Experimental Study of the Interfacial Shear Behavior Between NRC and UHPC in UHPC-Jacketing Rehabilitation of Concrete Bridges
Abstract
1. Introduction
2. Experimental Investigations
2.1. Specimen Design
2.2. Specimen Fabricating
2.3. Material Properties
2.4. Experimental Setup and Loading Protocol
3. Experimental Results and Discussions
3.1. Failure Modes
3.2. Load-Slip Curves
3.3. The Influence of Bolt Diameter
3.4. The Influence of the Construction Methods
4. Comparison of Interface Shear Capacity Calculation Results from Existing Codes
4.1. Calculation Results of Interface Shear Capacity According to Different Codes
4.2. Comparison of Formula Calculation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brady, K.; O’Reilly, M.; Bevc, L.; Znidaric, A.; O’brien, E.; Jordan, R.J.E.C.; Directorate General Transport; Energy: Bruxelles, B. Cost 345-Procedures Required for the Assessment of Highway Structures-Final Report; Cost 345: Dallas, TX, USA, 2015. [Google Scholar]
- Infrastructure, O.A.S. A Comprehensive Assessment of America’s Infrastructure; 2025 Infrastructure Report Card: Washington, DC, USA, 2021. [Google Scholar]
- Hu, N.; Dai, G.L.; Yan, B.; Liu, K. Recent development of design and construction of medium and long span high-speed railway bridges in China. Eng. Struct. 2014, 74, 233–241. [Google Scholar] [CrossRef]
- Xiao, J.; Shuai, J.; Deng, W.; Liu, L.; Wang, P.; Li, L. Low-Carbon and Green Materials in Construction: Latest Advances and Prospects. Buildings 2025, 15, 1508. [Google Scholar] [CrossRef]
- Ma, S.L.; Gao, Q.Q.; Wu, C.; Chu, F.W. Flexural behavior of reinforced concrete beams retrofitted with ambient-cured ultra-high-performance concrete combined with steel wire mesh: Experiments, numerical simulations, and theoretical analysis. Struct. Concr. 2025, 18, 157. [Google Scholar] [CrossRef]
- Paschalis, S.A.; Lampropoulos, A.P.; Tsioulou, O. Experimental and numerical study of the performance of ultra high performance fiber reinforced concrete for the flexural strengthening of full scale reinforced concrete members. Constr. Build. Mater. 2018, 186, 351–366. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.Y.; Zhu, Y.P.; Cao, J.H.; Shao, X.D. An experimental study: Various influence factors affecting interfacial shear performance of UHPC-NSC. Constr. Build. Mater. 2020, 236, 15. [Google Scholar] [CrossRef]
- Zeng, J.-J.; Lin, X.-C.; Feng, S.-Z.; Zhu, J.-Y.; Zhuge, Y.; Yan, Y. Experimental Investigations on Tensile and Shear Behavior of the Interface Between UHP-ECC and Concrete. Int. J. Concr. Struct. Mater. 2024, 18, 50. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, L.; Zeng, H.; Zhai, K.; Fu, J.; Jiang, H.; Pang, L. Research on the bond performance between glass fiber reinforced polymer (GFRP) bars and Ultra-high performance concrete(UHPC). J. Build. Eng. 2024, 98, 111340. [Google Scholar] [CrossRef]
- Luo, J.B.; Wu, G.Z.; Zhao, G.F.; Ma, Y.H.; Fang, Z.C.; Fang, S. Experimental and numerical analysis on shear performance of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite structures under cyclic loading. Structures 2025, 73, 18. [Google Scholar] [CrossRef]
