Interaction Between Air Entraining Agent and Graphene Oxide and Its Effect on Bubble Behavior of Cement-Based Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Test of Bubble Properties
2.2.2. Test of Performance of Fresh Mixed Mortar
2.2.3. Test of Performance of Hardened Mortar
3. Results and Discussions
3.1. Effect of GO on Bubble Behavior in Solution
3.2. Effect of GO on Gas Content of Freshly Mixed Mortar
3.3. Effect of GO on Air Void of Hardened Mortar
3.4. Synergistic Mechanism of GO and Air Entraining Agent
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Hu, Z.; Li, Y.; Wang, K.; Zhang, H. Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment. Constr. Build. Mater. 2022, 321, 126371. [Google Scholar] [CrossRef]
- Netinger Grubeša, I.; Marković, B.; Vračević, M.; Tunkiewicz, M.; Szenti, I.; Kukovecz, Á. Pore structure as a response to the freeze/thaw resistance of mortars. Materials 2019, 12, 3196. [Google Scholar] [CrossRef]
- Shuldyakov, K.; Trofimov, B.; Kramar, L. Stable microstructure of hardened cement mortar-a guarantee of the durability of concrete. Case Stud. Constr. Mater. 2020, 12, e00351. [Google Scholar]
- Li, W.; Zhou, Y.; Yin, J.; Peng, Y.; Wang, Y.; Tang, S.; Shi, Y.; Wang, Y.; Wang, L. Study on thermodynamics based hydration of low-heat Portland cement and compensation effect of magnesium oxide admixtures. J. Zhejiang Univ.-SCIENCE A 2025, 26, 305–319. [Google Scholar] [CrossRef]
- Yu, F.; Lou, Z.; Yan, N. Effect of the compounding of an antifoaming agent and a viscosity modifying agent on the frost resistance of mold bag concrete. Constr. Build. Mater. 2021, 308, 125016. [Google Scholar] [CrossRef]
- Shah, H.A.; Yuan, Q.; Zuo, S. Air entrainment in fresh concrete and its effects on hardened concrete-a review. Constr. Build. Mater. 2021, 274, 121835. [Google Scholar] [CrossRef]
- Şahin, Y.U.Ş.A.; Akkaya, Y.; Boylu, F.; Taşdemir, M.A. Characterization of air entraining admixtures in concrete using surface tension measurements. Cement Concrete Comp. 2017, 82, 95–104. [Google Scholar] [CrossRef]
- Ren, J.; Luo, X.; Bai, R.; Pan, C.; Zhang, J. Pore characteristics of different phase in nano-modified concrete and their influences on the compressive strength. J. Build. Eng. 2022, 46, 103784. [Google Scholar] [CrossRef]
- Metaxa, Z.S.; Tolkou, A.K.; Efstathiou, S.; Rahdar, A.; Favvas, E.P.; Mitropoulos, A.C.; Kyzas, G.Z. Nanomaterials in cementitious composites: An update. Molecules 2021, 26, 1430. [Google Scholar] [CrossRef] [PubMed]
- Makul, N. Advanced smart concrete-a review of current progress, benefits and challenges. J. Clean. Prod. 2020, 274, 122899. [Google Scholar] [CrossRef]
- Yan, Y.; Tian, L.; Zhao, W.; Lazaro, S.A.M.; Li, X.; Tang, S. Dielectric and mechanical properties of cement pastes incorporated with magnetically aligned reduced graphene oxide. Dev. Built Environ. 2024, 18, 100471–100481. [Google Scholar] [CrossRef]
- Zeng, H.; Lai, Y.; Qu, S.; Qin, Y. Graphene oxide-enhanced cementitious materials under external sulfate attack: Implications for long structural life. ACS Appl. Nano Mater. 2020, 3, 9784–9795. [Google Scholar] [CrossRef]
