Three-Dimensional Mesoscopic DEM Modeling and Compressive Behavior of Macroporous Recycled Concrete
Abstract
1. Introduction
2. Mesoscopic DEM Modeling of RA
2.1. RA Shape and Entity Design
- (1)
- A unit circle O with diameter 1 was constructed, intersecting the x-axis at points A and C. A random point M was selected on the positive y-axis such that OM ∈ (0.25, 0.50). A line parallel to the x-axis passing through M intersected circle O at D1 and D2, from which a random point D was chosen on segment D1D2. Using an identical method, a random point B was determined in the third and fourth quadrants, forming quadrilateral ABCD as shown in Figure 1a.
- (2)
- Within quadrilateral ABCD, a random point P was selected. A perpendicular line segment EF to the xy-plane was drawn through P, with PE ∈ (0.30, 0.70) and PF = 1 − PE, resulting in octahedron ABCDEF illustrated in Figure 1b.
- (3)
- The surface areas of all triangular facets constituting octahedron ABCDEF were computed individually. For triangles exceeding 50% of the quadrilateral ABCD area (e.g., △ABF), expansion points were added: point G was defined by position vector OG = 0.5(OA + OB + OF) as depicted in Figure 1c. Newly formed surfaces underwent identical area verification until geometric stability was achieved.
2.2. Configuration of OP and ITZ on RA Surfaces
3. Mesoscopic Parameter Assignment and Calibration for Matrix
3.1. Parameter Assignment and Calibration for NP
- (1)
- Calibration of and
- (2)
- Calibration of
- (3)
- Calibration of
3.2. Parameter Assignment and Calibration for ITZ and RA
4. Mesoscopic DEM Modeling of MRC
4.1. RA Placement
4.2. NP Placement
5. Investigation of the Compressive Behavior of MRC
5.1. Failure Mode Analysis
5.2. Deformation and Strength Analysis
6. Conclusions
- (1)
- The DEM modeling approach demonstrates high compatibility with MRC. It can simulate all components of MRC, including three types of ITZs, readily replicate pore structures, and achieve dense packing with an aggregate volume fraction of 57.7%. Errors in simulating compressive strength and elastic modulus were 3.8% and 18.2%, respectively.
- (2)
- The stress–strain curves of MRC and conventional concrete share similar trends; nevertheless, MRC exhibits larger strain and a steeper post-peak descending portion. At peak stress, stress is primarily concentrated in the central region and the arc-shaped zones surrounding it (COV = 1.729). After peak stress, significant localized residual stress persisted within the specimen, leading to a slight increase in the COV. Overall, the post-peak toughness and toughness retention capacity of MRC increase with rising porosity and decreasing compressive strength.
- (3)
- Failure of MRC specimens is dominated by tension rather than shear. Critical bonds determining specimen strength account for only 1.4% of total bonds, predominantly distributed in regions with dense force chains and high load concentrations. The influence ranking of different MRC components on compressive strength is: NP–OP > NP–NA > NP–NP > OP–OP > OP–NA. The influence of NP on compressive strength is more significant than that of RA.