- Zou, S.; Chen, R.Z.; Wang, H.L.; Fang, Z.C.; Qu, C.X.; Zhang, C.B. Effect of shear key geometrical dimensions on seismic performance of prefabricated concrete piers with shallow socket connections. Structures 2025, 71, 20. [Google Scholar] [CrossRef]
- Jiang, H.B.; Chen, Z.Q.; Fang, Z.C.; Fang, S.; Tu, W.J.; Mo, F.; Xie, S.Y.; Liu, J. Rapid hardening high performance concrete (RHHPC) for bridge expansion joints: From material properties to interfacial shear performance. Constr. Build. Mater. 2025, 458, 18. [Google Scholar] [CrossRef]
- Xiao, J.; Huang, L.; Weng, R.; Murong, Y.; Liu, L.; Zeng, H.; Jiang, H. Mechanism of chloride ion transport and associated damage in ultra-high-performance concrete subjected to hydrostatic pressure. J. Build. Eng. 2025, 112, 113700. [Google Scholar] [CrossRef]
- Richard, P.; Cheyrezy, M.J.C. Composition of reactive powder concretes. Cem. Concr. Res. 1995, 25, 1501–1511. [Google Scholar] [CrossRef]
- Shaikh, F.U.A.; Luhar, S.; Arel, H.S.; Luhar, I. Performance evaluation of Ultrahigh performance fibre reinforced concrete—A review. Constr. Build. Mater. 2020, 232, 28. [Google Scholar] [CrossRef]
- Wang, D.H.; Shi, C.J.; Wu, Z.M.; Xiao, J.F.; Huang, Z.Y.; Fang, Z. A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Constr. Build. Mater. 2015, 96, 368–377. [Google Scholar] [CrossRef]
- Lampropoulos, A.P.; Paschalis, S.A.; Tsioulou, O.T.; Dritsos, S.E. Strengthening of reinforced concrete beams using ultra high performance fibre reinforced concrete (UHPFRC). Eng. Struct. 2016, 106, 370–384. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.P.; Yeseta, M.; Meng, D.L.; Shao, X.D.; Dang, Q.; Chen, G.D. Flexural behaviors and capacity prediction on damaged reinforcement concrete (RC) bridge deck strengthened by ultra-high performance concrete (UHPC) layer. Constr. Build. Mater. 2019, 215, 347–359. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, W.; Jia, J.; Long, G. Failure modes and deformation characteristics of steel reinforced high-strength concrete columns. J. Inn. Mong. Univ. Technol. 2024, 43, 351–359. (In Chinese) [Google Scholar]
- Gu, S.Z.R. Cyclic Behavior Enhancement of Existing RC Bridge Columns with UHPC Jackets: Experimental and Parametric Study on Jacket Thickness. Buildings 2025, 15, 2609. [Google Scholar] [CrossRef]
- Liu, T.X.; Charron, J.P. Experimental Study on the Shear Behavior of UHPC-Strengthened Concrete T-Beams. J. Bridge Eng. 2023, 28, 9. [Google Scholar] [CrossRef]
- Harris, D.K.; Carbonell Muñoz, M.A.; Gheitasi, A.; Ahlborn, T.M.; Rush, S.V.J.A.i.C.E.M. The challenges related to interface bond characterization of ultra-high-performance concrete with implications for bridge rehabilitation practices. Adv. Civ. Eng. Mater. 2015, 4, 75–101. [Google Scholar] [CrossRef]
- Carbonell Muñoz, M.A.; Harris, D.K.; Ahlborn, T.M.; Froster, D.C.J.J.o.M.i.C.E. Bond performance between ultrahigh-performance concrete and normal-strength concrete. J. Mater. Civ. Eng. 2014, 26, 04014031. [Google Scholar] [CrossRef]
- Hussein, H.H.; Walsh, K.K.; Sargand, S.M.; Steinberg, E.P. Interfacial Properties of Ultrahigh-Performance Concrete and High-Strength Concrete Bridge Connections. J. Mater. Civ. Eng. 2016, 28, 10. [Google Scholar] [CrossRef]
