Impact of Aging and Low Temperatures on the Mechanical Properties of Low-Cost Seismic Isolator Prototypes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. UR-FREI
Material Preparation
Construction of Specimens
Fabrication of Small-Scale Prototypes
2.1.2. UN-FREI
Natural Rubber Matrix Preparation
Specimen Construction
Manufacture of Small-Scale Prototypes
2.2. Fabrication of the Seismic Isolator Prototypes
2.3. Pre-Conditioning of Specimens and Small-Scale Prototypes
2.3.1. Low-Temperature Exposure
2.3.2. Accelerated Aging
2.4. Mechanical Characterization of Specimens
2.4.1. Hardness
2.4.2. Tensile Properties
2.4.3. Shear Modulus
2.4.4. Monotonic Compression
2.5. Mechanical Characterization of Small-Scale Prototypes
2.5.1. Shear Compression Test
2.5.2. Cyclic Compression Test
3. Results and Discussion
3.1. Mechanical Evaluation of Isolator Matrix
3.1.1. Hardness (H)
3.1.2. Maximum Tensile Strength and Elongation at Failure (T)
3.1.3. Cyclic Shear (CS)
3.1.4. Monotonic Compression (MC)
3.2. Mechanical Evaluation of Prototypes Under Low-Temperature (LT) Conditions
3.2.1. Shear Compression Test
3.2.2. Cyclic Compression Test
3.3. Mechanical Evaluation of Prototypes with Accelerated Aging
3.3.1. Shear Compression Test
3.3.2. Cyclic Compression Test
3.4. Considerations for Improving the Design of Matrices and Devices
4. Conclusions
- -
- This study investigated the durability and mechanical performance of low-cost seismic isolators (UR-FREI and UN-FREI) under the combined effects of low temperatures and accelerated thermal aging. By conducting a systematic evaluation of both recycled and natural rubber matrices, as well as small-scale prototypes, this work aimed to address critical knowledge gaps in the long-term behavior of these alternative isolators. The results provide essential insights for their safe and reliable application in seismic risk mitigation, particularly in developing regions or environments characterized by significant thermal variation.
- -
- The decreases in deformation capacity and maximum stress, together with the increase in shear modulus, show the critical behavior of the matrices under extreme thermal conditions. These changes increase the stiffness of the devices, but at the cost of a loss of flexibility, which compromises their ability to dissipate seismic energy.
- -
- Low temperatures significantly affect the performance of unmodified natural rubber and agglomerated recycled rubber compounds. These materials tend to lose flexibility, exhibit reduced deformation capacity, and become brittle, which compromises their energy dissipation function. Therefore, their use is not recommended in cold regions, especially where high damping performance is required in seismic isolation applications.
- -
- The results suggest the need to implement periodic evaluations of in-service devices. Visual inspections are recommended every five years to identify possible cracks in the coating, which could be indicative of progressive internal damage due to aging or environmental exposure.
- -
- The current configuration of the arrays and the multilayer structure of the devices could lead to limitations in the efficient transfer of vertical and horizontal loads. This may result in the poor structural performance of the system and an increased risk of damage to both structural and non-structural elements during a seismic event.
- -
- Based on the observed mechanical degradation under cold and thermally accelerated aging conditions, we recommend exploring design modifications in both the material formulation and multilayer architecture. The use of thermally stable elastomers, the incorporation of compatibilizers in recycled rubber matrices, and the application of fiber–matrix coupling agents in multilayer assemblies can significantly enhance the durability, cohesion, and overall seismic performance of isolation devices in demanding environments.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naeim, F.; Kelly, J.M. Design of Seismic Isolated Structures; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999. [Google Scholar] [CrossRef]
- Kelly, J.M. Analysis of Fiber-Reinforced Elastomeric Isolators. J. Seismol. Earthq. Eng. 1992, 1, 19–34. [Google Scholar]
- Taylor, A.W.; Lin, A.N.; Martin, J.W. Performance of Elastomers in Isolation Bearings: A Literature Review. Earthq. Spectra 1992, 8, 279–303. [Google Scholar] [CrossRef]
- Furinghetti, M.; Pavese, A. Definition of a Simplified Design Procedure of Seismic Isolation Systems for Bridges. Struct. Eng. Int. 2020, 30, 381–386. [Google Scholar] [CrossRef]
- Restrepo, M.G.; Madera Sierra, I.E.; Castellanos-Toro, S.; Marulanda, J. Impact of the Implementation of Unbonded Seismic Isolators on the Design and Retrofitting of Bridges. Struct. Eng. Int. 2023, 33, 677–688. [Google Scholar] [CrossRef]
- Madera Sierra, I.E.; Marulanda Casas, J.; Thomson, P. Matrix and reinforcement materials for low-cost building isolators: An overview of results from experimental tests and numerical simulations. J. Appl. Res. Technol. 2018, 17, 44–56. [Google Scholar] [CrossRef]
- Madera Sierra, I.E.; Losanno, D.; Strano, S.; Marulanda, J.; Thomson, P. Development and experimental behavior of HDR seismic isolators for low-rise residential buildings. Eng. Struct. 2019, 183, 894–906. [Google Scholar] [CrossRef]
- AASHTO M251-06; Standard Specification for Plain and Laminated Elastomeric Bridge Bearings. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2016. Available online: https://www.arpminc.com/publications/44 (accessed on 5 May 2025).
