Study on Blast Mitigation Protection of Underground Station Structures Using Phononic Crystals
Abstract
1. Introduction
2. Physical Model
2.1. Establishment of the Finite Element Model
2.2. Validation of the Finite Element Model
3. Numerical Analysis
3.1. Influence of Phononic Crystal Presence on the Dynamic Response of Underground Stations
3.2. Influence of Phononic Crystal Density on the Dynamic Response of Underground Stations
3.3. Influence of Phononic Crystal Arrangement on the Dynamic Response of Underground Stations
3.4. Influence of Phononic Crystal Buried Depth on the Dynamic Response of Underground Stations
3.5. Influence of Phononic Crystal Materials on the Dynamic Response of Underground Stations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tiwari, R.; Chakraborty, T.; Matsagar, V. Dynamic Analysis of Underground Tunnels Subjected to Internal Blast Loading. In Proceedings of the World Congress of Computational Mechanics (WCCM XI), Barcelona, Spain, 20–25 July 2014. [Google Scholar]
- Zhu, Y.; Wang, D.; Shao, Z.; Zhu, X.; Xu, C.; Zhang, Y. Investigation on the Overpressure of Methane-Air Mixture Gas Explosions in Straight Large-Scale Tunnels. Process Saf. Environ. Prot. 2020, 135, 101–112. [Google Scholar] [CrossRef]
- Zaid, M.; Sadique, M.R. Numerical Modelling of Internal Blast Loading on a Rock Tunnel. Adv. Comput. Des. 2020, 5, 417–443. [Google Scholar]
- Goel, M.D.; Verma, S.; Panchal, S. Effect of Internal Blast on Tunnel Lining and Surrounding Soil. Indian Geotech. J. 2021, 51, 359–368. [Google Scholar] [CrossRef]
- Zhang, Q. The Dynamic Response of Subsurface Structures under the Ground Explosion. Master’s Thesis, Chang’an University, Xi’an, China, 2015. (In Chinese). [Google Scholar]
- Liu, J.; Chen, W. Dynamic Response Study of Buried Pipeline Subjected to Blast Loads. Eng. Blasting 2008, 14, 20–24. (In Chinese) [Google Scholar]
- Zhang, L.; Yang, X. Soil-Tunnel Interaction under Medium Internal Blast Loading. Procedia Eng. 2016, 143, 403–410. [Google Scholar] [CrossRef]
- Li, Y.; Yao, A.; Zhao, S.; Yao, H.; Huang, Z.; Zeng, X. Analysis on Dynamic Response and Extreme Loads of Buried Gas Pipeline under Blast Loading. Weld. Pipe Tube 2009, 32, 63–69. (In Chinese) [Google Scholar] [CrossRef]
- Kasilingam, S.; Sethi, M.; Pelecanos, L. A Review on the Performance of the Underground Tunnels Against Blast Loading. J. Struct. Eng. Appl. Mech. 2021, 4, 1–17. [Google Scholar] [CrossRef]
- Rose, T.A.; Smith, P.D.; Mays, G.C. The Effectiveness of Walls Designed for the Protection of Structures Against Airblast from High Explosives. Proc. Inst. Civ. Eng. Struct. Build. 1995, 110, 78–85. [Google Scholar]
- Sun, Y. Analysis of Explosion-Proof Performance of Underground Station with Explosion-Proof Hanging Plate. Master’s Thesis, Shenyang Jianzhu University, Shenyang, China, 2021. (In Chinese). [Google Scholar]
- Kong, D.; Xu, Y.; Song, C. Dynamic Response of Composite Steel Lining Structure under Blast Loading. Shock Vib. 2020, 2020, 2693659. [Google Scholar] [CrossRef]
- Song, C. Study on the Explosive Impact Characteristics of Composite Steel Plate Lining Structure in Subway Tunnel. Master’s Thesis, Shandong University of Science and Technology, Qingdao, China, 2017. (In Chinese). [Google Scholar]
- Fu, X. Study on the Protective Properties of Subway Column and Tunnel Lining Subjected to Blast Loading. Master’s Thesis, Tianjin University, Tianjin, China, 2010. (In Chinese). [Google Scholar]