- Zeng, H.; Lai, Y.; Qu, S.; Yu, F. Effect of graphene oxide on permeability of cement materials: An experimental and theoretical perspective. Constr. Build. Mater. 2021, 41, 102326. [Google Scholar] [CrossRef]
- Zeng, H.; Lai, Y.; Qu, S.; Yu, F. Exploring the effect of graphene oxide on freeze-thaw durability of air-entrained mortars. Constr. Build. Mater. 2022, 324, 126708. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, Y.; Wu, J.; Guo, X.; Chen, W.; Gao, Y. Graphene oxide-coated fly ash for high performance and low-carbon cementitious composites. J. Mater. Res. Technol. 2023, 25, 6710–6724. [Google Scholar] [CrossRef]
- Mahmoodi, M.J.; Khamehchi, M.; Safi, M. Comprehensive modelling of drying shrinkage strain of graphene oxide nanosheet concrete. Adv. Cem. Res. 2024, 36, 1–14. [Google Scholar] [CrossRef]
- Sun, H.; Ren, Z.; Ling, L.; Memon, S.A.; Ren, J.; Liu, B.; Xing, F. Influence of graphene oxide on interfacial transition zone of mortar. J. Nanomater. 2020, 11, 8919681. [Google Scholar] [CrossRef]
- Indukuri, C.S.R.; Nerella, R.; Madduru, S.R.C. Workability, microstructure, strength properties and durability properties of graphene oxide reinforced cement paste. Aust. J. Civ. Eng. 2020, 18, 73–81. [Google Scholar] [CrossRef]
- Djenaoucine, L.; Argiz, C.; Picazo, Á.; Moragues, A.; Galvez, J.C. The corrosion-inhibitory influence of graphene oxide on steel reinforcement embedded in concrete exposed to a 3.5M NaCl solution. Cement Concrete Comp. 2025, 155, 105835. [Google Scholar] [CrossRef]
- Djenaoucine, L.; Picazo, A.; de la Rubia, M.A.; Galvez, J.C.; Moragues, A. Effect of graphene oxide on the hydration process and macro-mechanical properties of cement. Boletín Soc. Española Cerámica Vidrio 2024, 63, 294–303. [Google Scholar] [CrossRef]
- Djenaoucine, L.; Picazo, Á.; de la Rubia, M.Á.; Moragues, A.; Gálvez, J.C. Influence of Graphene Oxide on Mechanical Properties and Durability of Cement Mortar. Materials 2024, 17, 1445. [Google Scholar] [CrossRef]
- Izadifar, M.; Dolado, J.S.; Thissen, P.; Ukrainczyk, N.; Koenders, E.; Ayuela, A. Theoretical Elastic Constants of Tobermorite Enhanced with Reduced Graphene Oxide through Hydroxyl vs Epoxy Functionalization: A First-Principles Study. J. Phys. Chem. C 2023, 127, 18117–18126. [Google Scholar] [CrossRef]
- Izadifar, M.; Dolado, J.S.; Thissen, P.; Ayuela, A. Interactions between Reduced Graphene Oxide with Monomers of (Calcium) Silicate Hydrates: A First-Principles Study. Nanomaterials 2021, 11, 2248. [Google Scholar] [CrossRef]
- Gonzenbach, U.T.; Studart, A.R.; Tervoort, E.; Gauckler, L.J. Ultrastable particle stabilized foams. Angew. Chem. Int. Ed. 2006, 45, 3526–3530. [Google Scholar] [CrossRef]
- Ma, J.; Liu, J.; Zhu, W.; Qin, W. Solubility study on the surfactants functionalized reduced graphene oxide. Colloid Surf. A 2018, 538, 79–85. [Google Scholar] [CrossRef]
- Yu, L.; Wu, R. Using graphene oxide to improve the properties of ultra-highperformance concrete with fine recycled aggregate. Constr. Build. Mater. 2020, 259, 120657. [Google Scholar] [CrossRef]
