The Deterioration of Low-Cycle Fatigue Properties and the Fatigue Life Model of Reinforcing Steel Bars Subjected to Corrosion
Abstract
1. Introduction
2. Experimental Program
2.1. Specimen Design and Preparation
2.2. Accelerated Corrosion Procedure
2.3. Test Setup and Loading Protocol
3. Experimental Results and Discussion
3.1. Corrosion Morphology
3.2. Impact of Corrosion on the Fracture Characteristics of Specimens
3.3. Impact of Corrosion on Hysteresis Behavior and LCF Life
4. Modeling the Influence of Corrosion on Low-Cycle Fatigue Life
4.1. Existing LCF Models for Uncorroded and Corroded Rebars
4.2. Modeling the LCF Life for Corroded Rebars
4.3. Generalized Fatigue Life Model
4.4. Design Provisions for Low-Cycle Fatigue
5. Conclusions
- (1)
- The accelerated corrosion method employed produces corroded bars that closely replicate natural corrosion features.
- (2)
- Surface morphology affects the LCF behavior of corroded bars. Pitting dominates crack initiation and propagation. Buckling couples with corrosion to speed cracking and prompt early failure. Adequate lateral restraint mitigates these effects.
- (3)
- Corrosion reduces the low-cycle fatigue life of small bars more than that of large bars. The present tests, however, covered only 16 mm and 20 mm bars, so larger diameters need further verification. Comparative tests are also needed to verify whether these conclusions hold for naturally corroded bars.
- (4)
- A comprehensive LCF database of 310 corroded and uncorroded rebar tests was compiled. From it, a unified model was established to predict the LCF life of reinforcing steel bars contaminated by corrosion. The proposed model can be applied to time-dependent seismic reliability assessment of aging structures.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Specimen ID | Mass Loss % | Number of Cycles to Failure Nf | ||
---|---|---|---|---|
±1.5% | ±3.0% | ±5.0% | ||
S-16-15-0 | 0.00 | 147 | ― | ― |
CS-16-15-1 | 1.59 | 137 | ― | ― |
CS-16-15-2 | 2.63 | 113 | ― | ― |
CS-16-15-3 | 3.89 | 97 | ― | ― |
CS-16-15-4 | 4.08 | 94 | ― | ― |
CS-16-15-5 | 4.98 | 73 | ― | ― |
CS-16-15-6 | 5.12 | 72 | ― | ― |
CS-16-15-7 | 7.28 | 60 | ― | ― |
S-16-30-0 | 0.00 | ― | 51 | ― |
CS-16-30-1 | 3.17 | ― | 33 | ― |
CS-16-30-2 | 4.03 | ― | 32 | ― |
CS-16-30-3 | 5.42 | ― | 31 | ― |
CS-16-30-4 | 5.42 | ― | 30 | ― |
CS-16-30-5 | 6.09 | ― | 28 | ― |
CS-16-30-6 | 7.79 | ― | 26 | ― |
CS-16-30-7 | 11.32 | ― | 21 | ― |
S-16-50-0 | 0.00 | ― | ― | 20 |
CS-16-50-1 | 3.57 | ― | ― | 13 |
CS-16-50-2 | 4.97 | ― | ― | 11 |
CS-16-50-3 | 7.00 | ― | ― | 9 |
CS-16-50-4 | 10.00 | ― | ― | 8 |
Specimen ID | Mass Loss % | Number of Cycles to Failure Nf | ||
---|---|---|---|---|
±1.5% | ±3.0% | ±5.0% | ||
S-20-15-0 | 0.00 | 217 | ― | ― |
CS-20-15-1 | 4.81% | 149 | ― | ― |
CS-20-15-2 | 8.24% | 117 | ― | ― |
CS-20-15-3 | 11.38% | 77 | ― | ― |
CS-20-15-4 | 12.51% | 76 | ― | ― |
S-20-35-0 | 0.00 | ― | 47 | ― |
CS-20-35-1 | 4.76% | ― | 37 | ― |
CS-20-35-2 | 7.07% | ― | 30 | ― |
CS-20-35-3 | 7.29% | ― | 33 | ― |
CS-20-35-4 | 10.04% | ― | 21 | ― |
CS-20-35-5 | 11.78% | ― | 19 | ― |
S-20-50-0 | 0.00 | ― | ― | 16 |
