of the MANUFACTURING 2022, Poznan, Poland, 16–19 May 2022; Lecture Notes in Mechanical Engineering; Trojanowska, J., Ciszak, O., Eds.; Springer Science and Business Media GmbH: Cham, Switzerland, 2022; pp. 278–291. [Google Scholar]
- Eiris, R.; Jain, A.; Gheisari, M.; Wehle, A. Safety immersive storytelling using narrated 360-degree panoramas: A fall hazard training within the electrical trade context. Saf. Sci. 2020, 127, 104703. [Google Scholar] [CrossRef]
- Eiris, R.; Wen, J.; Gheisari, M. iVisit—Practicing problem-solving in 360-degree panoramic site visits led by virtual humans. Autom. Constr. 2021, 128, 103754. [Google Scholar] [CrossRef]
- El Rifaee, M.; Bader, S.; Abotaleb, I.; Hosny, O.; Nassar, K. Enhancing Bridges’ Safety Training Using Augmented Reality and Virtual Reality. In Proceedings of the Canadian Society of Civil Engineering Annual Conference, Whistler, BC, Canada, 25–28 May 2022. CSCE 2022; Lecture Notes in Civil Engineering; Gupta, R., Sun, M., Brzev, S., Alam, M.S., Ng, K.T., Li, J., El Damatty, A., Lim, C., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 197–213. [Google Scholar]
- Elhakim, Y.; Bader, S.; Elrifae, M.; Ibrahim, S.; Sorour, A.; Soliman, M.; Sherif, M.; Abotaleb, I.; Hosny, O.; Nassar, K. Integrating Virtual Reality into IOSH Safety Training. In Proceedings of the Canadian Society of Civil Engineering Annual Conference 2022, Whistler, BC, Canada, 25–28 May 2022; Lecture Notes in Civil Engineering; Springer: Cham, Swirzerland, 2023; pp. 197–213. [Google Scholar]
- Feng, Z.; González, V.A.; Mutch, C.; Amor, R.; Rahouti, A.; Baghouz, A.; Li, N.; Cabrera-Guerrero, G. Towards a customizable immersive virtual reality serious game for earthquake emergency training. Adv. Eng. Inf. 2020, 46, 101134. [Google Scholar] [CrossRef]
- Getuli, V.; Capone, P.; Bruttini, A. Planning, management and administration of HS contents with BIM and VR in construction: An implementation protocol. Eng. Constr. Archit. Manag. 2021, 28, 603–623. [Google Scholar] [CrossRef]
- Guo, X.; Liu, Y.; Tan, Y.; Xia, Z.; Fu, H. Hazard identification performance comparison between virtual reality and traditional construction safety training modes for different learning style individuals. Saf. Sci. 2024, 180, 106644. [Google Scholar] [CrossRef]
- Harichandran, A.; Teizer, J. Automated Recognition of Hand Gestures for Crane Rigging using Data Gloves in Virtual Reality. In Proceedings of the 39th International Symposium on Automation and Robotics in Construction, Bogotá, Colombia, 13–15 July 2022; pp. 304–311. [Google Scholar]
- Jacobsen, E.L.; Solberg, A.; Golovina, O.; Teizer, J. Active personalized construction safety training using run-time data collection in physical and virtual reality work environments. Constr. Innov. 2022, 22, 531–553. [Google Scholar] [CrossRef]
- Jiang, T.; Fang, Y.; Goh, J.; Hu, S. Impact of simulation fidelity on identifying swing-over hazards in virtual environments for novice crane operators. Autom. Constr. 2024, 165, 105580. [Google Scholar] [CrossRef]