- Madera-Sierra, I.E. Desarrollo Tecnológico de un Aislador Sísmico de Bajo Costo para Edificaciones Bajas. Ph.D. Thesis, Universidad del Valle, Cali, Colombia, 2018. [Google Scholar]
- Ortega, L. Prototipos de Aisladores Sísmicos con Matriz de Caucho Reciclado para la Mitigación de Riesgo en Estructuras. Master’s Thesis, Universidad del Valle, Cali, Colombia, 2022. [Google Scholar]
- Losanno, D.; De Domenico, D.; Madera-Sierra, I.E. Experimental testing of full-scale fiber reinforced elastomeric isolators (FREIs) in unbounded configuration. Eng. Struct. 2022, 260, 114234. [Google Scholar] [CrossRef]
- Losanno, D.; Serino, G.; Marulanda, J.; Spizzuoco, M.; Madera-Sierra, I.E.; Thomson, P.; Calabrese, A. Recycled versus Natural-Rubber Fiber-Reinforced Bearings for Base Isolation: Review of the Experimental Findings. J. Earthq. Eng. 2020, 26, 1921–1940. [Google Scholar] [CrossRef]
- Losanno, D.; Madera Sierra, I.E.; Spizzuoco, M.; Marulanda, J.; Thomson, P. Experimental performance of unbonded polyester and carbon fiber reinforced elastomeric isolators under bidirectional seismic excitation. Eng. Struct. 2020, 209, 110003. [Google Scholar] [CrossRef]
- Losanno, D.; Madera Sierra, I.E.; Spizzuoco, M.; Marulanda, J.; Thomson, P. Experimental assessment and analytical modeling of novel fiber-reinforced isolators in unbounded configuration. Compos. Struct. 2019, 212, 66–82. [Google Scholar] [CrossRef]
- Rodriguez-Piedrahita, J.S.; Muñoz-Gutierrez, L.A.; Madera-Sierra, I.E.; Pérez-Ruiz, D.D.; Cundumí-Sanchez, O. Hyperelastic and Viscoelastic Properties of Recycled Rubber Material—Experimental and Fem Characterization Study. Polym. Test. 2025, 149, 108870. [Google Scholar] [CrossRef]
- Meza-Muñoz, A.O.; Dyke, S.J.; Rojas-Manzano, M.A.; Madera-Sierra, I.E.; Patino-Reyes, E.D.; Salmerón-Becerra, M.I.; Rivas-Ordoñez, F.S. Development of a Matrix for Seismic Isolators Using Recycled Rubber from Vehicle Tires. Polymers 2024, 16, 2977. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Ordonez, F.S.; Dyke, S.J.; Meza-Munoz, A.O.; Madera-Sierra, I.E.; Rojas-Manzano, M.A.; Patino, E.D.; Salmerón-Becerra, M.I. Alternatives for Enhancing Mechanical Properties of Recycled Rubber Seismic Isolators. Polymers 2024, 16, 2258. [Google Scholar] [CrossRef]
- Lemos-Micolta, E.D.; Dyke, S.J.; Velay-Lizancos, M.; Rojas-Manzano, M.A.; Cundumí, O.; Velasco-Cuervo, I.C.; Madera-Sierra, I.E.; Patino, E.; Salmeron-Becerra, M.; Lopez-Arias, M. Assessment of the Mechanical Properties of Low-Cost Seismic Isolators Exposed to Environmental Conditions. Appl. Sci. 2025, 15, 346. [Google Scholar] [CrossRef]
- Calabrese, A.; Losanno, D.; Barjani, A.; Spizzuoco, M.; Strano, S. Effects of the long-term aging of glass-fiber reinforced bearings (FRBs) on the seismic response of a base-isolated residential building. Eng. Struct. 2020, 221, 110735. [Google Scholar] [CrossRef]