CS-20-50-1 | 3.03% | ― | ― | 13 |
CS-20-50-2 | 8.19% | ― | ― | 10 |
CS-20-50-3 | 9.28% | ― | ― | 10 |
CS-20-50-4 | 10.85% | ― | ― | 10 |
CS-20-50-5 | 12.82% | ― | ― | 7 |
References
- Palsson, R.; Mirza, M.S. Mechanical response of corroded steel reinforcement of abandoned concrete bridge. Struct. J. 2002, 99, 157–162. [Google Scholar] [CrossRef]
- Du, Y.; Clark, L.; Chan, A. Residual capacity of corroded reinforcing bars. Mag. Concr. Res. 2005, 57, 135–147. [Google Scholar] [CrossRef]
- Cairns, J.; Plizzari, G.A.; Du, Y.; Law, D.W.; Franzoni, C. Mechanical properties of corrosion-damaged reinforcement. ACI Mater. J. 2005, 102, 256. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, C.A.; Papadopoulos, M.; Pantelakis, S.G. Tensile behavior of corroded reinforcing steel bars BSt 500s. Constr. Build. Mater. 2006, 20, 782–789. [Google Scholar] [CrossRef]
- Zhang, W.; Song, X.; Gu, X.; Li, S. Tensile and fatigue behavior of corroded rebars. Constr. Build. Mater. 2012, 34, 409–417. [Google Scholar] [CrossRef]
- Ou, Y.-C.; Susanto, Y.T.T.; Roh, H. Tensile behavior of naturally and artificially corroded steel bars. Constr. Build. Mater. 2016, 103, 93–104. [Google Scholar] [CrossRef]
- Hua, J.; Fan, H.; Xue, X.; Wang, F.; Chen, Z.; Huang, L.; Wang, N. Tensile and low-cycle fatigue performance of bimetallic steel bars with corrosion. J. Build. Eng. 2021, 43, 103188. [Google Scholar] [CrossRef]
- Bahleda, F.; Prokop, J.; Koteš, P.; Wdowiak-Postulak, A. Mechanical Properties of Corroded Reinforcement. Buildings 2023, 13, 855. [Google Scholar] [CrossRef]
- Mander, J.B.; Panthaki, F.; Kasalanati, A. Low-cycle fatigue behavior of reinforcing steel. J. Mater. Civ. Eng. 1994, 6, 453–468. [Google Scholar] [CrossRef]
- Brown, J.; Kunnath, S.K. Low-cycle fatigue failure of reinforcing steel bars. Mater. J. 2004, 101, 457–466. [Google Scholar] [CrossRef]
- Hawileh, R.; Rahman, A.; Tabatabai, H. Evaluation of the low-cycle fatigue life in ASTM A706 and A615 grade 60 steel reinforcing bars. J. Mater. Civ. Eng. 2010, 22, 65–76. [Google Scholar] [CrossRef]
- Hawileh, R.; Tabatabai, H.; Abu-Obeidah, A.; Balloni, J.; Rahman, A. Evaluation of the low-cycle fatigue life in seven steel bar types. J. Mater. Civ. Eng. 2016, 28, 06015015. [Google Scholar] [CrossRef]
- Li, W.; Wang, Q.; Qu, H.; Xiang, Y.; Li, Z. Mechanical properties of HRB400E/316L stainless steel clad rebar under low-cycle fatigue. Structures 2022, 38, 292–305. [Google Scholar] [CrossRef]
- Koh, S.; Stephens, R. Mean stress effects on low cycle fatigue for a high strength steel. Fatigue Fract. Eng. Mater. Struct. 1991, 14, 413–428. [Google Scholar] [CrossRef]
- Kunnath, S.K.; Heo, Y.; Mohle, J.F. Nonlinear uniaxial material model for reinforcing steel bars. J. Struct. Eng. 2009, 135, 335–343. [Google Scholar] [CrossRef]
- Hawileh, R.; Abdalla, J.; Oudah, F.; Abdelrahman, K. Low-cycle fatigue life behaviour of BS 460B and BS B500B steel reinforcing bars. Fatigue Fract. Eng. Mater. Struct. 2010, 33, 397–407. [Google Scholar] [CrossRef]
