Meso-Scale Numerical Analysis of the Torsional Size Effect of RC Beams Reinforced with CFRP Sheets Under Combined Bending and Torsion
Abstract
1. Introduction
2. Meso-Scale Mechanical Model of RC Beams Reinforced by CFRP Sheets
2.1. Model Building
2.1.1. Meso-Scale Mechanical Model of Plain Concrete Beams
2.1.2. Assembly and Meshing
2.1.3. Boundary Conditions and Loading Schemes
2.2. Material Constitutive
2.2.1. Concrete Section
2.2.2. Steel Bars
2.2.3. CFRP Sheets
2.3. Interaction Between Materials
2.3.1. Interaction Between Steel Bars and Concrete
2.3.2. Interaction Between CFRP Sheets and Concrete
3. Verification of the Meso-Scale Mechanical Model
3.1. RC Beam Under Combined Bending and Torsion Pressures
3.2. Rationality of the Simulation Method for CFRP Sheet Reinforcement
4. Numerical Test Results
4.1. Failure Mode
4.2. Load-Displacement Curve
4.3. Torque-Twist Curve
4.4. Strain on CFRP Sheets
5. Size Effect Analysis
- (1)
- Influence on strength:(a) Fiber Ratio: Increased fiber ratios augment the nominal torsional strength. The enhancement coefficient is represented by . (b) Torsion-Bending Ratio: As the torsion-bending ratio increases, the ultimate torsional strength also increases. The enhancement coefficient is expressed by .
- (2)
- Influence on size effect:(a) Fiber Ratio: Increased fiber ratios attenuate size effects. The weakening coefficient is represented by . (b) Torsion-Bending Ratio: The size effect undergoes progressive intensification followed by attenuation as torsion-bending ratios escalate. The influence coefficient is expressed by .
5.1. Determination of Strength Improvement Factor
5.2. Determination of Strength Enhancement Coefficient
5.3. Calculation of Size Effect Reduction Factor
5.4. Calculation of Size Effect Influence Factor
5.5. Preliminary Verification Based on Existing Test Data
6. Conclusions
- (1)
- The application of CFRP sheets demonstrably restricts crack propagation in reinforced concrete RC beams subjected to combined bending and torsion. Specifically, for small-scale RC beams under a torsion-bending ratio of 0.4, increasing the fiber reinforcement ratio results in a 16.5% enhancement in peak torque capacity and a 17.2% increase in peak load, accompanied by a 36.1% reduction in peak strain experienced by the CFRP sheets.
- (2)
- In S-size RC beams reinforced with a 0.17% fiber ratio, elevating the torsion-bending ratio from 0.2 to 0.8 induces a transition in the failure mode from predominantly bending-controlled to a combined bending–torsion failure mechanism. This shift leads to more dispersed crack distribution, a 16.4% increase in peak torque, a 75.7% decrease in peak load, and a 42.8% elevation in CFRP sheet strain.
- (3)
- A significant size effect is present in CFRP-strengthened RC beams under combined bending–torsion loading. For beams with a torsion-bending ratio of 0.4 and no fiber reinforcement, the nominal torsional strength reduction amounts to 35.6% when the beam height increases from 300 mm to 900 mm. Increasing the fiber ratio to 0.69% partially alleviates this size effect, diminishing the nominal torsional strength degradation to 28.9%.
- (4)
- The size effect in RC beams exhibits a non-monotonic relationship with the torsion-bending ratio, initially intensifying and subsequently weakening as the ratio increases. For beams with a 0% fiber ratio, nominal torsional strength reductions are 32.3%, 35.6%, and 30.2% at torsion-bending ratios of 0.2, 0.4, and 0.8, respectively. With a 0.69% fiber ratio, these reductions decrease to 24.9%, 28.9%, and 24.1% under identical torsion-bending conditions.
- (5)
- To quantitatively investigate how the fiber ratio and torsion-bending ratio affect the torsional strength and size effect of RC beams, an extended Torque SEL, quantifying fiber ratio and torsion-bending ratio effects, was established based on the Torque SEL proposed by Jin et al.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, X.L.; Jin, L. Size Effect in Concrete Materials and Structures; Springer Singapore: Singapore, 2021. [Google Scholar]
- Chiu, H.J.; Fang, I.K.; Young, W.T.; Shiau, J.K. Behavior of reinforced concrete beams with minimum torsional reinforcement. Eng. Struct. 2007, 29, 2193–2205. [Google Scholar] [CrossRef]
- Guide for the Design And Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures; American Concrete Institute: Farmington Hills, MI, USA, 2017.