- Feng, S.; Xiao, H.G.; Li, H. Comparative studies of the effect of ultrahigh-performance concrete and normal concrete as repair materials on interfacial bond properties and microstructure. Eng. Struct. 2020, 222, 15. [Google Scholar] [CrossRef]
- Weng, R.; He, Z.; Liu, J.; Lei, B.; Huang, L.; Xu, J.; Liu, L.; Xiao, J. Shear Performance of UHPC-NC Composite Structure Interface Treated with Retarder: Quantification by Fractal Dimension and Optimization of Process Parameters. Buildings 2025, 15, 2591. [Google Scholar] [CrossRef]
- Feng, S.; Xiao, H.G.; Liu, M.; Zhang, F.L.; Lu, M.Y. Shear behaviour of interface between normal-strength concrete and UHPC: Experiment and predictive model. Constr. Build. Mater. 2022, 342, 127919. [Google Scholar] [CrossRef]
- He, S.; Huang, X.; Zhong, H.; Wan, Z.; Liu, G.; Xin, H.; Zhang, Y. Experimental study on bond performance of UHPC-to-NC interfaces: Constitutive model and size effect. Eng. Struct. 2024, 317, 118681. [Google Scholar] [CrossRef]
- Chen, F.H.; Liu, X.; Zhang, H.P.; Luo, Y.; Lu, N.W.; Liu, Y.; Xiao, X.H. Assessment of fatigue crack propagation and lifetime of double-sided U-rib welds considering welding residual stress relaxation. Ocean Eng. 2025, 332, 13. [Google Scholar] [CrossRef]
- Xia, J.R.; Zhou, J.T.; Yang, J.; Zhang, Z.Y.; Zou, Y. Damage evolution and residual shear resistance of toughness-improved UHPC-NSC interface under high-stress level of fatigue shear loading. Constr. Build. Mater. 2024, 430, 17. [Google Scholar] [CrossRef]
- Zhang, H.P.; Deng, Y.; Chen, F.H.; Luo, Y.; Xiao, X.H.; Lu, N.W.; Liu, Y.; Deng, Y. Fatigue life prediction for orthotropic steel bridge decks welds using a Gaussian variational bayes network and small sample experimental data. Reliab. Eng. Syst. Saf. 2025, 264, 16. [Google Scholar] [CrossRef]
- He, S.H.; Huang, X.; Huang, J.L.; Zhang, Y.Y.; Wan, Z.Y.; Yu, Z.T. Shear Bond Performance of UHPC-to-NC Interfaces with Varying Sizes: Experimental and Numerical Evaluations. Buildings 2024, 14, 22. [Google Scholar] [CrossRef]
- Farzad, M.; Shafieifar, M.; Azizinamini, A. Experimental and numerical study on bond strength between conventional concrete and Ultra High-Performance Concrete (UHPC). Eng. Struct. 2019, 186, 297–305. [Google Scholar] [CrossRef]
- Chen, L.; Yan, J.; Wu, Z.G.; Yang, D.H.; Li, J.L.; Xiang, N.L. Experimental and numerical study on shear behavior of shear pockets between ultra-high-performance and normal concrete for precast girder bridges. Structures 2023, 55, 1645–1658. [Google Scholar] [CrossRef]
- Guan, Y.; Zou, C.; Kang, Y.; Yang, B. Mechanical properties and stress-strain constitutive models of desert sand concrete in different regions. J. Inn. Mong. Univ. Technol. 2024, 43, 63–69. (In Chinese) [Google Scholar]
- Gao, X.L.; Wu, K.; Guo, Y.Q.; Zhao, Y.C.; Guo, J.Y. Experimental and numerical study on flexural behaviors of damaged RC beams strengthened with UHPC layer using the bonding technology of post-installed reinforcing bar. Constr. Build. Mater. 2023, 391, 14. [Google Scholar] [CrossRef]