- Kim, S.H.; Koutromanos, I. Constitutive model for reinforcing steel under cyclic loading. J. Struct. Eng. 2016, 142, 04016133. [Google Scholar] [CrossRef]
- Xue, X.; Wang, F.; Wang, N.; Hua, J.; Deng, W. Low-Cycle Fatigue Properties of Bimetallic Steel Bar with Buckling: Energy-Based Numerical and Experimental Investigations. Materials 2024, 17, 3974. [Google Scholar] [CrossRef]
- Apostolopoulos, C.A.; Michalopoulos, D. Effect of corrosion on mass loss, and high and low cycle fatigue of reinforcing steel. J. Mater. Eng. Perform. 2006, 15, 742–749. [Google Scholar] [CrossRef]
- Apostolopoulos, C.A. Mechanical behavior of corroded reinforcing steel bars S500s tempcore under low cycle fatigue. Constr. Build. Mater. 2007, 21, 1447–1456. [Google Scholar] [CrossRef]
- Apostolopoulos, C.A.; Michalopoulos, D. Corrosion of reinforcing steel and low cycle fatigue behaviour. Mater. Corros. 2007, 58, 438–446. [Google Scholar] [CrossRef]
- Apostolopoulos, C.A.; Pasialis, V. Effects of corrosion and ribs on low cycle fatigue behavior of reinforcing steel bars S400. J. Mater. Eng. Perform. 2010, 19, 385–394. [Google Scholar] [CrossRef]
- Hawileh, R.A.; Abdalla, J.A.; Al Tamimi, A.; Abdelrahman, K.; Oudah, F. Behavior of corroded steel reinforcing bars under monotonic and cyclic loadings. Mech. Adv. Mater. Struct. 2011, 18, 218–224. [Google Scholar] [CrossRef]
- Caprili, S.; Salvatore, W. Cyclic behaviour of uncorroded and corroded steel reinforcing bars. Constr. Build. Mater. 2015, 76, 168–186. [Google Scholar] [CrossRef]
- Kashani, M.M.; Alagheband, P.; Khan, R.; Davis, S. Impact of corrosion on low-cycle fatigue degradation of reinforcing bars with the effect of inelastic buckling. Int. J. Fatigue 2015, 77, 174–185. [Google Scholar] [CrossRef]
- Salvatore, W.; Caprili, S.; Braconi, A.; Finetto, M.; Bianco, L.; Ascanio, C.; Moersch, J.; Apostolopoulos, C.; Ferreira Pimenta, G. Effects of Corrosion on Low-Cycle Fatigue (Seismic) Behaviour of High-Strength Steel Reinforcing Bars (Rusteel); Publications Office of the European Union: Luxembourg, 2014; pp. 1–166. [Google Scholar] [CrossRef]
- Allam, I.M.; Maslehuddin, M.; Saricimen, H.; Al-Mana, A.I. Influence of atmospheric corrosion on the mechanical properties of reinforcing steel. Constr. Build. Mater. 1994, 8, 35–41. [Google Scholar] [CrossRef]
- Apostolopoulos, C.A.; Papadopoulos, M. Tensile and low cycle fatigue behavior of corroded reinforcing steel bars S400. Constr. Build. Mater. 2007, 21, 855–864. [Google Scholar] [CrossRef]
- Apostolopoulos, C.A.; Demis, S.; Papadakis, V.G. Chloride-induced corrosion of steel reinforcement—Mechanical performance and pit depth analysis. Constr. Build. Mater. 2013, 38, 139–146. [Google Scholar] [CrossRef]
- Apostolopoulos, A.; Matikas, T.E. Corrosion of bare and embedded in concrete steel bar—Impact on mechanical behavior. Int. J. Struct. Integr. 2016, 7, 240–259. [Google Scholar] [CrossRef]
- Kashani, M.M.; Crewe, A.J.; Alexander, N.A. Nonlinear cyclic response of corrosion-damaged reinforcing bars with the effect of buckling. Constr. Build. Mater. 2013, 41, 388–400. [Google Scholar] [CrossRef]