- Xie, S.; Jiang, C.; Wang, Z.; Lu, G. Analysis of Similarity Law of Explosion in Multi-Layer Concrete Medium. Acta Armamentarii 2019, 40, 1198–1206. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Z.; Wu, J.; Yu, J.; Feng, X. Numerical Study on the Scaling Effect of Reinforced Concrete Members under Blast Load. Struct. Eng. 2022, 38, 16–28. (In Chinese) [Google Scholar]
- Wahab, M.M.; Mazek, S.A. Performance of Double Reinforced Concrete Panel Against Blast Hazard. Comput. Concr. 2016, 18, 807–826. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, E.; Lu, X.; Chen, Z. Effects of Concrete Masonry Walls on Structures under Nuclear Blast Loadings. Eng. Mech. 2008, 25, 73–78. (In Chinese) [Google Scholar]
- Xu, R.; Chen, L.; Fang, Q.; Zheng, Y.; Li, Z.; Cao, M. Protective Effects of Gabion Wall Against Blast Waves from Large TNT-Equivalent Explosions. Eng. Struct. 2021, 249, 113389. [Google Scholar] [CrossRef]
- Chen, L.; Xu, R.; Fang, Q.; Zheng, Y.; Li, Z.; Cao, M. Response Characteristics of Gabion Wall under Large TNT-Equivalent Explosives. J. Struct. Eng. 2022, 148, 04022104. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, G.; Liu, W.; Chen, Z.; Liu, Q.; Xu, G. Experimental study on failure mode and mechanical characteristics of gabion material. Constr. Build. Mater. 2022, 344, 128119. [Google Scholar] [CrossRef]
- Mohammadi, P.K.M.; Khalilpour, S.H.; Parsa, H.; Sareh, P. Protective water curtains as wave attenuators for blast-resistant tunnels. Sci. Rep. 2022, 12, 20463. [Google Scholar] [CrossRef]
- Hassan, A.; Amin, M.S.; Esa, M. Comparing diverse arrangements of rows of blast wave fences by criterion of mitigation percent. Innov. Infrastruct. Solut. 2022, 7, 6. [Google Scholar] [CrossRef]
- Keshavarz Mirza Mohammadi, P.; Khalilpour, S.H.; Parsa, H.; Sareh, P. Computational performance evaluation of sacrificial protective walls composed of lightweight concrete blocks: A parametric study of blast loads in a tunnel. Mech. Adv. Mater. Struct. 2024, 31, 880–894. [Google Scholar] [CrossRef]
- Eslami, M.; Keshavarz MirzaMohammadi, P.; Khalilpour, S.H.; Parsa, H.; Kodure, V. Experimental and numerical investigation of blast wave attenuation by using barriers in different configurations and shapes. J. Struct. Eng. 2023, 149, 04022224. [Google Scholar] [CrossRef]
- Keshavarz MirzaMohammadi, P.; Khalilpour, S.H.; Sareh, P. Multi-layer configurations of modular protective walls for enhancing the shielding performance of blast shelters. Mech. Adv. Mater. Struct. 2024, 31, 9812–9825. [Google Scholar]
- MirzaMohammadi, P.K.; Khalilpour, S.H.; Parsa, H.; Sareh, P. Symmetric multipath branching as a layout design strategy for blast-resilient tunnel structures. Structures 2023, 58, 105616. [Google Scholar] [CrossRef]
- Ivanov, A.; Fassardi, N.; Scafidi, C.; Shemen, T.; Eliasson, V. Shock wave attenuation using rigid obstacles with large-and small-scale geometrical features. Multiscale Multidiscip. Model. Exp. Des. 2019, 2, 269–279. [Google Scholar]
- Berger, S.; Ben-Dor, G.; Sadot, O. Numerical investigation of shock wave attenuation by geometrical means: Double barrier configuration. J. Fluids Eng. 2015, 137, 041203. [Google Scholar] [CrossRef]
- Berger, S.; Ben-Dor, G.; Sadot, O. Experimental and numerical investigation of shock wave attenuation by dynamic barriers. J. Fluids Eng. 2016, 138, 031103. [Google Scholar] [CrossRef]