- Kang, M.; Lim, C.H.; Lee, S.C.; Kang, C.; Kim, K. Exploring the Impact of Vibrotactile Feedback on Boom Lift Safety Training: A Study Design. In Proceedings of the 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Orlando, FL, USA, 16–21 March 2024; pp. 232–234. [Google Scholar]
- Kwegyir-Afful, E.; Kantola, J. Simulation-Based Safety Training for Plant Maintenance in Virtual Reality. In Advances in Simulation and Digital Human Modeling, Advances in Intelligent Systems and Computing, Proceedings of the AHFE 2020, San Diego, CA, USA, 16–17 July 2020; Cassenti, D.N., Ayaz, H., Asgher, U., Eds.; Springer: Cham, Switzerland, 2021; pp. 167–173. [Google Scholar]
- Lu, S.; Wang, F.; Li, X.; Shen, Q. Development and validation of a confined space rescue training prototype based on an immersive virtual reality serious game. Adv. Eng. Inf. 2022, 51, 101520. [Google Scholar] [CrossRef]
- Mondragón-Bernal, I.F. A system for immersive medical and engineering training based on serious games. Ing. Univers. 2020, 24. [Google Scholar] [CrossRef]
- Noghabaei, M.; Han, K. Object manipulation in immersive virtual environments: Hand Motion tracking technology and snap-to-fit function. Autom. Constr. 2021, 124, 103594. [Google Scholar] [CrossRef]
- Nykänen, M.; Puro, V.; Tiikkaja, M.; Kannisto, H.; Lantto, E.; Simpura, F.; Uusitalo, J.; Lukander, K.; Räsänen, T.; Heikkilä, T.; et al. Implementing and evaluating novel safety training methods for construction sector workers: Results of a randomised controlled trial. J. Saf. Res. 2020, 75, 205–221. [Google Scholar] [CrossRef]
- Ouyang, Y.; Luo, X. Differences between inexperienced and experienced safety supervisors in identifying construction hazards: Seeking insights for training the inexperienced. Adv. Eng. Inf. 2022, 52, 101602. [Google Scholar] [CrossRef]
- Pedro, A.; Bao, Q.L.; Hussain, R.; Soltani, M.; Pham, H.C.; Park, C. Learning from construction accidents in virtual reality with an ontology-enabled framework. Autom. Constr. 2024, 166, 105597. [Google Scholar] [CrossRef]
- Rey-Becerra, E.; Barrero, L.H.; Ellegast, R.; Kluge, A. Improvement of short-term outcomes with VR-based safety training for work at heights. Appl. Ergon. 2023, 112, 104077. [Google Scholar] [CrossRef]
- Shi, Y.; Du, J.; Ahn, C.R.; Ragan, E. Impact assessment of reinforced learning methods on construction workers’ fall risk behavior using virtual reality. Autom. Constr. 2019, 104, 197–214. [Google Scholar] [CrossRef]
- Shin, Y.; Choi, D.; Park, H.; Lee, M.; Hong, T.; Koo, C. Impact of Heat Stress on Individual Cognitive States: Utilizing EEG Metrics in Immersive VR-Based Construction Safety Training. J. Manag. Eng. 2024, 40. [Google Scholar] [CrossRef]
- Shringi, A.; Arashpour, M.; Golafshani, E.M.; Rajabifard, A.; Dwyer, T.; Li, H. Efficiency of VR-Based Safety Training for Construction Equipment: Hazard Recognition in Heavy Machinery Operations. Buildings 2022, 12, 2084. [Google Scholar] [CrossRef]