- Nader, T.B.; Mostofinejad, D.; Hosseini, S.M. Experimental and analytical study on flexural strengthening of RC beams via prestressed EBROG CFRP plates. Eng. Struct. 2019, 197, 109395. [Google Scholar] [CrossRef]
- Miao, Y.T. Comparative analysis on the performance of four kinds of fiber composite reinforcement materials. Shanxi Archit. 2016, 42, 123–125. [Google Scholar]
- Jin, L.; Wang, Z.S.Y.; Li, D.; Lei, Y.; Zhu, H.; Du, X. Size effect simulations on compression-torsion failure of concrete-filled steel tube columns. Sci. Sin. Technol. 2024, 54, 747–760. [Google Scholar]
- Ghasemi, M.; Zhang, C.; Khorshidi, H.; Zhu, L.; Hsiao, P.-C. Seismic upgrading of existing RC frames with displacement-restraint cable bracing. Eng. Struct. 2023, 282, 115764. [Google Scholar] [CrossRef]
- Tibhe, S.B.; Rathi, V.R. Comparative experimental study on torsional behavior of RC beam using CFRP and GFRP fabric wrapping. Procedia Technol. 2016, 24, 140–147. [Google Scholar] [CrossRef]
- Shi, T.; Li, K.M.; Wang, C.Z.; Jin, Z.; Hao, X.K.; Sun, P.; Han, Y.X.; Pan, C.G.; Fu, N.; Wang, H.B. Fracture toughness of recycled carbon fibers reinforced cement mortar and its environmental impact assessment. Case Stud. Constr. Mater. 2025, 22, e04866. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Jin, L.; Du, X. Study on pure-torsional size effect of CFRP-strengthened RC beams using a 3D meso-scale numerical model. Structures 2023, 57, 105261. [Google Scholar] [CrossRef]
- Cao Qi Jiang, H.; Wu, Z.; Ma, Z.J. Experimental investigation on long term flexural performance of expansive concrete beams eccentrically reinforced by CFRP. Compos. Struct. 2017, 163, 101–113. [Google Scholar] [CrossRef]
- Jin, L.; Jiang, X.; Lu, K.; Du, X. Tests on shear failure and size effect of CFRP-wrapped RC beams without stirrups: Influence of CFRP ratio. Compos. Struct. 2022, 291, 115613. [Google Scholar] [CrossRef]
- Li, P.; Jin, L.; Zhang, J.X.; Du, X. Size effect tests on axial compressive behavior of BFRP-reinforced concrete columns. Eng. Struct. 2023, 281, 115785. [Google Scholar] [CrossRef]
- Ilkhani, M.H.; Naderpour, H.; Kheyroddin, A. Experimental investigation on behavior of FRP-strengthened RC beams subjected to combined twisting-bending moments. Eng. Struct. 2021, 242, 112617. [Google Scholar] [CrossRef]
- Askandar, N.H.; Mahmood, A.D.; Kurda, R. Behaviour of RC beams strengthened with FRP strips under combined action of torsion and bending. Eur. J. Environ. Civ. Eng. 2020, 26, 4263–4279. [Google Scholar] [CrossRef]
- Sahib, B.; Hamed, A.; Israa, K.M. Strengthening of reinforced concrete beams under combined torsion and bending using carbon fiber reinforced polymer strips. Iraqi J. Mech. Mater. Eng. 2012, 12, 754–769. [Google Scholar]
- Bažant, Z.P.; Sener, S.; Prat, P.C. Size effect tests of torsional failure of plain and reinforced concrete beams. Mater. Struct. 1988, 21, 425–430. [Google Scholar] [CrossRef]
- Lei, Y.S.; Jin, L.; Du, X.L. Experimental investigation of size effects on BFRP-RC beams under combined bending-shear-torsion loading. Eng. Struct. 2025, 336, 120457. [Google Scholar] [CrossRef]