- De, A.; Zimmie, T.F.; Vamos, K.E. Centrifuge experiments to study surface blast effects on underground pipelines. In Proceedings of the Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy, Houston, TX, USA, 21–24 August 2005. [Google Scholar]
- De, A.; Zimmie, T.F. Centrifuge modeling of surface blast effects on underground structures. Geotech. Test. J. 2007, 30, 427–431. [Google Scholar] [CrossRef]
- Xin, K.; Zhang, T.; Gao, Y.; He, W.; Huang, X.; Gao, T. Study of induced stress wave load distribution law in soil for separate multi-layer basement under blast traveling waves. Prot. Eng. 2020, 42, 11–15. (In Chinese) [Google Scholar]
- Zhou, Q.; Zhou, J.; Zhou, Y.; Chen, X.; Jin, F.; Fan, H. Field test and elastic dynamic response analysis of shallow-buried utility tunnel under explosion load. Sci. Sin. Phys. Mech. Astron. 2020, 50, 65–77. (In Chinese) [Google Scholar] [CrossRef]
- Qian, H.; Zong, Z.; Wu, C.; Li, J.; Gan, L. Numerical study on the behavior of utility tunnel subjected to ground surface explosion. Thin-Walled Struct. 2021, 161, 107422. [Google Scholar] [CrossRef]
- Luo, J.; Liu, H.; Fu, A.; Lin, Z.; Wei, L. Study on anti-explosion performance of large-span underground cavern under top-explosion load. Chin. J. Undergr. Space Eng. 2022, 18, 1630–1638. (In Chinese) [Google Scholar]
- Li, Z.; Li, J.; Wang, M.; Jiang, H.; Wu, H.; Pan, Y.; Wang, D. Theoretical and experimental study on ground impact damage effect under large equivalent explosion. Part I: Field measurement analysis of ground impact failure phenomenon of deep buried caverns. Chin. J. Rock Mech. Eng. 2022, 41, 865–876. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.; Wang, D.; Li, Z.; Jiang, H.; Xiong, Z.; Gao, L.; Wang, M. Theoretical and experimental study on ground impact damage effect under large equivalent explosion. Part II: Development of a simulation test system for ground impact effect of deep buried caverns. Chin. J. Rock Mech. Eng. 2022, 41, 1552–1566. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Wang, M. Theoretical and experimental study on ground impact damage effect under large equivalent explosion. Part III: Experimental simulation research of ground impact effect on deep buried caverns. Chin. J. Rock Mech. Eng. 2023, 42, 1162–1174. (In Chinese) [Google Scholar] [CrossRef]
- Yu, S.; Wu, H.; Zhang, G.; Wang, Z.; Yao, J.; Li, H.; Liu, C. Experimental study on anti-shallow-buried-explosion capacity of a corrugated steel–plain concrete composite structure. Int. J. Impact Eng. 2023, 172, 104393. [Google Scholar] [CrossRef]
- Papanikolaou, V.K.; Kappos, A.J. Practical nonlinear analysis of unreinforced concrete tunnel linings. Tunn. Undergr. Space Technol. 2014, 40, 127–140. [Google Scholar] [CrossRef]
- Liu, F.; Wang, H.; Yan, L.; Li, H. Damage Effect of Shallow Buried Civil Air Defense Engineering Structures under Nearby Blast Loading. Acta Armamentarii 2021, 42, 625–632. (In Chinese) [Google Scholar]
- Liu, G.; Liu, R.; Wang, W.; Wang, X.; Zhao, Q. Blast Resistance Experiment of Underground Reinforced Concrete Arch Structure under Top Explosion. Chin. J. Energetic Mater. 2021, 29, 157–165. (In Chinese) [Google Scholar]
- Liu, Y.; Zhao, Y.; Luo, K.; Zhao, P. Analytical solution of dynamic response of underground box structure under explosion seismic wave. J. Vib. Shock 2023, 42, 306–315. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Bao, X.; Chen, Y.; Zhu, Q.; Wang, D. Model test of deep buried underground structure under ground shock induced by explosion. J. Build. Struct. 2023, 44, 89–100. (In Chinese) [Google Scholar] [CrossRef]