- Xian, B.X.; Wang, G.D.; Ma, F.Y.; Fang, S.; Jiang, H.B.; Xiao, J.J. Shear performance of single embedded nut bolted shear connectors in precast steel-UHPC composite beams under combined tension-shear loads. Case Stud. Constr. Mater. 2024, 21, 18. [Google Scholar] [CrossRef]
- Xu, Q.Z.; Sebastian, W.; Lu, K.W.; Yao, Y.M.; Wang, J.Q. Longitudinal shear performance of lightweight steel-UHPC composite connections based on large-diameter high strength friction-grip bolts. Eng. Struct. 2022, 260, 19. [Google Scholar] [CrossRef]
- Liu, X.P.; Bradford, M.A.; Lee, M.S.S. Behavior of High-Strength Friction-Grip Bolted Shear Connectors in Sustainable Composite Beams. J. Struct. Eng. 2015, 141, 12. [Google Scholar] [CrossRef]
- Zeng, X.G.; Wang, P.; You, X.H. Shear performance of interface between ultra-high performance concrete and normal concrete treated with ribs. Structures 2024, 60, 105867. [Google Scholar] [CrossRef]
- Jiang, H.B.; Fang, Z.C.; Ma, Z.J.; Fang, X.; Jiang, Z.W. Shear-Friction Behavior of Groove Interface in Concrete Bridge Rehabilitation. J. Bridge Eng. 2016, 21, 15. [Google Scholar] [CrossRef]
- GB/T 17671-2021; National Standardization Administration. Test Method of Cement Mortar Strength. National Standardization Administration: Bejing, China, 2021. (In Chinese)
- GB/T 50081—2002; Ministry of Construction of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standard for Test Method of Mechanical Properties on Ordinary Concrete. China Architecture & Building Press: Beijing, China, 2003. (In Chinese)
- ASTM C496/C496M-11; ASTM International. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM C469/C469M-14; ASTM International. Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International: West Conshohocken, PA, USA, 2014.
- ACI318-19[S]; American Concrete Institute. Building Code Requirement for Structural Concrete and Commentary. American Concrete Institute (ACI): Farmington Hills, MI, USA, 2019; pp. 431–434.
- AASHTO. Bridge Design Specifications, 8th ed.; American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2017; pp. 78–79. [Google Scholar]
- International Federation for Structural Concrete. Fib Model Code for Concrete Structures 2010[S]; International Federation for Structural Concrete (FIB): Berlin, Germany, 2013; pp. 176–185. [Google Scholar]
- Zhang, Y.; Zhu, P.; Wang, X.; Wu, J. Shear properties of the interface between ultra-high performance concrete and normal strength concrete. Constr. Build. Mater. 2020, 248, 118455. [Google Scholar] [CrossRef]
Number | Specimens | Bolt Diameter (mm) | Bolt Position | Construction Method | Interface Treatment Method |
---|---|---|---|---|---|
1 | ZJ-12 | 12 | UHPC cover thickness of 20 mm | Cast-in-place UHPC | Conventional chiseling, exposing NRC coarse aggregate |
2 | ZJ-16 | 16 | |||
3 | GJ-12 | 12 | Extending 50 mm over UHPC layer | Prefabricated UHPC panels | Conventional chiseling, exposing NRC coarse aggregate, and filling high-strength mortar between NRC and UHPC |
4 | GJ-16 | 16 |
Concrete Type (kg/m3) | Cement | Microsilica Fume | Nano CaCO3 | Coarse Aggregate | Fine Aggregate | Water | Superplasticizer | Steel Fiber |
---|---|---|---|---|---|---|---|---|
C50 | 408 | / | / | 1124 | 663 | 200 | / | / |
