Seismic Performance of Large Underground Water Tank Structures Considering Fluid–Structure Interaction
Abstract
1. Introduction
2. Numerical Model
2.1. Description of the Water Tank Structure
2.2. Finite Element Model of Structure
2.3. Fluid–Structure Interaction Simulation
2.4. Ground Motion Input
2.5. Model Validation Analysis
3. Fluid Sloshing Analysis
3.1. Fluid Sloshing in Structures During Earthquakes
3.2. Analysis of Fluid Sloshing via Fluid Velocity Field and Dynamic Pressure
4. Fluid–Structure Interaction Analysis
4.1. Interaction of Tank Structure and Fluid During Earthquakes
4.2. Role of Fluid in Structural Damage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Zhao, J. Assessment and planning of underground space use in Singapore. Tunn. Undergr. Space Technol. 2016, 55, 249–256. [Google Scholar] [CrossRef]
- Su, D.; Zhang, Q.H.; Ngo, H.H.; Dzakpasu, M.; Guo, W.S.; Wang, X.C. Development of a water cycle management approach to Sponge City construction in Xi’an, China. Sci. Total Environ. 2019, 685, 490–496. [Google Scholar] [CrossRef]
- Quan, L.; Li, D.; Zhou, Q.; Sun, A.; Tao, J.; Luo, G.; Liu, K. Case Study of Rainwater Treatment System in a Large Urban Underground Space Complex Project in Xi’an China. In Proceedings of the 18th Conference of the Associated Research Centers for the Urban Underground Space, Singapore, 1–4 November 2024; Wu, W., Leung, C.F., Zhou, Y., Li, X., Eds.; Springer: Singapore, 2024; pp. 69–74. [Google Scholar]
- Huang, M.; Duan, D.; Tan, S.; Huang, L. Resource-Oriented Treatment Technologies for Rural Domestic Sewage in China Amidst Population Shrinkage: A Case Study of Heyang County in Guanzhong Region, Shaanxi Province. Buildings 2025, 15, 1417. [Google Scholar] [CrossRef]
- Halicka, A.; Zięba, J. Influence of the subsoil model on the safety and eco-efficiency of reinforced concrete structure of rectangular liquid tank founded beneath the terrain surface. Eng. Struct. 2024, 303, 117571. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, R.; Ni, P.; Zhao, M.; El Naggar, M.H.; Du, X. Quantitative analysis of subway station seismic deformation under random earthquakes and uncertain soil properties using the equivalent linearization method. Soil Dyn. Earthq. Eng. 2025, 188, 109086. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, Q.; Wen, J. Life-cycle seismic performance of Q690 steel columns with H-section under various bi-directional cyclic loading paths. Eng. Struct. 2024, 306, 117832. [Google Scholar] [CrossRef]
- Khanmohammadi, M.; Rad, P.L.; Ghalandarzadeh, A. Experimental study on dynamic behavior of buried concrete rectangular liquid storage tanks using shaking table. Bull. Earthq. Eng. 2017, 15, 3747–3776. [Google Scholar] [CrossRef]
- Roy, S.S.; Biswal, K.C. Non-linear sloshing characteristics of liquid inside a chamfered bottom tank with submerged internal object under near-and far-fault earthquakes. Ocean Eng. 2024, 309, 118593. [Google Scholar] [CrossRef]
- AlKhatib, K.; Hashash, Y.M.A.; Ziotopoulou, K. Seismic behavior of shallow buried water reservoirs via large scale three-dimensional numerical models. Soil Dyn. Earthq. Eng. 2024, 187, 109005. [Google Scholar] [CrossRef]
- He, R.; Tiong, R.L.K.; Yuan, Y.; Zhang, L. Enhancing resilience of urban underground space under floods: Current status and future directions. Tunn. Undergr. Space Technol. 2024, 147, 105674. [Google Scholar] [CrossRef]
- Qihu, Q. Present state, problems and development trends of urban underground space in China. Tunn. Undergr. Space Technol. 2016, 55, 280–289. [Google Scholar] [CrossRef]
- Hosseini, S.E.A.; Beskhyroun, S. Fluid storage tanks: A review on dynamic behaviour modelling, seismic energy-dissipating devices, structural control, and structural health monitoring techniques. Structures 2023, 49, 537–556. [Google Scholar] [CrossRef]
- He, X.; Li, C.; Chen, L.; Yang, J.; Hu, G.; Ou, J. Numerical research on nonlinear liquid sloshing and vibration control performance of tuned liquid damper. J. Build. Eng. 2024, 96, 110660. [Google Scholar] [CrossRef]
- Xu, B.; Han, Z.; Wang, L.; Liu, Q.; Xu, X.; Chen, H. The Influence of Integral Water Tank on the Seismic Performance of Slender Structure: An Experimental Study. Buildings 2023, 13, 736. [Google Scholar] [CrossRef]
- GB50032-2003; Code for Seismic Design of Outdoor Water Supply, Sewerage, Gas and Heating Engineering. China Architecture & Building Press: Beijing, China, 2003.