- Choi, J.H.; Ryu, H.; Sim, G.D. Elastic size effect of single crystal copper beams under combined loading of torsion and bending. Thin-Walled Struct. 2024, 197, 111602. [Google Scholar] [CrossRef]
- Li, D.; He, Y.S.; Zhang, J.X.; Jing, L.; Du, X. Meso-scale numerical analysis of torsional behavior of RC beams strengthened with CFRP sheets under combined bending, shear and torsion. J. Beijing Univ. Technol. 2024, 50, 958–973. [Google Scholar]
- Jin, L.; Zhu, H.J.; Du, X.L. Effect of structural size on seismic performances of RC columns under combined shear and torsional loadings. J. Vibroengineering 2022, 35, 1211–1221. [Google Scholar]
- Jin, L.; Zhu, H.J.; Du, X.L. Meso-scale modelling of size effect on pure torsional-shear of RC columns. Arch. Civ. Mech. Eng. 2022, 22, 1–19. [Google Scholar] [CrossRef]
- Rios, R.D.; Riera, J.D. Size effects in the analysis of reinforced concrete structures. Eng. Struct. 2004, 26, 1115–1125. [Google Scholar] [CrossRef]
- Jin, L.; Yu, W.; DU, X.; Zhang, S.; Li, D. Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates. Int. J. Impact Eng. 2019, 125, 1–12. [Google Scholar] [CrossRef]
- Naderi, S.; Zhang, M. Meso-scale modelling of static and dynamic tensile fracture of concrete accounting for real-shape aggregates. Cem. Concr. Compos. 2021, 116, 103889. [Google Scholar] [CrossRef]
- Du, X.L.; Jin, L.; Ma, G.W. A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members. Int. J. Damage Mech. 2013, 22, 878–904. [Google Scholar] [CrossRef]
- Jin, L.; Wang, T.; Du, X.L.; Xia, H. Study on shear failure and size effect law of reinforced concrete cantilever beam. Eng. Mech. 2020, 37, 53–62. [Google Scholar]
- Donza, H.; Cabrera, O.; Irassar, E.F. High-strength concrete with different fine aggregate. Cem. Concr. Res. 2002, 32, 1755–1761. [Google Scholar] [CrossRef]
- Wriggers, P.; Moftah, S.O. Mesoscale models for concrete: Homogenization and damage behavior. Finite Elem. Anal. Des. 2006, 42, 623–636. [Google Scholar] [CrossRef]
- Kim, S.M.; Abu, R.K. Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cem. Concr. Res. 2011, 41, 339–358. [Google Scholar] [CrossRef]
- Xu, J.; Li, F. A meso-scale model for analyzing the chloride diffusion of concrete subjected to external stress. Constr. Build. Mater. 2017, 130, 11–21. [Google Scholar] [CrossRef]
- Unger, J.F.; Eckardt, S. Multiscale modeling of concrete. Arch. Comput. Methods Eng. 2011, 18, 341–393. [Google Scholar] [CrossRef]
- Jin, L.; Jiang, X.A.; Du, X.L. Shear failure and size effect of lightweight aggregate concrete beams without web reinforcement: Meso simulation. Eng. Mech. 2020, 37, 57–67. [Google Scholar]
- Lubliner, J.; Oliver, J.; Oller, S.; Onate, E. A plastic-damage model for concrete. Int. J. Solids Struct. 1989, 25, 299–326. [Google Scholar] [CrossRef]
- Lee, J.; Fenves, G.L. Plastic-damage model for cyclic loading of concrete structures. Eng. Mech. 1998, 124, 892–900. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, J.; Li, D.; Du, X. Meso-scale analysis of shear performance and size effect of CFRP sheets strengthened RC beams. Structures 2022, 45, 1630–1645. [Google Scholar] [CrossRef]