- (4)
- The Poisson’s ratio of MRC (0.12–0.17) is lower than that of conventional concrete and negatively correlates with porosity. The prediction formula for peak strain and the calculation formula for elastic modulus (with porosity integrated as a parameter) were established for MRC, with respective errors of 2.6% and 3.9%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MRC | Macroporous recycled concrete |
ITZ | Interfacial transition zone |
FEM | Finite element method |
DEM | Discrete element method |
FDM | Finite difference method |
NA | Natural aggregate |
OP | Old paste |
RA | Recycled aggregate |
NP | New paste |
COV | Coefficient of variation |
References
- Kapicová, A.; Bílý, P.; Fládr, J.; Šeps, K.; Chylík, R.; Trtík, T. Development of Sound-Absorbing Pervious Concrete for Interior Applications. J. Build. Eng. 2024, 85, 108697. [Google Scholar] [CrossRef]
- Rodrigues, P.C.; de Sales Braga, N.T.; Junior, E.S.; Cordeiro, L.D.; de Melo, G.D. Effect of Pore Characteristics on the Sound Absorption of Pervious Concretes. Case Stud. Constr. Mater. 2022, 17, e01302. [Google Scholar] [CrossRef]
- Sukcharoen, T.; Kositgittiwong, D.; Ekkawatpanit, C.; Tran, T.N.H.; Tangchirapat, W. Assessment of the Solitary Wave Attenuation through Pervious Concrete Breakwater. Constr. Build. Mater. 2024, 411, 134457. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Y.; Tam, V.W.; Shen, A.; Qin, X.; Tan, J.; Zhang, J.; Zhang, C. Research on the Purification Efficiency and Mechanism for Road Runoff Pollutants in Pervious Concrete with Recycled Aggregates. J. Environ. Manag. 2024, 353, 120180. [Google Scholar] [CrossRef]
- Adresi, M.; Yamani, A.R.; Tabarestani, M.K. Evaluating the Effectiveness of Innovative Pervious Concrete Pavement System for Mitigating Urban Heat Island Effects, de-Icing, and de-Clogging. Constr. Build. Mater. 2024, 449, 138361. [Google Scholar] [CrossRef]
- Wardeh, Y.; Kinab, E.; Escadeillas, G.; Rahme, P.; Ginestet, S. Review of the Optimization Techniques for Cool Pavements Solutions to Mitigate Urban Heat Islands. Build. Environ. 2022, 223, 109482. [Google Scholar] [CrossRef]
- Chen, W.; Jin, R. Pervious Concrete Adopting Recycled Aggregate for Environmental Sustainability. Multi-Funct. Concr. Recycl. Aggreg. 2023, 289–306. [Google Scholar] [CrossRef]
- Qi, R.; Xu, Z.; Jiang, Y.; Liu, X.; Pan, T. Effects of Superplasticizer Dosage on Cement Slurry Rheological Characteristics, Pore Structure and Properties of Pervious Concrete. Constr. Build. Mater. 2025, 479, 141457. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Z.; Cao, R.; Xu, L.; Huang, B. Insights into the Properties of Pervious Concrete Modified with Polymers and Fine Aggregate. Case Stud. Constr. Mater. 2025, 22, e04627. [Google Scholar] [CrossRef]
- Castañeda, D.; Varhen, C.; Guerrero, R.; Ruiz, G. Enhancing Pervious Concrete Performance Using Industrial Waste: A Study on Crushed Scallop Seashell Waste (CSS) and Recycled Cellulose Fibre (CF). Constr. Build. Mater. 2025, 478, 141458. [Google Scholar] [CrossRef]
- Claudino, G.O.; Rodrigues, G.G.O.; Rohden, A.B.; Mesquita, E.F.T.; Garcez, M.R. Mix Design for Pervious Concrete Based on the Optimization of Cement Paste and Granular Skeleton to Balance Mechanical Strength and Permeability. Constr. Build. Mater. 2022, 347, 128620. [Google Scholar] [CrossRef]