- Shan, G.C.; Lu, C.; Chen, J.; Gao, N.X.; Qiao, M.; Ran, Q.P.; Liu, J.P. Effect of air entraining agent on properties of aqueous solutions and concretes. J. Chin. Chem. Soc. 2020, 48, 1256–1262. (In Chinese) [Google Scholar]
- Shan, G.C.; Wu, J.Z.; Qiao, M.; Gao, N.X.; Chen, J.; Ran, Q.P.; Hong, J.X.; Liu, J.P. Influence of defoamer on interface behavior and effect of air entraining agent. J. Chin. Chem. Soc. 2020, 48, 638–643. (In Chinese) [Google Scholar]
- Shao, J.J.; Lv, W.; Yang, Q.H. Self-assembly of graphene oxide at interfaces. Adv. Mater. 2014, 26, 5586–5612. [Google Scholar] [CrossRef]
- Shen, F.; Chen, J.; Qiao, M.; Shan, G.; Gao, N.; Wu, Q.; Ran, Q.; Liu, J.; Han, F.; Han, B.; et al. Effect of particle properties on the resulting bubble quality and stability: From solution foam to air-entrained cement mortars. Constr. Build. Mater. 2024, 432, 136596. [Google Scholar] [CrossRef]
Chemical Composition | Mineral Composition | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | MgO | Fe2O3 | SO3 | Na2O | K2O | TiO2 | Ignition Loss | C3S | C2S | C3A | C4AF |
20.07 | 6.32 | 58.26 | 1.96 | 3.39 | 1.71 | 0.22 | 0.72 | 0.34 | 4.18 | 43.6 | 11.4 | 2.6 | 9.5 |
Density (g/cm3) | Specific Surface Area (cm2/g) | Final Setting Time (min) | Standard Consistency Water Consumption (%) | 28d Mortar Compressive Strength (MPa) | 28d Mortar Flexural Strength (MPa) |
---|---|---|---|---|---|
3.11 | 3970 | 284 | 28.5 | 55.4 | 7.5 |
Sample | Volume Fraction (%) | Cumulative Count (-) | Cumulative Volume (µm3) |
---|---|---|---|
AEA | 7.9 | 58,349,560 | 8,872,457,894 |
AEA + 0.1‰GO | 10.3 | 99,341,785 | 9,834,128,967 |
AEA + 0.2‰GO | 13.7 | 137,893,998 | 14,171,893,223 |
AEA + 0.4‰GO | 18.4 | 183,473,025 | 18,230,976,491 |
Sample | Probe Position | Weight Percentage (%) | Atomic Percentage (%) |
---|---|---|---|
AEA | Spot 1 | 6.04 | 12.41 |
Spot 2 | 0.45 | 1.02 | |
AEA + 0.2‰GO | Spot 3 | 10.05 | 16.53 |
Spot 4 | 1.15 | 2.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, M.; Chen, G.; Fang, Y.; Li, Y.; Shi, M. Interaction Between Air Entraining Agent and Graphene Oxide and Its Effect on Bubble Behavior of Cement-Based Materials. Buildings 2025, 15, 3631. https://doi.org/10.3390/buildings15193631
Qiao M, Chen G, Fang Y, Li Y, Shi M. Interaction Between Air Entraining Agent and Graphene Oxide and Its Effect on Bubble Behavior of Cement-Based Materials. Buildings. 2025; 15(19):3631. https://doi.org/10.3390/buildings15193631
Chicago/Turabian StyleQiao, Min, Guofeng Chen, Yajie Fang, Yuxin Li, and Mei Shi. 2025. "Interaction Between Air Entraining Agent and Graphene Oxide and Its Effect on Bubble Behavior of Cement-Based Materials" Buildings 15, no. 19: 3631. https://doi.org/10.3390/buildings15193631
APA StyleQiao, M., Chen, G., Fang, Y., Li, Y., & Shi, M. (2025). Interaction Between Air Entraining Agent and Graphene Oxide and Its Effect on Bubble Behavior of Cement-Based Materials. Buildings, 15(19), 3631. https://doi.org/10.3390/buildings15193631