High-strength mortar | 828 | 214 | 33 | / | 1024 | 192 | 28 | / |
UHPC | 828 | 214 | 33 | / | 1024 | 192 | 28 | 156 |
Concrete Type | Compressive Strength (MPa) | Splitting Tensile Strength (MPa) | Elastic Modulus (GPa) |
---|---|---|---|
C50 | 52.34 | 2.41 | 34.6 |
High-strength mortar | 103.55 | 4.03 | 34.2 |
UHPC | 138.28 | 10.77 | 43.7 |
Specimens | P1 (kN) | τ1 (MPa) | d1 (mm) | P2 (kN) | d2 (mm) | P2/P1 | Pr (kN) |
---|---|---|---|---|---|---|---|
ZJ-12 | 920.17 | 2.19 | 0.02 | 910.62 | 0.99 | 0.99 | 594.12 |
ZJ-16 | 1048.07 | 2.50 | 0 | 975.53 | 3.36 | 0.93 | 411.92 |
GJ-12 | 838.08 | 2.00 | 0.09 | 838.08 | 0.09 | 1.00 | 345.13 |
GJ-16 | 1204.20 | 2.87 | 0.16 | 713.99 | 0.39 | 0.59 | 287.45 |
Shear Friction | ACI | AASHTO (2017) | Fib |
---|---|---|---|
Requirements | If using equation to calculate required Avf, then Vn ≤ μAvf fy | Avf > 0.05 Acv/fy | / |
Limitations | 0.2fc’ × Avf and 11.03 MPa and 3.31 + 0.08 fc’ | 0.25fc’ × Avf and 10.34 MPa | 0.3 v × fc’ × Avf, where, v = 0.55 (30/fc’)1/3 < 0.55 |
Standard | Specimen | Vcc (kN) | Vbc (kN) | Vb (kN) | Shear Capacity | Calculated/Experimental | |||
---|---|---|---|---|---|---|---|---|---|
Calculated Value (kN) | Experimental Value (kN) | Ratio | Average | Standard Deviation | |||||
ACI [46] | ZJ-12 | / | 215.38 | / | 215.38 | 920.17 | 0.234 | 0.294 | 0.052 |
ZJ-16 | / | 382.90 | / | 382.90 | 1048.07 | 0.365 | |||
GJ-12 | / | 215.38 | / | 215.38 | 838.08 | 0.257 | |||
GJ-16 | / | 382.90 | / | 382.90 | 1204.20 | 0.318 | |||
AASHTO [47] | ZJ-12 | 588.00 | 215.23 | / | 803.23 | 920.17 | 0.873 | 0.891 | 0.058 |
ZJ-16 | 588.00 | 382.63 | / | 970.63 | 1048.07 | 0.926 | |||
GJ-12 | 588.00 | 215.23 | / | 803.23 | 838.08 | 0.958 | |||
GJ-16 | 588.00 | 382.63 | / | 970.63 | 1204.20 | 0.806 | |||
Fib [48] | ZJ-12 | 676.87 | 106.54 | 34.33 | 817.74 | 920.17 | 0.889 | 0.902 | 0.080 |
ZJ-16 | 676.87 | 189.40 | 61.04 | 927.31 | 1048.07 | 0.885 | |||
GJ-12 | 720.11 | 106.54 | 34.33 | 860.98 | 838.08 | 1.027 | |||
GJ-16 | 720.11 | 189.40 | 61.04 | 970.54 | 1204.20 | 0.806 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Shen, R.; Luo, K.; Mo, F.; Jiang, H.; Fang, H.; Xian, B. Experimental Study of the Interfacial Shear Behavior Between NRC and UHPC in UHPC-Jacketing Rehabilitation of Concrete Bridges. Buildings 2025, 15, 2928. https://doi.org/10.3390/buildings15162928
Wu K, Shen R, Luo K, Mo F, Jiang H, Fang H, Xian B. Experimental Study of the Interfacial Shear Behavior Between NRC and UHPC in UHPC-Jacketing Rehabilitation of Concrete Bridges. Buildings. 2025; 15(16):2928. https://doi.org/10.3390/buildings15162928
Chicago/Turabian StyleWu, Kaisheng, Ruyu Shen, Kaijie Luo, Fan Mo, Haibo Jiang, Haozhen Fang, and Bingxiong Xian. 2025. "Experimental Study of the Interfacial Shear Behavior Between NRC and UHPC in UHPC-Jacketing Rehabilitation of Concrete Bridges" Buildings 15, no. 16: 2928. https://doi.org/10.3390/buildings15162928
APA StyleWu, K., Shen, R., Luo, K., Mo, F., Jiang, H., Fang, H., & Xian, B. (2025). Experimental Study of the Interfacial Shear Behavior Between NRC and UHPC in UHPC-Jacketing Rehabilitation of Concrete Bridges. Buildings, 15(16), 2928. https://doi.org/10.3390/buildings15162928