- GB55002-2021; General Standard for Earthquake Resistance of Building and Municipal Engineering. China Architecture & Building Press: Beijing, China, 2021.
- EN1998-4; Eurocode 8, Design of Structures for Earthquake Resistance: Silos, Tanks and Pipelines. Part 4. B.S. (Series). British Standards Institution: London, UK, 2006.
- Ibrahim, R.A. Liquid Sloshing Dynamics: Theory and Applications; Cambridge University Press: New York, NY, USA, 2005; pp. 209–295. [Google Scholar]
- Akhavan Hejazi, F.S.; Khan Mohammadi, M. Investigation on sloshing response of water rectangular tanks under horizontal and vertical near fault seismic excitations. Soil Dyn. Earthq. Eng. 2019, 116, 637–653. [Google Scholar] [CrossRef]
- Arafa, M. Finite Element Analysis of Sloshing in Rectangular Liquid-filled Tanks. J. Vib. Control 2007, 13, 883–903. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.-N.; Fu, X.; Zhang, S.; Mercan, O. Seismic Analysis of a Large LNG Tank considering the Effect of Liquid Volume. Shock Vib. 2020, 2020, 8889055. [Google Scholar] [CrossRef]
- Wu, Y.; Men, J.; Zheng, C.; Chen, G. Experimental and numerical study on failure mechanism of steel cylindrical tanks subjected to earthquake-tsunami sequence. Eng. Fail. Anal. 2024, 163, 108443. [Google Scholar] [CrossRef]
- Lian, C.; Ye, P.; Wang, P.; Yue, Z.; Yang, H.; Zhang, K.; Zhang, J. Hydrodynamic Effects in Wing Fuel Tank Caused by Debris Impact. J. Aerosp. Eng. 2024, 37, 04023105. [Google Scholar] [CrossRef]
- Dyson, A.P.; Kefayati, G.; Tolooiyan, A. A Coupled Eulerian Lagrangian method for modelling coupled hydro-geomechanical moored systems. Ocean Eng. 2025, 327, 120928. [Google Scholar] [CrossRef]
- Xiao, C.; Liu, W.; Wu, J.; Zhang, D. Seismic Response Analysis of Full Containment LNG Storage Tank Using Coupled Eulerian–Lagrangian and Smoothed Particle Hydrodynamics Methods. In Proceedings of the Computational and Experimental Simulations in Engineering, ICCES 2023, Shenzhen, China, 26–29 May 2023; Springer: Cham, Switzerland, 2023; pp. 1251–1262. [Google Scholar]
- Mittal, V.; Chakraborty, T.; Matsagar, V. Dynamic analysis of liquid storage tank under blast using coupled Euler–Lagrange formulation. Thin-Walled Struct. 2014, 84, 91–111. [Google Scholar] [CrossRef]
- Du, X.H.; Shen, X.P. Numerical simulation of fluid-structure interaction of LNG prestressed storage tank under seismic influence. Comput. Mater. Contin. 2010, 20, 225. [Google Scholar]
- Yang, S.; Yee, R.K. Explicit Finite Element Study of Liquid Sloshing Behavior in Fluid-Structure Interaction Condition. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017. [Google Scholar]
- Rawat, A.; Mittal, V.; Chakraborty, T.; Matsagar, V. Earthquake induced sloshing and hydrodynamic pressures in rigid liquid storage tanks analyzed by coupled acoustic-structural and Euler-Lagrange methods. Thin-Walled Struct. 2019, 134, 333–346. [Google Scholar] [CrossRef]
- Iranmanesh, A.; Nikbakhti, R. Numerical study on suppressing liquid sloshing of a rectangular tank using moving baffles linked to a spring system. Ocean Eng. 2021, 229, 109002. [Google Scholar] [CrossRef]