- Song, W.; Zhang, M.; Wu, H. Gray Correlation Analysis between Mechanical Performance and Pore Characteristics of Permeable Concrete. J. Build. Eng. 2024, 86, 108793. [Google Scholar] [CrossRef]
- Xiong, B.; Wu, X.; Liu, W.; Lu, X.; Gao, H.; Lv, W. Influence of Different Aggregate Characteristics on Pervious Concrete. Constr. Build. Mater. 2025, 460, 139789. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Su, L.; Geng, J. Study on the Influence of Composite Modified Coal Gangue Coarse Aggregate on the Mechanical Properties of Concrete and Mesoscopic Simulation. J. Build. Eng. 2025, 106, 112549. [Google Scholar] [CrossRef]
- Lin, Y.; Guo, S.; Jiang, S.; Sun, L.; Zhou, J.; Liu, X. Three-Dimensional Mesoscopic Simulation of the Thermodynamic Behavior of Steel Fiber-Reinforced Concrete under Freeze-Thaw Cycles. Constr. Build. Mater. 2025, 479, 141506. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, C.; Wang, D.; Wu, Z.; Yang, L.; Yue, J. Investigation on the Dynamic Failure Characteristics of Concrete Slab Based on Mesoscopic Simulation and Energy Conversion Analysis. Case Stud. Constr. Mater. 2024, 21, e03661. [Google Scholar] [CrossRef]
- Huang, W.; Wang, H. Comprehensive Assessment of Engineering and Environmental Attributes of Geopolymer Pervious Concrete with Natural and Recycled Aggregate. J. Clean. Prod. 2024, 468, 143138. [Google Scholar] [CrossRef]
- Lu, C.; Yu, Q.; Wei, J.; Niu, Y.; Zhang, Y.; Lin, C.; Chen, P.; Shi, C.; Yang, P. Influence of Interface Transition Zones (ITZ) and Pore Structure on the Compressive Strength of Recycled Aggregate Concrete. Constr. Build. Mater. 2024, 456, 139299. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Huang, R.; Li, B.; Ran, B.; Hu, X. Investigations on Micro-Mechanical Properties of the ITZs between Recycled Aggregates and Recycled Cement Paste. Constr. Build. Mater. 2024, 450, 138640. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Fang, Q.; Yu, H.; Haiyan, M. Mesoscopic Modelling of Concrete Material under Static and Dynamic Loadings: A Review. Constr. Build. Mater. 2021, 278, 122419. [Google Scholar] [CrossRef]
- Ma, H.; Xu, W.; Li, Y. Random Aggregate Model for Mesoscopic Structures and Mechanical Analysis of Fully-Graded Concrete. Comput. Struct. 2016, 177, 103–113. [Google Scholar] [CrossRef]
- Liu, L.; Shen, D.; Chen, H.; Xu, W. Aggregate Shape Effect on the Diffusivity of Mortar: A 3D Numerical Investigation by Random Packing Models of Ellipsoidal Particles and of Convex Polyhedral Particles. Comput. Struct. 2014, 144, 40–51. [Google Scholar] [CrossRef]
- Dehghanpoor Abyaneh, S.; Wong, H.S.; Buenfeld, N.R. Modelling the Diffusivity of Mortar and Concrete Using a Three-Dimensional Mesostructure with Several Aggregate Shapes. Comput. Mater. Sci. 2013, 78, 63–73. [Google Scholar] [CrossRef]
- Wu, Z.X.; Lei, J.J.; Ye, C.; Yu, C.; Zhao, J. Coupled FDM-DEM Simulations of Axial Compression Tests on FRP-Confined Concrete Specimens. Constr. Build. Mater. 2022, 351, 128885. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Z.; Ren, W.; Liu, G.; Zhang, C. 3D Meso-Scale Fracture Modelling and Validation of Concrete Based on in-Situ X-Ray Computed Tomography Images Using Damage Plasticity Model. Int. J. Solids Struct. 2015, 67–68, 340–352. [Google Scholar] [CrossRef]
- Yang, Z.J.; Li, B.B.; Wu, J.Y. X-Ray Computed Tomography Images Based Phase-Field Modeling of Mesoscopic Failure in Concrete. Eng. Fract. Mech. 2019, 208, 151–170. [Google Scholar] [CrossRef]