- Novak, P.; Mala, R.; Joska, L. Influence of pre-rusting on steel corrosion in concrete. Cem. Concr. Res. 2001, 31, 589–593. [Google Scholar] [CrossRef]
- Caprili, S.; Moersch, J.; Salvatore, W. Mechanical performance versus corrosion damage indicators for corroded steel reinforcing bars. Adv. Mater. Sci. Eng. 2015, 2015, 739625. [Google Scholar] [CrossRef]
- El Maaddawy, T.A.; Soudki, K.A. Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete. J. Mater. Civ. Eng. 2003, 15, 41–47. [Google Scholar] [CrossRef]
- Kashani, M.M.; Crewe, A.J.; Alexander, N.A. Nonlinear stress–strain behaviour of corrosion-damaged reinforcing bars including inelastic buckling. Eng. Struct. 2013, 48, 417–429. [Google Scholar] [CrossRef]
- Apostolopoulos, C.A.; Rodopoulos, C.A. Inelastic cyclic behaviour of as-received and pre-corroded S500s tempcore steel reinforcement. Int. J. Struct. Integr. 2010, 1, 52–62. [Google Scholar] [CrossRef]
- Franchi, A.; Riva, P.; Ronca, P.; Roberti, R.; La Vecchia, M. Failure modalities of reinforcement bars in reinforced concrete elements under cyclic loading. Studi Ric. Politec. Milano Sc. Spec. Costr. Cem. Armato 1996, 17, 157–187. [Google Scholar]
- Zhang, R.; Castel, A.; François, R. The corrosion pattern of reinforcement and its influence on serviceability of reinforced concrete members in chloride environment. Cem. Concr. Res. 2009, 39, 1077–1086. [Google Scholar] [CrossRef]
- Kashani, M.M.; Crewe, A.J.; Alexander, N.A. Damage propagation in corroded reinforcing bars with the effect of inelastic buckling under low-cycle fatigue loading. In Life-Cycle of Engineering Systems: Emphasis on Sustainable Civil Infrastructure; CRC Press: London, UK, 2016; pp. 1996–2002. [Google Scholar]
- Vassilopoulos, A.P.; Georgopoulos, E.F.; Dionysopoulos, V. Artificial neural networks in spectrum fatigue life prediction of composite materials. Int. J. Fatigue 2007, 29, 20–29. [Google Scholar] [CrossRef]
- Kamal, M.; Rahman, M. Advances in fatigue life modeling: A review. Renew. Sustain. Energy Rev. 2018, 82, 940–949. [Google Scholar] [CrossRef]
- Abdalla, J.A.; Hawileh, R. Modeling and simulation of low-cycle fatigue life of steel reinforcing bars using artificial neural network. J. Frankl. Inst. 2011, 348, 1393–1403. [Google Scholar] [CrossRef]
- Abdalla, J.A.; Hawileh, R.A. Artificial neural network predictions of fatigue life of steel bars based on hysteretic energy. J. Comput. Civ. Eng. 2013, 27, 489–496. [Google Scholar] [CrossRef]
- Chen, F.-J.; Yuan, X.-X.; Yi, W.-J. Towards a unified low-cycle fatigue model of steel rebars: A meta-analysis. Constr. Build. Mater. 2019, 216, 564–575. [Google Scholar] [CrossRef]
- Wu, D.; Ding, Y.; Su, J.; Li, Z.-X.; Zhao, B.J.E.S. Experimental investigation into corrosion effect on buckling and low-cycle fatigue performance of high-strength steel bars. Eng. Struct. 2024, 312, 118230. [Google Scholar] [CrossRef]
- ASTM E606/E606M-19; Standard Test Method for Strain-Controlled Fatigue Testing. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM Standard A706/A706M; Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement. ASTM International: West Conshocken, PA, USA, 2018.
