Bidirectional Shear Performance of Corroded Stud Connectors in Steel–Concrete Composite Monorail Track Beams
Abstract
1. Introduction
2. Experimental Program
2.1. Specimen Details and Material Property
2.2. Specimen Corrosion Treatment
2.3. Testing Apparatus
3. Experimental Results and Discussion
3.1. Vertical Load–Slip Curves
3.2. Shear Capacity and Stiffness
3.3. Failure Modes
4. Numerical Simulation
4.1. FEM Model Establishment
4.2. Boundary Conditions and Loading Protocol
4.3. Material Models
4.4. Corrosion Simulation
4.5. Model Validation
4.5.1. Load–Slip Curve Comparison
4.5.2. Failure Mode Comparison
5. Parametric Analysis
5.1. Influence of Transverse Shear Load
5.2. Influence of Stud Corrosion
5.3. Coupling Effect of Stud Corrosion and Transverse Shear Load
5.4. Shear Strength Model Incorporating Transverse Force and Stud Corrosion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, C.H.; Kim, C.W.; Kawatani, M.; Nishimura, N.; Kamizono, T. Dynamic response analysis of monorail bridges under moving trains and riding comfort of trains. Eng. Struct. 2005, 27, 1999–2013. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, E. Dynamic Response Analysis of Monorail Steel-Concrete Composite Beam-Train Interaction System Considering Slip Effect. Eng. Struct. 2018, 160, 257–269. [Google Scholar] [CrossRef]
- Zhong, M.; Zhu, E.Y. Development of emergency track beam alignment for rapid track beam replacement of straddle monorail transit. J. Transp. Eng. 2013, 139, 416–423. [Google Scholar] [CrossRef]
- Lee, C.H.; Kawatani, M.; Kim, C.W.; Nishimura, N.; Kobayashi, Y. Dynamic response of a monorail steel bridge under a moving train. J. Sound Vib. 2006, 294, 562–579. [Google Scholar] [CrossRef]
- Liu, Y. Static and Dynamic Analysis and Temperature Effect Research of Cross-Seat Type Continuous Steel-Concrete Composite Track Beam Bridge. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2019. [Google Scholar]
- Li, J.; Liu, Z.; Deng, J.; Chen, F. Bidirectional shear behavior of stud connectors in steel-concrete composite monorail track beams. Struct. Concr. 2022, 24, 2951–2964. [Google Scholar] [CrossRef]
- Lee, P.G.; Shim, C.S.; Chang, S.P. Static and fatigue behavior of large stud shear connectors for steel–concrete composite bridges. J. Constr. Steel Res. 2005, 61, 1270–1285. [Google Scholar] [CrossRef]
- Gou, H.; He, Y.; Zhou, W.; Bao, Y.; Chen, G. Experimental and numerical investigations of the dynamic responses of an asymmetrical arch railway bridge. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2018, 232, 95440971876692. [Google Scholar] [CrossRef]
- Huang, X.Y.; Chen, Y.J.; Li, Y.; Sheng, H.F.; Li, L.Y. Influence of curvature radius on impact effects of a box-girder curved bridge under moving vehicle loads. J. Vib. Shock 2010, 29, 38–42. [Google Scholar]
- Yang, Y.; Yang, D.; Gou, H.; Bao, Y. Research on static and dynamic behaviors of PC track beam for straddle monorail transit system. Steel Compos. Struct. 2019, 5, 437–452. [Google Scholar]
- Xu, C.; Su, Q.; Masuya, H. Static and Fatigue Behavior of the Stud Shear Connector in Lightweight Concrete. Int. J. Steel Struct. 2018, 18, 569–581. [Google Scholar] [CrossRef]
- Deng, W.Q.; Xiong, Y.Q.; Liu, D.; Zhang, J.D. Static and fatigue behavior of shear connectors for a steel-concrete composite girder. J. Constr. Steel Res. 2019, 159, 134–146. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Bao, Y.; Bu, Y. Static and fatigue push-out tests of short headed shear studs embedded in engineered cementitious composites (ECC). Eng. Struct. 2018, 182, 29–38. [Google Scholar] [CrossRef]
- Ovuoba, B.; Prinz, G.S. Fatigue Capacity of Headed Shear Studs in Composite Bridge Girders. J. Bridge Eng. 2016, 21, 04016094. [Google Scholar] [CrossRef]
- Kuang, Y.; Peng, Z.; Chen, L.; Li, C.; Shi, W.; Xiang, P.; Yin, B. Experimental and theoretical investigation on the mechanical properties of corroded stud shear connectors. J. Build. Eng. 2024, 86, 108705. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Yu, Q.-Q. Static and fatigue behavior of steel-concrete composite beams with corroded studs. J. Constr. Steel Res. 2019, 156, 18–27. [Google Scholar] [CrossRef]