- Yu, W.D.; Wang, K.C.; Wu, H.T. Empirical Comparison of Learning Effectiveness of Immersive Virtual Reality-Based Safety Training for Novice and Experienced Construction Workers. J. Constr. Eng. Manag. 2022, 148, 2337. [Google Scholar] [CrossRef]
- Zhang, M.; Shu, L.; Luo, X.; Yuan, M.; Zheng, X. Virtual reality technology in construction safety training: Extended technology acceptance model. Autom. Constr. 2022, 135, 104113. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, W. Virtual reality supported interactive tower crane layout planning for high-rise modular integrated construction. Autom. Constr. 2021, 130, 103854. [Google Scholar] [CrossRef]








| Industry Sector | Number of Fatal Work Injuries |
|---|---|
| Construction | 1069 |
| Transportation and warehousing | 1053 |
| Professional and business services | 598 |
| Agriculture, forestry, fishing, and hunting | 417 |
| O Manufacturing | 404 |
| Leisure and hospitality | 306 |
| Retail trade | 301 |
| Other services (exc. Public admin.) | 200 |
| Educational and health services | 178 |
| Wholesale trade | 171 |
| Criteria | |
|---|---|
| Inclusion | Articles published between 2019 and 2024 Articles written in English Articles focusing on VR applications in construction safety training |
| Exclusion | Document type is not research, journal, or conference papers The subject type is not engineering or construction Articles without full text |
| No. | Factor | Theme | Code |
|---|---|---|---|
| 1 | Worker Engagement Level | Behavioural | BHV-01 |
| 2 | Motivation and Commitment | Behavioural | BHV-02 |
| 3 | Worker Behaviour | Behavioural | BHV-03 |
| 4 | Technology Adaptability | Behavioural | BHV-04 |
| 5 | Different Learning Styles | Behavioural | BHV-05 |
| 6 | Critical Thinking and Problem-Solving | Cognitive | COG-01 |
| 7 | Knowledge acquisition | Cognitive | COG-02 |
| 8 | Knowledge retention | Cognitive | COG-03 |
| 9 | Safety and hazard awareness | Cognitive | COG-04 |
| 10 | Realism and immersion | Cognitive | COG-05 |
| 11 | Self-efficacy | Cognitive | COG-06 |
| 12 | Stress level | Cognitive | COG-07 |
| 13 | Task engagement and performance | Cognitive | COG-08 |
| 14 | Ease of learning | Cognitive | COG-09 |
| 15 | Educational experience | Cognitive | COG-10 |
| 16 | Financial implications | Economic | ECO-01 |
| 17 | VR implementation cost | Economic | ECO-02 |
| 18 | Training cost | Economic | ECO-03 |
| 19 | Cost-effectiveness | Economic | ECO-04 |
| 20 | Incident reduction | Health & Safety | HNS-01 |
| 21 | VR sickness | Health & Safety | HNS-02 |
| 22 | Training risk reduction | Health & Safety | HNS-03 |
| 23 | Safety management | Health & Safety | HNS-04 |
| 24 | VR adoption | Social | SOC-01 |
| 25 | Cultural resistance and adaptability | Social | SOC-02 |