- Jin, L.; Yu, W.; Su, X.; Zhang, S.; Du, X.; Han, J.; Li, D. Effect of cross-section size on the flexural failure behavior of RC cantilever beams under low cyclic and monotonic lateral loadings. Eng. Struct. 2018, 156, 567–586. [Google Scholar] [CrossRef]
- Jin, L.; Li, D.; Du, X.; Lu, A.; Ding, Z. Experimental and numerical study on size effect in eccentrically loaded stocky RC columns. ASCE J. Struct. Eng. 2017, 143, 04016170. [Google Scholar] [CrossRef]
- Garboczi, E.J.; Bentz, D.P. Digital simulation of the aggregate-cement paste interfacial zone in concrete. J. Mater. Res. 1991, 6, 196–201. [Google Scholar] [CrossRef]
- Du, X.L.; Jin, L.; Ma, G.W. Numerical simulation of dynamic tensile-failure of concrete at meso-scale. Int. J. Impact Eng. 2014, 66, 5–17. [Google Scholar] [CrossRef]
- Majewski, T.; Bobinski, J.; Tejchman, J. FE analysis of failure behaviour of reinforced concrete columns under eccentric compression. Eng. Struct. 2008, 30, 300–317. [Google Scholar] [CrossRef]
- Zhou, C.D.; Huang, C.K. Simplified analytic models for glass fiber-reinforced polymer-confined concrete circular columns. J. Dalian Univ. Technol. 2004, 44, 96–103. [Google Scholar]
- Obaidat, Y.T.; Heyden, S.; Dahlblom, O. The effect of CFFP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM. Compos. Struct. 2010, 92, 1391–1398. [Google Scholar] [CrossRef]
- Raza, A.; Ali, B.; Nawaz, M.A.; Ahmed, I. Structural performance of FRP-RC compression members wrapped with FRP composites. Structures 2020, 27, 1693–1709. [Google Scholar] [CrossRef]
- Hashin, Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980, 47, 1693–1709. [Google Scholar] [CrossRef]
- GB50010-2010; Code for Design of Concrete Structures. China Architecture & Building Press: Beijing, China, 2010.
- Lu, X.Z.; Ye, L.P.; Teng, J.G.; Jiang, J. Bond-slip models for FRP sheet/plate-to-concrete interfaces. J. Build. Struct. 2005, 26, 10–18. [Google Scholar]
- Jiang, X.A.; Jin, L.; Du, X.L. Experimental study on the effect of fiber ratio on shear behavior of large size concrete beams wrapped with CFRP sheets. J. Build. Struct. 2022, 27, 1–12. [Google Scholar]
- Jin, L.; Yu, W.; Du, X.; Yang, W. Mesoscopic numerical simulation of dynamic size effect on the splitting-tensile strength of concrete. Eng. Fract. Mech. 2019, 209, 317–332. [Google Scholar] [CrossRef]
- Li, Y.S.; Li, M.B.; Wang, Y.P.; Zhang, Y.L. Research on bending-torsional behaviors of steel-concrete composite beam with corrugated steel webs. J. Hebei Univ. Sci. Technol. 2022, 43, 99–109. [Google Scholar]
- Huang, H.; Guo, M.; Zhang, W.; Huang, M. Seismic Behavior of Strengthened RC Columns under Combined Loadings. J. Struct. Eng. 2022, 148, 04022057. [Google Scholar] [CrossRef]
- Kirane, K.; Singh, K.D.; Bažant, Z.P. Size effect in torsional strength of plain and reinforced concrete. ACI Struct. J. 2016, 113, 1253–1262. [Google Scholar] [CrossRef]