- Tian, Z.; Qian, Q.; Wu, B. Study on underground composite circular structure under dynamic loading of high-pressure explosion. Spec. Struct. 1997, 14, 40–43. (In Chinese) [Google Scholar] [CrossRef]
- Mandal, J.; Agarwal, A.K.; Goel, M.D. Numerical modeling of shallow buried tunnel subject to surface blast loading. J. Perform. Constr. Facil. 2020, 34, 04020106. [Google Scholar] [CrossRef]
- Gao, G.; Li, Y.; Yao, L.; Pang, Y. Test study on cavity structure’s defense effect against nuclear explosion loadings. China Civ. Eng. J. 2010, 43, 490–494. (In Chinese) [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Q. Study on Nuclear Blast Damage to River-Crossing Tunnel in Shanghai. J. Shanghai Jiaotong Univ. 2011, 45, 643–647. (In Chinese) [Google Scholar] [CrossRef]
- Xu, S. Study on the Anti-Nuclear Explosion Impact of Yuejiang Tunnel. Ph.D. Thesis, Tongji University, Shanghai, China, 2009. (In Chinese). [Google Scholar]
- Yang, Y.; Wu, C.; Liu, Z.; Du, J.; Zhang, H.; Xu, S.; Zhou, S. Protective effect of unbonded prestressed ultra-high performance reinforced concrete slab against gas explosion in buried utility tunnel. Process Saf. Environ. Prot. 2021, 149, 370–384. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.; Chen, Y.; Zhu, Q. Influence of reinforcement diameter and spacing on implosion resistance of ultra-high performance concrete. Eng. Mech. 2023, 40, 98–107. (In Chinese) [Google Scholar]
- Li, Z.; Liu, Y.; Tian, L. Dynamic Response and Blast-Resistance Analysis of Double Thick Subway Tunnel Subjected to Blast Loading Within One Side of Tunnel. J. Beijing Univ. Technol. 2006, 32, 173–181. (In Chinese) [Google Scholar]
- De, A.; Zimmie, T.F. Effects of surface explosion on underground tunnel and potential mitigation measures. Transp. Infrastruct. Geotech. 2016, 3, 74–90. [Google Scholar] [CrossRef]
- Dadkhah, H.; Kalatehjari, R.; Hajihassani, M.; Kharghani, M.; Asteris, P.G. Sand–Tire Shred Mixture Performance in Controlling Surface Explosion Hazards That Affect Underground Structures. Appl. Sci. 2021, 11, 11741. [Google Scholar] [CrossRef]
- Peng, S.; Liu, Y.; Fan, L.; Zeng, Y.; Wang, G.; Xun, Z.; Chen, G. Dynamic Response of Tunnels with a Rubber-Sand Isolation Layer under Normal Fault Creep-Slip and Subsequent Seismic Shaking: Shaking Table Testing and Numerical Simulation. Appl. Sci. 2023, 13, 6440. [Google Scholar] [CrossRef]
- Ichino, H.; Beppu, M.; Williamson, E.B.; Haraguchi, N. Performance and evaluation of an EPS plate to mitigate blast on underground protective structures. Int. J. Impact Eng. 2021, 148, 103758. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, H.; Yuan, Y.; Zhu, H. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures. Constr. Build. Mater. 2015, 94, 710–718. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Song, L.; Zhou, H.; Wang, Y.; Zhang, H.; Cong, P. Mitigating confined blast response of buried steel box structure with foam concrete. Thin-Walled Struct. 2021, 169, 108473. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, H.; Mao, J.; Zhang, Y.; Wang, S.; Chen, S.; Yan, D. Study on the protective performance of metakaolin-based foam geopolymer (MKFG) as a sacrificial cladding under internal blast mitigation. Int. J. Impact Eng. 2024, 189, 104969. [Google Scholar] [CrossRef]