| 26 | Knowledge and communication flow | Social | SOC-03 |
| 27 | Language barriers | Social | SOC-04 |
| 28 | Interactive and immersive experiences | Technological | TCH-01 |
| 29 | Visualisation | Technological | TCH-02 |
| 30 | Scheduling and accessibility | Technological | TCH-03 |
| 31 | User interaction and navigation | Technological | TCH-04 |
| 32 | Customised safety training | Technological | TCH-05 |
| 33 | VR framework | Technological | TCH-06 |
| Factor | SLR Frequency | Rank |
|---|---|---|
| COG-04 | 47 | #1 |
| TCH-01 | 30 | #2 |
| COG-05 | 27 | #3, #4 |
| COG-02 | 27 | |
| HNS-03 | 23 | #5, #6 |
| ECO-02 | 23 | |
| HNS-02 | 22 | #7, #8 |
| BHV-03 | 22 | |
| COG-03 | 20 | #9 |
| BHV-01 | 19 | #10 |
| HNS-01 | 17 | #11 |
| SOC-03 | 16 | #12 |
| TCH-04 | 15 | #13, #14 |
| HNS-04 | 15 | |
| COG-06 | 14 | #15, #16 |
| BHV-02 | 14 | |
| TCH-02 | 13 | #17, #18 |
| SOC-01 | 13 | |
| COG-01 | 12 | #19 |
| ECO-04 | 10 | #20 |
| COG-08 | 9 | #21 |
| TCH-03 | 8 | #22 |
| TCH-05 | 7 | #23, #24 |
| COG-10 | 7 | |
| COG-07 | 6 | #25 |
| COG-09 | 4 | #26 |
| SOC-04 | 3 | #27–#31 |
| SOC-02 | 3 | |
| ECO-03 | 3 | |
| BHV-05 | 3 | |
| BHV-04 | 3 | |
| TCH-06 | 2 | #32 |
| ECO-01 | 1 | #33 |
| Factor | Degree of Centrality | Rank |
|---|---|---|
| TCH-01 | 1.00000 | #1 |
| HNS-04 | 0.81818 | #2, #3 |
| COG-04 | 0.81818 | |
| TCH-06 | 0.72727 | #4–#7 |
| SOC-03 | 0.72727 | |
| COG-05 | 0.72727 | |
| BHV-03 | 0.72727 | |
| HNS-01 | 0.63636 | #8 |
| SOC-01 | 0.54545 | #9, #10 |
| COG-02 | 0.54545 | |
| TCH-02 | 0.45455 | #11, #12 |
| ECO-02 | 0.45455 | |
| COG-01 | 0.36364 | #13 |
| SOC-02 | 0.27273 | #14–#21 |
| HNS-03 | 0.27273 | |
| HNS-02 | 0.27273 | |
| COG-08 | 0.27273 | |
| COG-07 | 0.27273 | |
| COG-03 | 0.27273 | |
| BHV-02 | 0.27273 | |
| BHV-01 | 0.27273 | |
| TCH-05 | 0.18182 | #22–#28 |
| TCH-04 | 0.18182 | |
| TCH-03 | 0.18182 | |
| SOC-04 | 0.18182 | |
| ECO-04 | 0.18182 | |
| COG-06 | 0.18182 | |
| BHV-04 | 0.18182 | |
| ECO-03 | 0.09091 | #29–#32 |
| ECO-01 | 0.09091 | |
| COG-10 | 0.09091 | |
| BHV-05 | 0.09091 |
| Code | Number of Loops | Rank |
|---|---|---|
| ECO-02 | 11 | #1 |
| SOC-03 | 11 | #1 |
| SOC-01 | 9 | #3 |
| TCH-01 | 8 | #4 |
| COG-05 | 6 | #5 |
| TCH-02 | 6 | #5 |
| BHV-03 | 3 | #7 |
| SOC-04 | 3 | #7 |
| HNS-04 | 2 | #9 |
| COG-04 | 2 | #9 |
| COG-07 | 1 | #11 |
| Cycle | Unit Weight | Rank Unit Weight | Centrality Weight | Rank Centrality Weight |
|---|---|---|---|---|
| COG-04→HNS-04→BHV-03→COG-04 | 3 | #1 | 2.363636 | #1 |
| STCK-01→TCH-02→STCK-01 | 2 | #2 | 0.454545 | #2 |
| SOC-03→ECO-02→STCK-01→SOC-03 | 1 | #3 | 0.272727 | #3 |
| TCH-01→ECO-02→STCK-01→TCH-02→COG-05→TCH-01 | 1 | #3 | −0.27273 | #8 |
| STCK-01→TCH-02→COG-05→STCK-01 | 1 | #3 | −0.27273 | #8 |
| SOC-03→SOC-01→SOC-03 | 0 | #6 | 0.181818 | #4 |
| HNS-04→BHV-03→HNS-04 | 0 | #6 | 0.090909 | #5 |
| COG-04→BHV-03→COG-04 | 0 | #6 | −0.09091 | #7 |
| STCK-01→COG-07→STCK-01 | 0 | #6 | −0.27273 | #8 |