- Toopchi-Nezhad, H.; Ghotb, M.R.; Al-Anany, Y.M.; Tait, M.J. Partially bonded fiber reinforced elastomeric bearings: Feasibility, effectiveness, aging effects, and low temperature response. Eng. Struct. 2019, 179, 120–128. [Google Scholar] [CrossRef]
- South, J.T.; Case, S.W.; Reifsnider, K.L. Effects of Thermal Aging on The Mechanical Properties of Natural Rubber. Rubber Chem. Technol. 2003, 76, 785–802. [Google Scholar] [CrossRef]
- Yu, L.; Liu, S.; Yang, W.; Liu, M. Analysis of Mechanical Properties and Mechanism of Natural Rubber Waterstop after Aging in Low-Temperature Environment. Polymers 2021, 13, 2119. [Google Scholar] [CrossRef]
- Losanno, D.; Spizzuoco, M.; Calabrese, A. Bidirectional shaking-table tests of unbonded recycled-rubber fiber-reinforced bearings (RR-FRBs). Struct. Control Health Monit. 2019, 26, e2386. [Google Scholar] [CrossRef]
- ASTM D746; Test Method for Brittleness Temperature of Plastics and Elastomers by Impact. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM D2240; Test Method for Rubber Property—Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- ASTM D0412; Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension. ASTM International: West Conshohocken, PA, USA, 2006. [CrossRef]
- ASTM D4014; Standard Specification for Plain and Steel-Laminated Elastomeric Bearings for Bridges. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D575; Test Methods for Rubber Properties in Compression. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- Kunal, K.; Robertson, C.G.; Pawlus, S.; Hahn, S.F.; Sokolov, A.P. Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture. Macromolecules 2008, 41, 7232–7238. [Google Scholar] [CrossRef]
- Properties of Rubber at Low Temperatures. Nature 1942, 149, 645. [CrossRef]
- Fuller, K.N.G.; Gough, J.; Thomas, A.G. The effect of low-temperature crystallization on the mechanical behavior of rubber. J. Polym. Sci. B Polym. Phys. 2004, 42, 2181–2190. [Google Scholar] [CrossRef]
- Cossio Urán, E.; Giraldo Vásquez, D.; Castaño, N. Efectos del envejecimiento térmico y del contenido de negro de humo en la resistencia al desgaste abrasivo en seco del caucho natural. El Hombre Y La Máquina 2011, 36, 115–122. [Google Scholar]
- Kabakçi, G.C.; Aslan, O.; Bayraktar, E. A Review on Analysis of Reinforced Recycled Rubber Composites. J. Compos. Sci. 2022, 6, 225. [Google Scholar] [CrossRef]
- Hamaguchi, H.; Aizawa, S.; Samejima, Y.; Kikuchi, T.; Suzuki, S.; Yoshizawa, T. A Study of Aging Effect on a Rubber Bearing After About Twenty Years in Use. AIJ J. Technol. Des. 2009, 15, 393–398. [Google Scholar] [CrossRef]
- Wright, K.R.S.; Botha, T.R.; Els, P.S. Effects of age and wear on the stiffness and friction properties of an SUV tyre. J. Terramech. 2019, 84, 21–30. [Google Scholar] [CrossRef]
- Menard, K. Analyzing Tire Rubbers in the DMA 8000. Available online: https://www.researchgate.net/publication/293525637 (accessed on 27 June 2024).