- Kim, S.-P.; Chung, S.-M.; Shin, W.-J.; Cho, D.-S.; Park, J.-C. Experimental study on sloshing reduction effects of baffles linked to a spring system. Ocean Eng. 2018, 170, 136–147. [Google Scholar] [CrossRef]
- Baharvand, F.; Amiri, S.M.; Shekari, M.R.; Veiskarami, M. A Time Domain Nonlinear Fluid–Structure–Soil Interaction Analysis of Rectangular Water Storage Tanks Using Coupled Eulerian–Lagrangian (CEL) Formulation and Direct Method. J. Earthq. Eng. 2023, 28, 1744–1768. [Google Scholar] [CrossRef]
- Erkmen, B. Seismic performance assessment of an existing anchored and a self-anchored liquid storage tank in high seismic regions. Bull. Earthq. Eng. 2024, 22, 4197–4217. [Google Scholar] [CrossRef]
- Munoz, L.E.V.; Dolsek, M. Parametric seismic fragility model for elephant-foot buckling in unanchored steel storage tanks. Bull. Earthq. Eng. 2024, 22, 5775–5804. [Google Scholar] [CrossRef]
- Nicolici, S.; Bilegan, R.M. Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks. Nucl. Eng. Des. 2013, 258, 51–56. [Google Scholar] [CrossRef]
- Ozsarac, V.; Brunesi, E.; Nascimbene, R. Earthquake-induced nonlinear sloshing response of above-ground steel tanks with damped or undamped floating roof. Soil Dyn. Earthq. Eng. 2021, 144, 106673. [Google Scholar] [CrossRef]
- Brunesi, E.; Nascimbene, R. Evaluating the Seismic Resilience of Above-Ground Liquid Storage Tanks. Buildings 2024, 14, 3212. [Google Scholar] [CrossRef]
- Hudson, M.B.; Davis, C.A.; Lew, M.; Harounian, A. Seismic Resilience Design for a Concrete Box Reservoir. In International Efforts in Lifeline Earthquake Engineering; Du, X., Miyajima, M., Yan, L., Eds.; Proceedings; ASCE: Chengdu, China, 2013; pp. 137–144. [Google Scholar]
- Jing, W.; Shen, J.; Cheng, X.; Yang, W. Seismic responses of a liquid storage tank considering structure-soil-structure interaction. Structures 2022, 45, 2137–2150. [Google Scholar] [CrossRef]
- Lee, J.; Fenves Gregory, L. Plastic-Damage Model for Cyclic Loading of Concrete Structures. J. Eng. Mech. 1998, 124, 892–900. [Google Scholar] [CrossRef]
- Zucca, M.; Valente, M. On the limitations of decoupled approach for the seismic behaviour evaluation of shallow multi-propped underground structures embedded in granular soils. Eng. Struct. 2020, 211, 110497. [Google Scholar] [CrossRef]
- Park, S.-H.; Park, Y.I.; Yoon, T.; Kim, J.-H. Identification of Natural Sloshing Frequency in a Rectangular Tank Under Surge Excitation Using Coupled Eulerian–Lagrangian Method and Impulse Excitation Method. Appl. Sci. 2025, 15, 5175. [Google Scholar] [CrossRef]
- Wang, Y. Abaqus Analysis User’s Guide: Materials; Dassault Systèmes Simulia Corp.: Providence, RI, USA, 2018; pp. 371–372. [Google Scholar]
- Palanci, M.; Demir, A.; Kayhan, A.H. The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018. Pamukkale Univ. Muh. Bilim. Derg. 2021, 27, 251–263. [Google Scholar] [CrossRef]
- Palanci, M.; Senel, S.M. Earthquake damage assessment of 1-story precast industrial buildings using damage probability matrices. Bull. Earthq. Eng. 2019, 17, 5241–5263. [Google Scholar] [CrossRef]