- Liu, T.; Nie, X.; Zeng, J.; Su, H. Static and fatigue behaviors of corroded stud connectors in weathering steel–concrete composite beams. Eng. Struct. 2022, 272, 115030. [Google Scholar] [CrossRef]
- Ting, M.Z.Y.; Ting, T.Z.H. Deterioration of structural shear connectors in steel-concrete composite exposed to hostile service environments. J. Build. Eng. 2023, 73, 106690. [Google Scholar] [CrossRef]
- Wang, G.D.; Xian, B.X.; Ma, F.Y.; Fang, S. Shear performance of prefabricated steel ultra-high-performance concrete (UHPC) composite beams under combined tensile and shear loads: Single embedded nut bolts vs. Studs. Buildings 2024, 14, 2425. [Google Scholar] [CrossRef]
- Wang, A.J.; Chung, K.F. Advanced finite element modelling of perforated composite beams with flexible shear connectors. Eng. Struct. 2008, 30, 2724–2738. [Google Scholar] [CrossRef]
- Lawson, R.M.; Lim, J.B.P.; Popo-Ola, S.O. Pull-out forces in shear connectors in composite beams with large web openings. J. Constr. Steel Res. 2013, 87, 48–59. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Y.; He, J. Behavior of stud connectors under combined shear and tension loads. Eng. Struct. 2014, 81, 362–376. [Google Scholar] [CrossRef]
- Mirza, O.; Uy, B. Effects of the combination of axial and shear loading on the behaviour of headed stud steel anchors. Eng. Struct. 2010, 32, 93–105. [Google Scholar] [CrossRef]
- Shen, M.H.; Chung, K.F. Experimental investigation into stud shear connections under combined shear and tension forces. J. Constr. Steel Res. 2017, 133, 434–447. [Google Scholar] [CrossRef]
- EN 1994-2; Eurocode 4. Design of Composite Steel and Concrete Structure: Part 2: General Rules for Bridge. European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- GB 50917-2013; Code for Design of Steel and Concrete Composite Bridges. China Planning Press: Beijing, China, 2013.
- Oehlers, D.J.; Foley, L. The fatigue strength of stud shear connections in composite beams. Ice Proc. 1985, 79, 349–364. [Google Scholar]
- Nie, J.; Tan, Y.; Wang, H. Strength of stud shear connectors in composite steel-HC beams. J. Tsinghua Univ. 1999, 39, 94–97. [Google Scholar]
- Xue, W.; Ding, M.; Wang, H.; Luo, Z. Static Behavior and Theoretical Model of Stud Shear Connectors. J. Bridge Eng. 2008, 13, 623–634. [Google Scholar] [CrossRef]
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. Ministry of Housing and Urban-Rural Development of the PRC: Beijing, China, 2019.
- GB/T 228.1-2021; Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature. Standardization Administration of the People’s Republic of China: Beijing, China, 2021.
- Liu, S.; Xu, C.Z.; Zhao, H.J.; Guan, R.Y.; Huang, Z.K.; Su, H.; Du, J. Research on the corrosion behavior prediction model of weathering steel composite bridge stud connectors based on accelerated corrosion and cellular automata. Constr. Build. Mater. 2025, 479, 141494. [Google Scholar] [CrossRef]
- Niaei, A.M.; Mashiri, F.; Mirza, O.; Hosseini, M. Review on the static, low-cycle and high-cycle fatigue behaviour of shear connectors in sustainable steel-concrete composite structures: Experimental studies. Structures 2025, 78, 109188. [Google Scholar] [CrossRef]
- Xu, C.; Sugiura, K.; Wu, C.; Su, Q.T. Parametrical static analysis on group studs with typical push-out tests. J. Constr. Steel Res. 2012, 72, 84–96. [Google Scholar] [CrossRef]
- Wang, S.; Fang, Z.; Chen, G.; Jiang, H.; Teng, S. Numerical Analysis on Shear Behavior of Grouped Head Stud Shear Connectors between Steel Girders and Precast Concrete Slabs with High-Strength Concrete-Filled Shear Pockets. J. Bridge Eng. 2021, 26, 04021030. [Google Scholar] [CrossRef]
- GB/T50010-2010; Code for Design of Concrete Structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2024.