- Tang, L.; Zhou, W.; Liu, X.; Ma, G.; Chen, M. Three-Dimensional Mesoscopic Simulation of the Dynamic Tensile Fracture of Concrete. Eng. Fract. Mech. 2019, 211, 269–281. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, X.; Liu, Y.; Wu, D.; Song, C. Three-Dimensional Mesoscale Modelling of Concrete Composites by Using Random Walking Algorithm. Compos. Sci. Technol. 2017, 149, 235–245. [Google Scholar] [CrossRef]
- Chengbin, D.; Liguo, S.; Shouyan, J.; Zongquan, Y. Numerical Simulation of Aggregate Shapes of Three-Dimensional Concrete and Its Applications. J. Aerosp. Eng. 2013, 26, 515–527. [Google Scholar] [CrossRef]
- Bailakanavar, M.; Liu, Y.; Fish, J.; Zheng, Y. Automated Modeling of Random Inclusion Composites. Eng. Comput. 2014, 30, 609–625. [Google Scholar] [CrossRef]
- Yao, Z.; Qin, F.; Li, J.; Zhang, X.; Huang, F. Experimental and 3D Mesoscopic Numerical Simulation Study of Kinetic Projectile Penetrating into Concrete. Int. J. Impact Eng. 2025, 195, 105140. [Google Scholar] [CrossRef]
- Cai, P.; Mao, X.; Lai, X.; Wu, Q. Influence Mechanism of Brick-Concrete Ratio on the Mechanical Properties and Water Permeability of Recycled Aggregate Pervious Concrete: Macroscopic and Mesoscopic Insights. Constr. Build. Mater. 2025, 467, 140379. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, X.; Bai, Y.; Ning, Y.; Zhang, W. Evaluation of Fracture Behavior of High-Strength Hydraulic Concrete Damaged by Freeze-Thaw Cycle Test. Constr. Build. Mater. 2022, 321, 126346. [Google Scholar] [CrossRef]
- Xu, W.; Chen, B.; Chen, X.; Chen, C. Influence of Aggregate Size and Notch Depth Ratio on Fracture Performance of Steel Slag Pervious Concrete. Constr. Build. Mater. 2021, 273, 122036. [Google Scholar] [CrossRef]
- Zhou, X.; Xie, Y.; Long, G.; Zeng, X.; Li, N.; Ma, G.; Wang, F.; Yao, L. Multi-Scale Modeling of the Concrete SHPB Test Based on DEM-FDM Coupling Method. Constr. Build. Mater. 2022, 356, 129157. [Google Scholar] [CrossRef]
- Zhou, X.; Xie, Y.; Long, G.; Zeng, X.; Li, J.; Yao, L.; Jiang, W.; Pan, Z. DEM Analysis of the Effect of Interface Transition Zone on Dynamic Splitting Tensile Behavior of High-Strength Concrete Based on Multi-Phase Model. Cem. Concr. Res. 2021, 149, 106577. [Google Scholar] [CrossRef]
- Huang, P.; Pan, X.; Niu, Y.; Du, L. Concrete Failure Simulation Method Based on Discrete Element Method. Eng. Fail. Anal. 2022, 139, 106505. [Google Scholar] [CrossRef]
- Zhou, X.; Xie, Y.; Zeng, X.; Long, G.; Wu, J.; Ma, G.; Wang, F.; Zhao, H.; Yao, L. Meso-Scale Numerical Simulation of the Effect of Aggregate Strength on Damage and Fracture of High-Strength Concrete under Dynamic Tensile Loading. Theor. Appl. Fract. Mech. 2022, 122, 103551. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, L.; Wu, Z.; Liu, A.; Imran, M. Aggregate Effect on the Mechanical and Fracture Behaviours of Concrete. Int. J. Mech. Sci. 2023, 243, 108067. [Google Scholar] [CrossRef]
- Wang, P.; Gao, N.; Ji, K.; Stewart, L.; Arson, C. DEM Analysis on the Role of Aggregates on Concrete Strength. Comput. Geotech. 2020, 119, 103290. [Google Scholar] [CrossRef]
- Suchorzewski, J.; Nitka, M. Size Effect at Aggregate Level in MicroCT Scans and DEM Simulation—Splitting Tensile Test of Concrete. Eng. Fract. Mech. 2022, 264, 108357. [Google Scholar] [CrossRef]
- Ma, G.; Xie, Y.; Long, G.; Tang, Z.; Zhou, X.; Zeng, X.; Li, J. Mesoscale Investigation on Concrete Creep Behaviors Based on Discrete Element Method. Constr. Build. Mater. 2022, 342, 127957. [Google Scholar] [CrossRef]