- ACI 318-19; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2019.
- European Standard EN 1992-1-1:2004; Eurocode 2: Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings. Comité Européen de Normalisation (CEN): Brussels, Belgium, 2014.
- European Standard EN 1998-1; Eurocode 8: Design of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings. Comité Européen de Normalisation (CEN): Brussels, Belgium, 2004.
- GB/T 15248-2008; The Test Method for Axial Loading Constant-Amplitude Low-Cycle Fatigue of Metallic Materials. China Standards Press: Beijing, China, 2008.
- GB 1499.2-2024; Steel for the Reinforcement of Concrete—Part 2: Hot Rolled Ribbed Bars. China Standards Press: Beijing, China, 2024.
- GB 50011-2010 (2024 edition); Code for Seismic Design of Buildings. China Architecture & Building Press: Beijing, China, 2010.
- GB 50010-2010 (2024 edition); Code for Design of Concrete Structures. China Architecture & Building Press: Beijing, China, 2010.
Type | C (%) | Si (%) | P (%) | Mn (%) | S (%) | Ceq (%) |
---|---|---|---|---|---|---|
HRB400 | 0.25 | 0.8 | 0.045 | 1.6 | 0.045 | 0.54 |
Solution | Concentration | Current Density (mA/cm2) | Current Detection Interval |
---|---|---|---|
NaCl | 5.0 wt.% | 0.15~0.2 | 8 h |
Diameter (d0) | t Test | VIF for Collinearity Diagnosis | ||
---|---|---|---|---|
ln(2Nf) | ln(γ) | ln(2Nf) | ln(γ) | |
ϕ16 | 0.000 | 0.000 | 1.049 | 1.049 |
ϕ20 | 0.000 | 0.007 | 1.077 | 1.077 |
Model Structure | R2 | RM | RMSE | SSR |
---|---|---|---|---|
ϕ16 in KS | 0.892 | 0.000 | 0.159 | 0.508 |
ϕ16 with γ | 0.952 | 0.000 | 0.105 | 0.225 |
ϕ20 in KS | 0.877 | 0.000 | 0.178 | 0.505 |
ϕ20 with γ | 0.928 | 0.000 | 0.136 | 0.295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Hua, L.; Zhang, J. The Deterioration of Low-Cycle Fatigue Properties and the Fatigue Life Model of Reinforcing Steel Bars Subjected to Corrosion. Buildings 2025, 15, 3313. https://doi.org/10.3390/buildings15183313
Chen F, Hua L, Zhang J. The Deterioration of Low-Cycle Fatigue Properties and the Fatigue Life Model of Reinforcing Steel Bars Subjected to Corrosion. Buildings. 2025; 15(18):3313. https://doi.org/10.3390/buildings15183313
Chicago/Turabian StyleChen, Fangjian, Longzhen Hua, and Jing Zhang. 2025. "The Deterioration of Low-Cycle Fatigue Properties and the Fatigue Life Model of Reinforcing Steel Bars Subjected to Corrosion" Buildings 15, no. 18: 3313. https://doi.org/10.3390/buildings15183313
APA StyleChen, F., Hua, L., & Zhang, J. (2025). The Deterioration of Low-Cycle Fatigue Properties and the Fatigue Life Model of Reinforcing Steel Bars Subjected to Corrosion. Buildings, 15(18), 3313. https://doi.org/10.3390/buildings15183313