- Wu, Z.S.; Yuan, H.; Niu, H.D. Stress transfer and fracture propagation in different kinds adhesive joints. J. Eng. Mech. 2002, 128, 562–573. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Kim, J.K. Size effect in shear failure of longitudinally reinforced beams. ACI Struct. J. 1984, 81, 456–468. [Google Scholar]
- Rangari, S.; Murali, K.; Deb, A. Effect of meso-structure on strength and size effect in concrete under compression. Eng. Fract. Mech. 2018, 195, 162–185. [Google Scholar] [CrossRef]
- Kim, J.K. Size effect in concrete specimens with dissimilar initial cracks. Mag. Concr. Res. 1990, 42, 233–238. [Google Scholar] [CrossRef]
- Thomas, A.; Afia, S.H. An experimental study on combined flexural and torsional behaviour of RC beams. J. Eng. Technol. 2017, 4, 1367–1370. [Google Scholar]
Characteristic Point | Crack (cr) | Peak Value (u) | Remnant (r) |
---|---|---|---|
Bond stress τ (MPa) | τcr = 2.5ft | τu = 3ft | τr = ft |
Relative slip s (mm) | scr,l = 0.025d | su,l = 0.04d | sr,l = 0.55d |
K0 (MPa/mm) | τmax (MPa) | S0 (mm) | K (MPa/mm) | Su (mm) | Gf (N/mm) |
---|---|---|---|---|---|
70 | 3.500 | 0.050 | 23.330 | 0.200 | 0.350 |
Mechanical Property | Mortar | ITZ | Aggregate | Longitudinal Steel Bar | Stirrup |
---|---|---|---|---|---|
Elastic modulus E (GPa) | * 30.3 | ^ 24.2 | # 70 | * 174.8 | * 165.5 |
Poisson’s ratio ν | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 |
Expansion angle ψ (°) | 18 | 15 | |||
Fracture energy Gc (J/m2) | 50 | 30 | |||
Compressive strength σc (MPa) | * 41.0 | ^ 30.8 | |||
Tensile strength σt (MPa) | * 4.1 | ^ 3.1 | |||
Yield strength fy (MPa) | * 390 | * 318 |
Parameter | Symbol | Value |
---|---|---|
Elastic modulus in the fiber direction (GPa) | E1 | * 230 |
Elastic modulus in the transverse direction (GPa) | E2 | # 2.227 |
Longitudinal-transverse Poisson’s ratio | ν12 | # 0.3 |
Shear moduli (GPa) | G12, G13, G23 | # 1.127 |
Tensile strength (MPa) | σt | * 4900 |
Thickness (mm) | tf | * 0.13 |
Strength Characteristics | Value | Damage Characteristics | Value |
---|---|---|---|
Longitudinal tensile strength (MPa) | # 1188 | Longitudinal tensile fracture energy (mJ/mm2) | # 92 |
Longitudinal compressive strength (MPa) | # 3.96 | Longitudinal compression fracture energy (mJ/mm2) | # 1.1 |
Transverse tensile strength (MPa) | # 3.96 | Transverse tensile fracture energy (mJ/mm2) | # 1.1 |
Transverse compressive strength (MPa) | # 3.96 | Transverse compression fracture energy (mJ/mm2) | # 0.2 |
Longitudinal shear strength (MPa) | # 3.96 | ||
Transverse shear strength (MPa) | # 3.96 |
Specimen Name | Effective Section Height h0 (mm) | Number of CFRP Layers n | CFRP Strip Width Wf (mm) | CFRP Strip Spacing Sf (mm) | Fiber Ratio ρf |
S-0-0 | 270 | 0 | 0 | 200 | 0% |
S-I-0 | 270 | 1 | 100 | 200 | 0.17% |
S-II-0 | 270 | 2 | 100 | 200 | 0.35% |
S-IV-0 | 270 | 4 | 100 | 200 | 0.69% |
S-0-0.2 | 270 | 0 | 0 | 200 | 0% |
S-I-0.2 | 270 | 1 | 100 | 200 | 0.17% |
S-II-0.2 | 270 | 2 | 100 | 200 | 0.35% |
S-IV-0.2 | 270 | 4 | 100 | 200 | 0.69% |