- Nitka, M.; Tejchman, J. A Three-Dimensional Meso-Scale Approach to Concrete Fracture Based on Combined DEM with X-Ray ΜCT Images. Cem. Concr. Res. 2018, 107, 11–29. [Google Scholar] [CrossRef]
- Nitka, M.; Rucka, M. 3D DEM Modelling of Acoustic Emission in Concrete: Insights into Elastic Waves Initiated by Microcracks. Ultrasonics 2025, 150, 107599. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, A.; Zhang, L.; Arulrajah, A. A Novel Three-Dimensional DEM Model for Recycled Aggregate Concrete Considering Material Heterogeneity and Microcrack Evolution. Compos. Struct. 2025, 352, 118677. [Google Scholar] [CrossRef]
- Yazarlu, A.; Dehestani, M. Application of Discrete Element Method (DEM) in Characterization of Bond-Slip Behavior in RC Beams with Confinement Subjected to Corrosion. Structures 2020, 28, 1965–1976. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, H.; Xie, Y.; Long, G.; Zeng, X.; Li, J.; Zhu, S.; Ma, G. Mechanical Behavior of Bonded Interface between Steam-Cured Concrete and SCC under Direct Shear Test: Experimental and Numerical Studies. J. Build. Eng. 2023, 63, 105517. [Google Scholar] [CrossRef]
- Xu, W.; Jia, M.; Guo, W.; Wang, W.; Zhang, B.; Liu, Z.; Jiang, J. GPU-Based Discrete Element Model of Realistic Non-Convex Aggregates: Mesoscopic Insights into ITZ Volume Fraction and Diffusivity of Concrete. Cem. Concr. Res. 2023, 164, 107048. [Google Scholar] [CrossRef]
- Sono, T.; Tanikura, I.; Sainoki, A.; Schwartzkopff, A.K.; Obara, Y. Optimization of Chipping Parameters to Mitigate the Damage in a Concrete Substrate Using a Discontinuum Modelling Approach. Constr. Build. Mater. 2020, 258, 119658. [Google Scholar] [CrossRef]
- Zhu, X.; Lei, P.; Chen, X.; Bu, J. Influence of Steam Curing on Cyclic Triaxial Characteristics of Recycled Aggregate Concrete: Experimental Analysis and DEM Simulation. Eng. Fract. Mech. 2024, 312, 110643. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, A. Effects of Recycled Aggregates on Mechanical and Fractural Properties of Concrete: Insights from DEM Modelling. Compos. Part A Appl. Sci. Manuf. 2024, 186, 108395. [Google Scholar] [CrossRef]
- Nitka, M. Static and Dynamic Concrete Calculations: Breakable Aggregates in DEM Model. J. Build. Eng. 2024, 89, 109006. [Google Scholar] [CrossRef]
- Li, J.; Zha, W.; Lv, W.; Xu, T.; Wang, B.; Wang, B. Mechanical Properties and Sulfate Resistance of Basalt Fiber-Reinforced Alkali-Activated Fly Ash-Slag-Based Coal Gangue Pervious Concrete. Case Stud. Constr. Mater. 2024, 21, e03961. [Google Scholar] [CrossRef]
- Sha, F.; Zhang, S.M.; Sun, X.C.; Fan, G.X.; Diao, Y.; Duan, X.F.; Qiao, A.L.; Wang, H. Mechanical Performance and Pore Characteristics of Pervious Concrete. Case Stud. Constr. Mater. 2024, 21, e03674. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, Q.F.; Gao, X.; Zhao, X.Y.; Xia, J.; Xiong, Q.X. Effects of Aggregate Distribution on the Cracking Behavior of Concrete: A Discrete Element Method Study. Cem. Concr. Compos. 2025, 162, 106119. [Google Scholar] [CrossRef]
- Li, F.; Feng, J.L.; Chen, X. Dynamic Fracture of High-Strength Concrete Based on 3D Discrete Element Rate-Dependent Model. J. Build. Eng. 2025, 103, 112006. [Google Scholar] [CrossRef]
- GB/T 25177-2010; Recycled Coarse Aggregate for Concrete. Standardization Administration of the People’s Republic of China: Beijing, China, 2010.