- Momeni, M.; Bedon, C.; Hadianfard, M.A.; Baghlani, A. An Efficient Reliability-Based Approach for Evaluating Safe Scaled Distance of Steel Columns under Dynamic Blast Loads. Buildings 2021, 11, 606. [Google Scholar] [CrossRef]
- Hirsekorn, M.; Delsanto, P.P.; Leung, A.C.; Matic, P. Elastic wave propagation in locally resonant sonic material: Comparison between local interaction simulation approach and modal analysis. J. Appl. Phys. 2006, 99, 124912. [Google Scholar] [CrossRef]
- Wang, P.; Yi, Q.; Zhao, C.; Xing, M.; Tang, J. Wave propagation in periodic track structures: Band-gap behaviours and formation mechanisms. Arch. Appl. Mech. 2017, 87, 503–519. [Google Scholar] [CrossRef]
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 1993, 71, 2022. [Google Scholar] [CrossRef]
- Shi, Z.; Cheng, Z.; Mo, Y.L. Theoretical and experimental studies of periodic foundations. Earthq. Eng. Eng. Dyn. 2014, 34, 763–768. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, Z.; Shi, Z. Application of periodic structures: A new type of isolation foundation. In Proceedings of the 8th National Conference on Earthquake Engineering, Editorial Department of Journal of CAEE Volume II, Chongqing, China, 24–25 December 2010. (In Chinese). [Google Scholar]
- Sun, R. Dynamic Response Analysis of Typical Upper Cover Structure under Explosion in Subway Station. Master’s Thesis, Tianjin University, Tianjin, China, 2019. (In Chinese). [Google Scholar]
- Wang, F. Numerical Study on the Interaction Between Marine Structures and Smooth Ice Based on Cohesive Element Model. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2019. (In Chinese). [Google Scholar]
- Li, H. Damage Analysis of Concrete Slabs Under Rockfall Impact Based on ANSYS/LS-DYNA Simulation. Value Eng. 2023, 42, 109–111. (In Chinese) [Google Scholar]
- Mafachowski, J.; Bukala, J.; Damaziak, K.; Tomaszewski, M. LS-DYNA Contact Procedure Analysis for Selected Mechanical Systems. J. KONES 2015, 22, 193–202. [Google Scholar]
- Graf, T.; Haufe, A.; Andrade, F. Adhesives Modeling with LS-DYNA: Recent Developments and Future Work. In Proceedings of the Nordic LS-DYNA Forum, DYNAmore GmbH, Stuttgart, Germany, 6–8 October 2014. [Google Scholar]
- Hu, Q.; Yu, H.; Yuan, Y. Numerical Simulation of Dynamic Response of an Existing Subway Station Subjected to Internal Blast Loading. Trans. Tianjin Univ. 2008, 14, 563–568. (In Chinese) [Google Scholar] [CrossRef]
- Qi, H.; Li, Q. Research on Crush of Reinforced Slabs in Progressive Collapse. Build. Struct. 2010, 40, 358–364. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, Z. Research on Dynamic Response of Subway Tunnel Lining Structure under Explosive Loading. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2019. (In Chinese). [Google Scholar] [CrossRef]
- Lu, Z.; Liu, M. Analysis of Dynamic Response and Structure Damage of Yangtze River Tunnel Subjected to Different Explosion Loading. Blasting 2013, 30, 5–9+74. (In Chinese) [Google Scholar]
- Gao, R. Dynamic Response and Damage Assessment of Blast Resistant Chamber under Large Explosive Equivalent Blast Load. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2023. (In Chinese). [Google Scholar] [CrossRef]
- Xue, K. Research on Multi-Dimensional Coupled Static and Dynamic Characteristics of Adjacent Pile Foundations under Blasting of Subway Station Foundation Pit. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2023. (In Chinese). [Google Scholar] [CrossRef]