- Zhu, X.; Li, X.; Jing, H.; Chen, Y.; Hou, L.; Bai, Y.; Jiang, Q.; Tang, C.; Chen, J. Rubber compounds made of modified ethylene propylene diene monomer (EPDM) for laminated bearings with excellent anti-peel strength. Constr. Build. Mater. 2024, 443, 137686. [Google Scholar] [CrossRef]
- Liang, J.; Ngai, T.; Wang, C.; Sang, J.; Lin, W.; Ren, K.; Wu, J. Ethylene vinyl acetate as a multifunctional compatibilizer for natural rubber/cis-1,4-polybutadiene rubber blends with enhanced compatibility, filler dispersion and mechanical properties. Collagen Leather 2025, 7, 3. [Google Scholar] [CrossRef]
- Ramarad, S.; Ratnam, C.T.; Munusamy, Y.; Rahim, N.A.A.; Muniyadi, M. Thermochemical compatibilization of reclaimed tire rubber/ poly(ethylene-co-vinyl acetate) blend using electron beam irradiation and amine-based chemical. J. Polym. Res. 2021, 28, 389. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Thermoplastic elastomers based on recycled high-density polyethylene/ground tire rubber/ethylene vinyl acetate: Effect of ground tire rubber regeneration on morphological and mechanical properties. J. Thermoplast. Compos. Mater. 2023, 36, 2285–2310. [Google Scholar] [CrossRef]
- Meng, X.; Kang, L.; Guo, X.; Tang, X.; Liu, L.; Shen, M. Highly Strong Interface Adhesion of Polyester Fiber Rubber Composite via Fiber Surface Modification by Meta-Cresol/Formaldehyde Latex Dipping Emulsion. Polymers 2023, 15, 1009. [Google Scholar] [CrossRef] [PubMed]
UR-FREI | UN-FREI | |
---|---|---|
Initial Condition (Shore A) | 72.4 | 53.4 |
After Exposition LT (Shore A) | 79.6 | 62.2 |
Increase (%) | 9.94 | 16.51 |
UR-FREI | UN-FREI | |||||||
---|---|---|---|---|---|---|---|---|
Exposure | H (Shore A) | T (σ) | CS (G) | MC (σ) | H (Shore A) | T (σ) | CS (G) | MC (σ) |
Low Temperatures | ↑ 10% | ↓ 76% | ↑ 63% | ↓ 58% | ↑ 16% | ↓ 21% | ↑ 15% | ↓ 80% |
Accelerated Aging | ↑ 15% | ↓ 45% | ↑ 84% | ↓ 22% | ↑ 25% | ↓ 65% | ↑ 64% | ↓ 75% |
UR-FREI | UN-FREI | |||||
---|---|---|---|---|---|---|
Exposure | β (%) | Kh (N/mm) | Kv (kN) | β (%) | Kh (N/mm) | Kv (kN) |
Low Temperatures | ↓ 19% | ↓ 57% | ↓ 28% | ↓ 18% | ↑ 25% | ↓ 44% |
UR-FREI | UN-FREI | |||||
---|---|---|---|---|---|---|
Exposure | β (%) | Kh (N/mm) | Kv (kN) | β (%) | Kh (N/mm) | Kv (kN) |
Accelerated Aging Test | ↓ 13% | ↑ 35% | ↓ 29% | ↓ 53% | ↑ 416% | ↓ 34% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco-Cuervo, I.C.; Lemos-Micolta, E.D.; Madera-Sierra, I.E.; Rojas-Manzano, M.A.; Muñoz-Velez, M.F.; Cundumí, O.; Patino, E.; Salmeron-Becerra, M.; Dyke, S.J.; Velay-Lizancos, M. Impact of Aging and Low Temperatures on the Mechanical Properties of Low-Cost Seismic Isolator Prototypes. Buildings 2025, 15, 2238. https://doi.org/10.3390/buildings15132238
Velasco-Cuervo IC, Lemos-Micolta ED, Madera-Sierra IE, Rojas-Manzano MA, Muñoz-Velez MF, Cundumí O, Patino E, Salmeron-Becerra M, Dyke SJ, Velay-Lizancos M. Impact of Aging and Low Temperatures on the Mechanical Properties of Low-Cost Seismic Isolator Prototypes. Buildings. 2025; 15(13):2238. https://doi.org/10.3390/buildings15132238
Chicago/Turabian StyleVelasco-Cuervo, Isabel C., Erika D. Lemos-Micolta, Ingrid E. Madera-Sierra, Manuel Alejandro Rojas-Manzano, Mario F. Muñoz-Velez, Orlando Cundumí, Edwin Patino, Manuel Salmeron-Becerra, Shirley J. Dyke, and Mirian Velay-Lizancos. 2025. "Impact of Aging and Low Temperatures on the Mechanical Properties of Low-Cost Seismic Isolator Prototypes" Buildings 15, no. 13: 2238. https://doi.org/10.3390/buildings15132238
APA StyleVelasco-Cuervo, I. C., Lemos-Micolta, E. D., Madera-Sierra, I. E., Rojas-Manzano, M. A., Muñoz-Velez, M. F., Cundumí, O., Patino, E., Salmeron-Becerra, M., Dyke, S. J., & Velay-Lizancos, M. (2025). Impact of Aging and Low Temperatures on the Mechanical Properties of Low-Cost Seismic Isolator Prototypes. Buildings, 15(13), 2238. https://doi.org/10.3390/buildings15132238