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). Standardization Administration of the People’s Republic of China: Beijing, China, 2021.
- Martín, C.M.; Ghabezloo, S.; Piqué, T.M.; Pereira, J.M.; Manzanal, D.G. Lightweight Cement Pastes with Hollow Glass Microspheres: Analytical Estimation of Elastic Parameters. Cem. Concr. Res. 2023, 172, 107200. [Google Scholar] [CrossRef]
- ACI 318-19; Building Code Requirements for Structural Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2019.
- CSA A23.3-19; Design of Concrete Structures. Canadian Standards Association: Toronto, ON, Canada, 2019.
- Nalon, G.H.; Alves, M.A.; Pedroti, L.G.; Lopes Ribeiro, J.C.; Hilarino Fernandes, W.E.; Silva de Oliveira, D. Compressive Strength, Dynamic, and Static Modulus of Cement-Lime Laying Mortars Obtained from Samples of Various Geometries. J. Build. Eng. 2021, 44, 102626. [Google Scholar] [CrossRef]
- GB/T 50081-2019; Standard for Test Methods of Mechanical Properties of Ordinary Concrete. Ministry of Housing and Urban-Rural Development: Beijing, China, 2019.
- ABNT NBR 8522:2008; Concreto—Ensaio de Compressão de Corpos de Prova Cilíndricos. Associação Brasileira de Normas Técnicas: Sao Paulo, Brazil, 2008.
- Yang, J.; Lu, S.; Xiao, F.; Wang, J.; Deng, R. Stress-Strain Relationships for Seawater Sea-Sand Concrete (SSC) under Uniaxial Compression. Constr. Build. Mater. 2025, 472, 140829. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Sun, G.; Shen, W. Mechanical Properties and Stress-Strain Relationship of Steel Fiber Reinforced Geopolymer Recycled Concrete. Structures 2025, 75, 108697. [Google Scholar] [CrossRef]
- ASTM C1018; Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). ASTM International: Conshohocken, PA, USA, 1997.
- Zhang, Q.; Xiao, J.; Zhang, P.; Zhang, K. Mechanical Behaviour of Seawater Sea-Sand Recycled Coarse Aggregate Concrete Columns Under Axial Compressive Loading. Constr. Build. Mater. 2019, 229, 117050. [Google Scholar] [CrossRef]
- Popovics, S. A Numerical Approach to the Complete Stress-Strain Curve of Concrete. Cem. Concr. Res. 1973, 3, 583–599. [Google Scholar] [CrossRef]
- ASTM C469/C469M-22; Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International: Conshohocken, PA, USA, 2022.