| SOC-03→STCK-01→SOC-03 | 0 | #6 | −0.72727 | #13 |
| TCH-01→ECO-02→STCK-01→COG-05→TCH-01 | 0 | #6 | −0.72727 | #13 |
| STCK-01→COG-05→STCK-01 | 0 | #6 | −0.72727 | #13 |
| TCH-01→ECO-02→STCK-01→TCH-02→TCH-01 | 0 | #6 | −1 | #16 |
| SOC-03→SOC-04→SOC-01→SOC-03 | −1 | #14 | 0 | #6 |
| SOC-03→ECO-02→SOC-01→SOC-03 | −1 | #14 | −0.27273 | #8 |
| SOC-03→ECO-02→STCK-01→SOC-04→SOC-01→SOC-03 | −1 | #14 | −0.45455 | #12 |
| TCH-01→ECO-02→STCK-01→TCH-01 | −1 | #14 | −1.45455 | #17 |
| TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→TCH-02→COG-05→TCH-01 | −1 | #14 | −1.54545 | #19 |
| SOC-03→STCK-01→SOC-04→SOC-01→SOC-03 | −2 | #19 | −1.45455 | #17 |
| TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→COG-05→TCH-01 | −2 | #19 | −2 | #20 |
| TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→TCH-02→TCH-01 | −2 | #19 | −2.27273 | #21 |
| TCH-01→ECO-02→SOC-01→SOC-03→STCK-01→TCH-01 | −3 | #22 | −2.72727 | #22 |
| Code | SLR Frequency | Rank | Code | Degree of Centrality | Rank | Code | Number of Loops | Rank |
|---|---|---|---|---|---|---|---|---|
| COG-04 | 47 | #1 | TCH-01 | 1.00000 | #1 | ECO-02 | 11 | #1 |
| TCH-01 | 30 | #2 | HNS-04 | 0.81818 | #2 | SOC-03 | 11 | #1 |
| COG-05 | 27 | #3 | COG-04 | 0.81818 | #2 | SOC-01 | 9 | #3 |
| COG-02 | 27 | #3 | TCH-06 | 0.72727 | #4 | TCH-01 | 8 | #4 |
| HNS-03 | 23 | #5 | SOC-03 | 0.72727 | #4 | COG-05 | 6 | #5 |
| ECO-02 | 23 | #5 | COG-05 | 0.72727 | #4 | TCH-02 | 6 | #5 |
| HNS-02 | 22 | #7 | BHV-03 | 0.72727 | #4 | BHV-03 | 3 | #7 |
| BHV-03 | 22 | #7 | HNS-01 | 0.63636 | #8 | SOC-04 | 3 | #7 |
| COG-03 | 20 | #9 | SOC-01 | 0.54545 | #9 | HNS-04 | 2 | #9 |
| BHV-01 | 19 | #10 | COG-02 | 0.54545 | #9 | COG-04 | 2 | #9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purushothaman, M.B.; Jessica, P.; GhaffarianHoseini, A. Exploring the Potential of Virtual Reality Technology to Improve Safety Practices in the Construction Sector Through Network, Loop, and Critical Path Analysis. Buildings 2025, 15, 4152. https://doi.org/10.3390/buildings15224152
Purushothaman MB, Jessica P, GhaffarianHoseini A. Exploring the Potential of Virtual Reality Technology to Improve Safety Practices in the Construction Sector Through Network, Loop, and Critical Path Analysis. Buildings. 2025; 15(22):4152. https://doi.org/10.3390/buildings15224152
Chicago/Turabian StylePurushothaman, Mahesh Babu, Pricillia Jessica, and Ali GhaffarianHoseini. 2025. "Exploring the Potential of Virtual Reality Technology to Improve Safety Practices in the Construction Sector Through Network, Loop, and Critical Path Analysis" Buildings 15, no. 22: 4152. https://doi.org/10.3390/buildings15224152
APA StylePurushothaman, M. B., Jessica, P., & GhaffarianHoseini, A. (2025). Exploring the Potential of Virtual Reality Technology to Improve Safety Practices in the Construction Sector Through Network, Loop, and Critical Path Analysis. Buildings, 15(22), 4152. https://doi.org/10.3390/buildings15224152