- Palanci, M.; Demir, A.; Kayhan, A.H. Quantifying the effect of amplitude scaling of real ground motions based on structural responses of vertically irregular and regular RC frames. Structures 2023, 51, 105–123. [Google Scholar] [CrossRef]
- Tippmann, J.D.; Prasad, S.C.; Shah, P.N.; Corp, S. 2-D Tank Sloshing Using the Coupled Eulerian-LaGrangian (CEL) Capability of Abaqus/Explicit. In Proceedings of the SIMULIA Customer Conference, London, UK, 18–21 May 2009. [Google Scholar]
- Housner, G.W. Dynamic pressures on accelerated fluid containers. Bull. Seismol. Soc. Am. 1957, 47, 15–35. [Google Scholar] [CrossRef]
Density (kg/m3) | Poisson’s Ratio | Elastic Modulus (MPa) | Dilation Angle (°) | Initial Compressive Yield Stress (MPa) |
---|---|---|---|---|
2500 | 0.2 | 30,000 | 36.5 | 13 |
Limited compressive yield stress (MPa) | Initial tensile yield stress (MPa) | Compression stiffness recovery parameter | Tensile stiffness recovery parameter | |
20.1 | 2.4 | 1.0 | 0.0 |
Cracking Displacement (mm) | Tensile Stress (MPa) | Tensile Damage Factor |
---|---|---|
0 | 2.4 | 0 |
0.066 | 1.617 | 0.381 |
0.123 | 1.084 | 0.617 |
0.173 | 0.726 | 0.763 |
0.22 | 0.487 | 0.853 |
0.308 | 0.219 | 0.944 |
0.351 | 0.147 | 0.965 |
0.394 | 0.098 | 0.978 |
0.438 | 0.066 | 0.987 |
0.482 | 0.042 | 0.992 |
Plastic Strain (%) | Compression Stress (MPa) | Compression Damage Factor |
---|---|---|
0 | 14.02 | 0 |
0.04 | 17.33 | 0.113 |
0.08 | 19.44 | 0.246 |
0.12 | 20.1 | 0.341 |
0.16 | 20.18 | 0.427 |
0.2 | 18.72 | 0.501 |
0.24 | 17.25 | 0.566 |
0.36 | 12.86 | 0.714 |
0.5 | 8.66 | 0.824 |
0.75 | 6.25 | 0.922 |
1 | 3.98 | 0.969 |
Material | Density (kg/m3) | Poisson’s Ratio | Elastic Modulus (GPa) | Yield Strength (MPa) | Ultimate Strength (MPa) |
---|---|---|---|---|---|
HRB400 | 7500 | 0.3 | 200 | 416 | 489 |
HPB300 | 7850 | 0.3 | 210 | 309 | 358 |
Parameters | Value |
---|---|
Density (ρ) | 1000 kg/m3 |
Viscosity (η) | 0.001 MPa |
Velocity of sound through water (c0) | 1500 m/s |
Material constant (s) | 0 |
Material constant (Γ0) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Xu, C.; El Naggar, M.H.; Du, X. Seismic Performance of Large Underground Water Tank Structures Considering Fluid–Structure Interaction. Buildings 2025, 15, 2643. https://doi.org/10.3390/buildings15152643
Xu F, Xu C, El Naggar MH, Du X. Seismic Performance of Large Underground Water Tank Structures Considering Fluid–Structure Interaction. Buildings. 2025; 15(15):2643. https://doi.org/10.3390/buildings15152643
Chicago/Turabian StyleXu, Fengyuan, Chengshun Xu, Mohamed Hesham El Naggar, and Xiuli Du. 2025. "Seismic Performance of Large Underground Water Tank Structures Considering Fluid–Structure Interaction" Buildings 15, no. 15: 2643. https://doi.org/10.3390/buildings15152643
APA StyleXu, F., Xu, C., El Naggar, M. H., & Du, X. (2025). Seismic Performance of Large Underground Water Tank Structures Considering Fluid–Structure Interaction. Buildings, 15(15), 2643. https://doi.org/10.3390/buildings15152643