- Sheng, G.; Jin, S.; Li, C.; Bai, Q. Uniaxial Compressive Stress-Strain Behavior of Alkali Activated Steel Slag Powder-Based Reactive Powder Concrete (SSP-RPC). Constr. Build. Mater. 2024, 453, 139038. [Google Scholar] [CrossRef]
Parameters | Value | Representative Image |
---|---|---|
Distance/° | 150 | |
Ratio | 0.3 | |
Radfactor | 1.05 | |
Refinenum | 10,000 |
RA Sizes/mm | 9.5–13.2 | 13.2–16 | 16–19 | 19–26.5 | 26.5–37.5 |
OP Particle Radii/mm | 0.3 | 0.4 | 0.5 | 0.7 | 1.0 |
Groups | W/B | Cement | Water | Silica Fume | Superplasticizer |
---|---|---|---|---|---|
M1 | 0.25 | 1665 | 434 | 69 (4%) | 7 |
M2 | 0.35 | 1427 | 520 | 59 (4%) | – |
M3 | 0.45 | 1242 | 582 | 52 (4%) | – |
M4 | 0.25 | 1566 | 426 | 136 (8%) | 15 |
M5 | 0.35 | 1356 | 516 | 118 (8%) | – |
M6 | 0.45 | 1182 | 578 | 103 (8%) | – |
Materials | SiO2 | CaO | Al2O3 | SO3 | Fe2O3 | MgO | Na2O | K2O |
---|---|---|---|---|---|---|---|---|
Cement | 22.75 | 52.56 | 7.38 | 0.79 | 6.37 | 1.02 | 0.73 | 1.31 |
Silica fume | 93.58 | 0.47 | 0.22 | 1.21 | 0.11 | 0.56 | 0.22 | 0.84 |
Items | M1 | M2 | M3 | M4 | M5 | M6 |
---|---|---|---|---|---|---|
Peak Load/N | 6250.0 | 5660.0 | 4620.0 | 7240.0 | 6040.0 | 5080.0 |
Normal Force Thresholds/N | 250.0 | 226.4 | 184.8 | 289.6 | 241.6 | 203.2 |
Parameters | M1 | M2 | M3 | M4 | M5 | M6 | |
---|---|---|---|---|---|---|---|
Linear Group | Effective Modulus /GPa | 40.5 | 31.1 | 26.5 | 44.6 | 37.8 | 28.6 |
Stiffness Ratio | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | |
Friction Coefficient | 0.795 | 0.776 | 0.790 | 0.807 | 0.773 | 0.781 | |
Reference Gap /mm | −0.1 | −0.1 | −0.1 | −0.1 | −0.1 | −0.1 | |
Parallel-Bond Group | Bond Effective Modulus /GPa | 40.5 | 31.1 | 26.5 | 44.6 | 37.8 | 28.6 |
Bond Stiffness Ratio | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | |
Tensile Strength /MPa | 6.28 | 5.49 | 4.16 | 7.48 | 5.86 | 4.94 | |
Cohesion /MPa | 16.8 | 14.1 | 11.0 | 19.4 | 14.7 | 11.9 | |
Friction Angle /° | 38.5 | 37.8 | 38.3 | 38.9 | 37.7 | 38.0 | |
Other Parameters | Default Values |
Items | M1 | M2 | M3 | M4 | M5 | M6 |
---|---|---|---|---|---|---|
Compressive Strength/MPa | 62.5 | 56.6 | 46.2 | 72.4 | 60.4 | 50.8 |
Static Elastic Modulus/GPa | 31.6 | 30.1 | 27.2 | 34.0 | 31.1 | 28.5 |
Parameters | M1 | M2 | M3 | M4 | M5 | M6 | |
---|---|---|---|---|---|---|---|
Linear Group | Effective Modulus /GPa | 35.8 | 32.2 | 26.3 | 42.3 | 34.5 | 28.8 |
Parallel-Bond Group | Bond Effective Modulus /GPa | 35.8 | 32.2 | 26.3 | 42.3 | 34.5 | 28.8 |
Tensile Strength /MPa | 9.58 | 8.37 | 6.34 | 11.38 | 8.92 | 7.51 | |
Cohesion /MPa | 33.6 | 28.2 | 22.0 | 38.8 | 29.4 | 23.8 |
Items | M1 | M2 | M3 | M4 | M5 | M6 | OP |
---|---|---|---|---|---|---|---|
NP Elastic Modulus/GPa | 40.5 | 31.1 | 26.5 | 44.6 | 37.8 | 28.6 | 36.4 |