- Tu, X.; Wu, Y. Numerical analysis on corrosion and mechanical performance of shear stud connector in concrete. Constr. Build. Mater. 2023, 363, 129816. [Google Scholar] [CrossRef]
- Wei, H. Study on Degradation Law of Service Performance of Bolted Connections in Steel Concrete Composite Beams under Corrosive Environment. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2021. [Google Scholar]
- Xu, X.Q.; He, D.Y.; Zeng, S.W.; He, W.; Tan, H.M.; Yu, Z.W. Effect of concrete cracks on the corrosion of headed studs in steel and concrete composite structures. Constr. Build. Mater. 2021, 293, 123440. [Google Scholar] [CrossRef]
Specimen | RoHV | CD | Peak Shear Capacity (kN) | Shear Stiffness (kN/mm) | Peak Slip (mm) | Ultimate Slip (mm) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Fvp | Ratio | kvs | Ratio | Svp | Ratio | Svu | Ratio | |||
S | 0 | 0 | 220.89 | - | 471.5 | - | 5.76 | - | 6.20 | - |
SH | 0.3Pu | 0 | 200.53 | 0.908 | 473.0 | 1.003 | 4.93 | 0.856 | 5.12 | 0.826 |
SC | 0 | 5% | 186.28 | 0.843 | 452.5 | 0.960 | 4.52 | 0.785 | 5.02 | 0.810 |
SCH | 0.3Pu | 5% | 180.81 | 0.819 | 536.0 | 1.137 | 3.71 | 0.644 | 3.89 | 0.627 |
Design Code or Literature | Formula | Pu | Deviation | |
---|---|---|---|---|
Test result | / | 55.2 | / | |
Eurocode 4 [25] | (1) | 35.3 | −36.1% | |
GB 50017-2017 [26] | (2) | 29.7 | −46.2% | |
Oehlers and Foley [27] | (3) | 54.3 | −1.6% | |
Nie et al. [28] | (4) | 34.3 | −37.9% | |
Xue et al. [29] | (5) | 43.1 | −21.9% |
Specimen | Ftest | FPE | FPE/Ftest |
---|---|---|---|
S | 220.89 | 215.79 | 0.977 |
SH | 200.53 | 203.16 | 1.013 |
Scenario | Specimen | RoHV | Height of Corrosion | Depth of Corrosion | Peak Load (kN) |
---|---|---|---|---|---|
Horizon shear load | S-0-H0-D0 | 0 | / | / | 215.7 |
S-0.3-H0-D0 | 0.3 | / | / | 203.2 | |
S-0.5-H0-D0 | 0.5 | / | / | 181.0 | |
S-0.7-H0-D0 | 0.7 | / | / | 136.1 | |
Corrosion of stud | S-0-H20-D10 | / | 20% | 10% | 191.2 |
S-0-H20-D20 | / | 20% | 20% | 168.4 | |
S-0-H20-D30 | / | 20% | 30% | 146.2 | |
S-0-H20-D40 | / | 20% | 40% | 128.4 | |
S-0-H30-D30 | / | 30% | 30% | 143.5 | |
S-0-H40-D30 | / | 40% | 30% | 140.3 | |
Horizon shear load and corrosion of stud | S-0.3-H20-D10 | 0.3 | 20% | 10% | 180.4 |
S-0.3-H20-D20 | 0.3 | 20% | 20% | 157.1 | |
S-0.3-H20-D30 | 0.3 | 20% | 30% | 135.4 | |
S-0.3-H20-D40 | 0.3 | 20% | 40% | 113.6 | |
S-0.5-H20-D10 | 0.5 | 20% | 10% | 153.6 | |
S-0.5-H20-D20 | 0.5 | 20% | 20% | 123 | |
S-0.5-H20-D30 | 0.5 | 20% | 30% | 92.2 | |
S-0.5-H20-D40 | 0.5 | 20% | 40% | 66 |
Specimen | RoH | Measured CD | Reduction Factor, β | Shear Capacity Per Stud | Ft/Fp | |
---|---|---|---|---|---|---|
Test Results, Ft | Predictive Results, Fp | |||||
S | 0 | 0 | 1.02 | 55.20 | 55.39 | 1.00 |
SH | 0.3 | 0 | 0.96 | 50.10 | 52.36 | 0.96 |
SC | 0 | 4.1% | 0.97 | 46.60 | 52.85 | 0.88 |
SCH | 0.3 | 4.8% | 0.91 | 45.20 | 49.39 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; He, W.; Yang, M.; Deng, J.; Li, W. Bidirectional Shear Performance of Corroded Stud Connectors in Steel–Concrete Composite Monorail Track Beams. Buildings 2025, 15, 3331. https://doi.org/10.3390/buildings15183331
Li J, He W, Yang M, Deng J, Li W. Bidirectional Shear Performance of Corroded Stud Connectors in Steel–Concrete Composite Monorail Track Beams. Buildings. 2025; 15(18):3331. https://doi.org/10.3390/buildings15183331
Chicago/Turabian StyleLi, Junhui, Wendong He, Min Yang, Jun Deng, and Weixiong Li. 2025. "Bidirectional Shear Performance of Corroded Stud Connectors in Steel–Concrete Composite Monorail Track Beams" Buildings 15, no. 18: 3331. https://doi.org/10.3390/buildings15183331
APA StyleLi, J., He, W., Yang, M., Deng, J., & Li, W. (2025). Bidirectional Shear Performance of Corroded Stud Connectors in Steel–Concrete Composite Monorail Track Beams. Buildings, 15(18), 3331. https://doi.org/10.3390/buildings15183331