S-0-0.4 | 270 | 0 | 0 | 200 | 0% |
S-I-0.4 | 270 | 1 | 100 | 200 | 0.17% |
S-II-0.4 | 270 | 2 | 100 | 200 | 0.35% |
S-IV-0.4 | 270 | 4 | 100 | 200 | 0.69% |
S-0-0.8 | 270 | 0 | 0 | 200 | 0% |
S-I-0.8 | 270 | 1 | 100 | 200 | 0.17% |
S-II-0.8 | 270 | 2 | 100 | 200 | 0.35% |
S-IV-0.8 | 270 | 4 | 100 | 200 | 0.69% |
M-0-0 | 540 | 0 | 0 | 400 | 0% |
M-I-0 | 540 | 1 | 200 | 400 | 0.17% |
M-II-0 | 540 | 2 | 200 | 400 | 0.35% |
M-IV-0 | 540 | 4 | 200 | 400 | 0.69% |
M-0-0.2 | 540 | 0 | 0 | 400 | 0% |
M-I-0.2 | 540 | 1 | 200 | 400 | 0.17% |
M-II-0.2 | 540 | 2 | 200 | 400 | 0.35% |
M-IV-0.2 | 540 | 4 | 200 | 400 | 0.69% |
M-0-0.4 | 540 | 0 | 0 | 400 | 0% |
M-I-0.4 | 540 | 1 | 200 | 400 | 0.17% |
M-II-0.4 | 540 | 2 | 200 | 400 | 0.35% |
M-IV-0.4 | 540 | 4 | 200 | 400 | 0.69% |
M-0-0.8 | 540 | 0 | 0 | 400 | 0% |
M-I-0.8 | 540 | 1 | 200 | 400 | 0.17% |
M-II-0.8 | 540 | 2 | 200 | 400 | 0.35% |
M-IV-0.8 | 540 | 4 | 200 | 400 | 0.69% |
L-0-0 | 810 | 0 | 0 | 600 | 0% |
L-I-0 | 810 | 1 | 300 | 600 | 0.17% |
L-II-0 | 810 | 2 | 300 | 600 | 0.35% |
L-IV-0 | 810 | 4 | 300 | 600 | 0.69% |
L-0-0.2 | 810 | 0 | 0 | 600 | 0% |
L-I-0.2 | 810 | 1 | 300 | 600 | 0.17% |
L-II-0.2 | 810 | 2 | 300 | 600 | 0.35% |
L-IV-0.2 | 810 | 4 | 300 | 600 | 0.69% |
L-0-0.4 | 810 | 0 | 0 | 600 | 0% |
L-I-0.4 | 810 | 1 | 300 | 600 | 0.17% |
L-II-0.4 | 810 | 2 | 300 | 600 | 0.35% |
L-IV-0.4 | 810 | 4 | 300 | 600 | 0.69% |
L-0-0.8 | 810 | 0 | 0 | 600 | 0% |
L-I-0.8 | 810 | 1 | 300 | 600 | 0.17% |
L-II-0.8 | 810 | 2 | 300 | 600 | 0.35% |
L-IV-0.8 | 810 | 4 | 300 | 600 | 0.69% |
Torsion-Bending Ratio η | Fiber Ratios ρf | v0 | d0 |
---|---|---|---|
0.2 | 0% | 12.5 | 12.9 |
0.17% | 13.0 | 13.2 | |
0.35% | 13.5 | 13.6 | |
0.69% | 13.9 | 15.2 | |
0.4 | 0% | 13.1 | 17.8 |
0.17% | 14.8 | 15.8 | |
0.35% | 15.4 | 22.9 | |
0.69% | 17.5 | 20.5 | |
0.8 | 0% | 10.7 | 13.0 |
0.17% | 13.1 | 13.3 | |
0.35% | 16.0 | 11.8 | |
0.69% | 18.3 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Wang, M.; He, Y.; Zhang, J.; Jin, L.; Du, X. Meso-Scale Numerical Analysis of the Torsional Size Effect of RC Beams Reinforced with CFRP Sheets Under Combined Bending and Torsion. Buildings 2025, 15, 2641. https://doi.org/10.3390/buildings15152641
Li D, Wang M, He Y, Zhang J, Jin L, Du X. Meso-Scale Numerical Analysis of the Torsional Size Effect of RC Beams Reinforced with CFRP Sheets Under Combined Bending and Torsion. Buildings. 2025; 15(15):2641. https://doi.org/10.3390/buildings15152641
Chicago/Turabian StyleLi, Dong, Minghai Wang, Yishuai He, Jiangxing Zhang, Liu Jin, and Xiuli Du. 2025. "Meso-Scale Numerical Analysis of the Torsional Size Effect of RC Beams Reinforced with CFRP Sheets Under Combined Bending and Torsion" Buildings 15, no. 15: 2641. https://doi.org/10.3390/buildings15152641
APA StyleLi, D., Wang, M., He, Y., Zhang, J., Jin, L., & Du, X. (2025). Meso-Scale Numerical Analysis of the Torsional Size Effect of RC Beams Reinforced with CFRP Sheets Under Combined Bending and Torsion. Buildings, 15(15), 2641. https://doi.org/10.3390/buildings15152641