ITZ Elastic Modulus/GPa | 32.2 | 22.7 | 17.5 | 38.6 | 31.8 | 19.4 | 30.8 |
Reduction Factor | 0.795 | 0.730 | 0.660 | 0.865 | 0.841 | 0.678 | 0.846 |
Parameters | M1-NA | M2-NA | M3-NA | M4-NA | M5-NA | M6-NA | |
---|---|---|---|---|---|---|---|
Linear Group | Effective Modulus /GPa | 32.2 | 22.7 | 17.5 | 38.6 | 31.8 | 19.4 |
Reference Gap /mm | −0.05 | −0.05 | −0.05 | −0.05 | −0.05 | −0.05 | |
Parallel-Bond Group | Bond Effective Modulus /GPa | 32.2 | 22.7 | 17.5 | 38.6 | 31.8 | 19.4 |
Tensile Strength /MPa | 7.62 | 6.11 | 4.19 | 9.85 | 7.50 | 5.09 | |
Cohesion /MPa | 26.7 | 20.6 | 14.5 | 33.6 | 24.7 | 16.1 | |
Other Parameters | Take the corresponding value of the relevant NP |
Parameters | OP | OP–NA | |
---|---|---|---|
Linear Group | Effective Modulus /GPa | 34.5 | 31.8 |
Friction Coefficient | 0.813 | 0.813 | |
Reference Gap /mm | −0.05 | −0.05 | |
Parallel-Bond Group | Bond Effective Modulus /GPa | 34.5 | 31.8 |
Tensile Strength /MPa | 8.92 | 7.50 | |
Cohesion /MPa | 29.4 | 24.7 | |
Friction Angle /° | 39.1 | 39.1 | |
Other Parameters | Take the corresponding value of NP |
Parameters | NA–wall | NA–NA |
---|---|---|
Effective Modulus /GPa | 1.0 | 56.2 |
Stiffness Ratio | 1.00 | 0.25 |
Friction Coefficient | 0.479 | 0.875 |
Other Parameters | Default Values |
Groups | Compressive Strength/MPa | Elastic Modulus/MPa | Calculation Error of Modulus/% | Mean Error/% | |||
---|---|---|---|---|---|---|---|
Test | Simulation | Test | Simulation | Calculation | |||
M1–20% | 14.6 | 15.2 | 3728.0 | 2856.4 | 3782.3 | 1.5 | 3.9 |
M2–25% | 10.9 | 11.3 | 2343.0 | 2010.5 | 2541.5 | 8.5 | |
M5–30% | 8.3 | 8.6 | 1866.5 | 1550.9 | 1756.3 | 5.9 | |
M3–20% | (9.8) | 10.2 | (2230.6) | 1784.5 | 2087.2 | 6.4 | |
M4–20% | (15.5) | 16.1 | (4187.1) | 3349.7 | 4139.1 | 1.1 | |
M6–20% | (11.8) | 12.3 | (2756.8) | 2205.4 | 2763.9 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Geng, F.; Luan, H.; Chen, J.; Yang, H.; Gao, P. Three-Dimensional Mesoscopic DEM Modeling and Compressive Behavior of Macroporous Recycled Concrete. Buildings 2025, 15, 2655. https://doi.org/10.3390/buildings15152655
Xu Y, Geng F, Luan H, Chen J, Yang H, Gao P. Three-Dimensional Mesoscopic DEM Modeling and Compressive Behavior of Macroporous Recycled Concrete. Buildings. 2025; 15(15):2655. https://doi.org/10.3390/buildings15152655
Chicago/Turabian StyleXu, Yupeng, Fei Geng, Haoxiang Luan, Jun Chen, Hangli Yang, and Peiwei Gao. 2025. "Three-Dimensional Mesoscopic DEM Modeling and Compressive Behavior of Macroporous Recycled Concrete" Buildings 15, no. 15: 2655. https://doi.org/10.3390/buildings15152655
APA StyleXu, Y., Geng, F., Luan, H., Chen, J., Yang, H., & Gao, P. (2025). Three-Dimensional Mesoscopic DEM Modeling and Compressive Behavior of Macroporous Recycled Concrete. Buildings, 15(15), 2655. https://doi.org/10.3390/buildings15152655