- Qu, S. Structural Response and Damage and Ground Vibration of Subway Station under Internal Explosion. Ph.D. Thesis, Tianjin University, Tianjin, China, 2012. (In Chinese). [Google Scholar]
- Wang, L. Study on the Basement’s Property of Resisting Nuclear Explosion and the Functions Conversion during Wartime and Peacetime. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2003. (In Chinese). [Google Scholar]
- Ministry of Construction of the People’s Republic of China. Code for Design of Civil Air Defense Engineering (GB50225-2005), 1st ed.; China Building Industry Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Department of Army, the Navy and the Air Force. Structures to Resist the Effects of Accidental Explosions; TM5-1300; U.S. Army Armament Research, Development and Engineering Center: Picatinny Arsenal, NJ, USA, 1990. [Google Scholar]
- Zeng, Y.; Bai, C.; Wang, Z. Vibrating Response of a Residential Structure to Blast Based on HHT. J. Vib. Shock 2014, 33, 71–75. (In Chinese) [Google Scholar]
- Wang, H.; Zhou, M.; Fan, Y.; Zhang, Z. The Mechanism and the Sound Insulation Performance of Locally Resonant Phononic Crystals: Demonstration and Analysis. In Proceedings of the 2009 National Environmental Acoustics Conference, Guangxi, China, 1 December 2009. (In Chinese). [Google Scholar]




















| reinforced concrete | RO (Kg/m3) | E (Pa) | PR | SIGY (Pa) | ETAN (Pa) | BETA | SRC | SRP | FS |
| 2500 | 3.78 × 1010 | 0.2 | 3.5 × 107 | 3.78 × 109 | 1.0 | 99.3 | 1.94 | 1 × 1020 | |
| soil | RO (Kg/m3) | GNOD (Pa) | RNU | RKF | PHI | CVAL | STR LIM | ||
| 2050 | 1.3 × 107 | 0.28 | 1.0 | 0.56 | 1.3 × 107 | 0.005 |
| RO (Kg/m3) | E (Pa) | PR | SIGY (Pa) | ETAN (Pa) | BETA | SRC | SRP | FS |
|---|---|---|---|---|---|---|---|---|
| 7830 | 2.08 × 1011 | 0.3 | 2.92 × 108 | 2.1 × 109 | 0 | 40 | 5 | 0.2 |
| Reference Point Identification | Numerical Simulation Results (mm/s) | Experimental Results (mm/s) | Relative Error (%) |
|---|---|---|---|
| P1 | 58.7 | 68.6 | 14.43 |
| P2 | 25.9 | 30.8 | 15.91 |
| P3 | 22.1 | 25.6 | 13.67 |
| W1 | 99.2 | 113.7 | 12.75 |
| RO | G (MPa) | A | B | C | N | FC (MPa) | T (MPa) | EPSO | EFMIN |
|---|---|---|---|---|---|---|---|---|---|
| 2400 | 14,860 | 0.79 | 1.6 | 0.007 | 0.61 | 40 | 4 | 0.001 | 0.01 |
| SFMAX (MPa) | PC (MPa) | UC | PL (MPa) | UL | D1 | D2 | K1 (MPa) | K2 (MPa) | K3 (MPa) |
| 7 | 16 | 0.001 | 800 | 0.1 | 0.04 | 1.0 | 8.5 × 104 | −1.71 × 105 | 2.08 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Bo, C.; Wang, D.; Liu, Z.; Broniewicz, F.; Broniewicz, M. Study on Blast Mitigation Protection of Underground Station Structures Using Phononic Crystals. Buildings 2025, 15, 4006. https://doi.org/10.3390/buildings15214006
Wu J, Bo C, Wang D, Liu Z, Broniewicz F, Broniewicz M. Study on Blast Mitigation Protection of Underground Station Structures Using Phononic Crystals. Buildings. 2025; 15(21):4006. https://doi.org/10.3390/buildings15214006
Chicago/Turabian StyleWu, Jihu, Chuqiao Bo, Dai Wang, Zhongxian Liu, Filip Broniewicz, and Miroslaw Broniewicz. 2025. "Study on Blast Mitigation Protection of Underground Station Structures Using Phononic Crystals" Buildings 15, no. 21: 4006. https://doi.org/10.3390/buildings15214006
APA StyleWu, J., Bo, C., Wang, D., Liu, Z., Broniewicz, F., & Broniewicz, M. (2025). Study on Blast Mitigation Protection of Underground Station Structures Using Phononic Crystals. Buildings, 15(21), 4006. https://doi.org/10.3390/buildings15214006

