Evaluation of Timber Mechanical Properties Through Non-Destructive Testing: A Bibliometric Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Selection
2.2. Visualization Using VOSviewer Software
3. Results
3.1. Research Trends of ‘Wood2’ or ‘Timber2’ and ‘Non-Destructive Testing Method1’ and ‘Mechanical Properties3’
3.2. Research Trends of ‘Wood2’ or ‘Timber2’ and ‘Non-Destructive Testing Method1’ and ‘Ultrasonic Waves4 Method’ and ‘Mechanical Properties3’
3.3. Research Trends of ‘Wood2’ or ‘Timber2’ and ‘Non-Destructive Testing Method1’ and ‘Ultrasonic Waves4 Method’ and ‘Elasticity Modulus5’
4. Limitation of Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NDT | Non-destructive testing |
MOE | Modulus of elasticity |
UPV | Ultrasonic pulse velocity |
References
- Puaad, M.B.F.M.; Ahmad, Z.; Muhamad Azlan, H. Ultrasonic Wave Non-Destructive Method for Predicting the Modulus of Elasticity of Timber. In CIEC 2013; Springer: Singapore, 2014. [Google Scholar] [CrossRef]
- Bucur, V.; Gonçalves, R.; Lu, J.; Brashaw, B.K.; Divos, F.; Meder, R.; Pellerin, R.F.; Potter, S.; Ross, R.J.; Wang, X.; et al. Nondestructuve Testing and Evaluation of Wood: A Worldwide Research Update. 2009. Available online: https://www.researchgate.net/publication/237420077 (accessed on 20 November 2023).
- Espinosa, L.; Brancheriau, L.; Cortes, Y.; Prieto, F.; Lasaygues, P. Ultrasound computed tomography on standing trees: Accounting for wood anisotropy permits a more accurate detection of defects. Ann. For. Sci. 2020, 77, 1–13. [Google Scholar] [CrossRef]
- Gonçalves, R.; Trinca, A.J.; dos Ferreira, G.C.S. Effect of coupling media on velocity and attenuation of ultrasonic waves in Brazilian wood. J. Wood Sci. 2011, 57, 282–287. [Google Scholar] [CrossRef]
- Hasegawa, M.; Mori, M.; Matsumura, J. Non-Contact Velocity Measurement of Japanese Cedar Columns Using Air-Coupled Ultrasonics. World J. Eng. Technol. 2016, 04, 45–50. [Google Scholar] [CrossRef]
- Ross, R.J.; Brashaw, B.K.; Pellerin, R.F. Nondestructive Evaluation of Wood: Second Edition. For. Prod. J. 2015, 48, 14. [Google Scholar]
- Ross, R.J.; Pellerin, R.F. Nondestructive Nondestructive Testing for Assessing Testing for Assessing Wood Members in Wood Members in Structures Structures A Review; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1994. [Google Scholar]
- Senalik, C.A.; Schueneman, G.; Ross, R.J. Ultrasonic-Based Nondestructive Evaluation Methods for Wood: A Primer and Historical Review. 2014. Available online: https://www.fs.usda.gov/treesearch/pubs/47193 (accessed on 28 November 2023).
- Capriotti, M.; Varela, K.; Ellison, A.; Kim, E.H.; Di Scalea, F.L.; Kim, H. Ultrasonic Guided Waves Defect Signatures for Damage Identification in Composite Aerospace Structures. In Proceedings of the American Society for Composites—37th Technical Conference, ASC, Tucson, AZ, USA, 19–21 September 2022. [Google Scholar] [CrossRef]
- Cui, R.; Wiggers de Souza, C.; Katko, B.J.; Lanza di Scalea, F.; Kim, H. Non-destructive damage localization in built-up composite aerospace structures by ultrasonic guided-wave multiple-output scanning. Compos. Struct. 2022, 292, 115670. [Google Scholar] [CrossRef]
- Ju, T.; Findikoglu, A.T. Large Area Detection of Microstructural Defects with Multi-Mode Ultrasonic Signals. Appl. Sci. 2022, 12, 2082. [Google Scholar] [CrossRef]
- Kuchipudi, S.T.; Pudovikov, S.; Wiggenhauser, H.; Ghosh, D.; Rabe, U. Imaging of vertical surface-breaking cracks in concrete members using ultrasonic shear wave tomography. Sci. Rep. 2023, 13, 1–19. [Google Scholar] [CrossRef]
- Kuchipudi, S.T.; Ghosh, D. An ultrasonic wave-based framework for imaging internal cracks in concrete. Struct. Control Health Monit. 2022, 29, e3108. [Google Scholar] [CrossRef]
- Raj, B.; Jayakumar, T.; Thavasimuthu, M. Practical Non-destructive Testing. In High Performance Liquid Chromatography; Woodhead Publishing: Cambridge, UK, 2002. [Google Scholar]
- Shang, L.; Zhang, Z.; Tang, F.; Cao, Q.; Pan, H.; Lin, Z. Signal Process of Ultrasonic Guided Wave for Damage Detection of Localized Defects in Plates: From Shallow Learning to Deep Learning. J. Data Sci. Intell. Syst. 2023, 3, 149–164. [Google Scholar] [CrossRef]
- Sobol, B.V.; Soloviev, A.N.; Vasiliev, P.V.; Lyapin, A.A. Modeling of Ultrasonic Flaw Detection Processes in the Task of Searching and Visualizing Internal Defects in Assemblies and Structures. Adv. Eng. Res. (Rostov—Don) 2023, 23, 433–450. [Google Scholar] [CrossRef]
- Xu, X.; Ran, B.; Jiang, N.; Xu, L.; Huan, P.; Zhang, X.; Li, Z. A systematic review of ultrasonic techniques for defects detection in construction and building materials. Meas. J. Int. Meas. Confed. 2024, 226, 114181. [Google Scholar] [CrossRef]
- Ettelaei, A.; Layeghi, M.; Zarea Hosseinabadi, H.; Ebrahimi, G. Prediction of modulus of elasticity of poplar wood using ultrasonic technique by applying empirical correction factors. Meas. J. Int. Meas. Confed. 2019, 135, 392–399. [Google Scholar] [CrossRef]
- Najjar, J.E.l.; Mustapha, S. Assessment of the structural integrity of timber utility poles using ultrasonic waves. Mater. Res. Proc. 2021, 18, 131. [Google Scholar] [CrossRef]
- Premrov, M.; Žegarac Leskovar, V. Innovative Structural Systems for Timber Buildings: A Comprehensive Review of Contemporary Solutions. Buildings 2023, 13, 1820. [Google Scholar] [CrossRef]
- Bachtiar, E.V.; Sanabria, S.J.; Mittig, J.P.; Niemz, P. Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques. Wood Sci. Technol. 2016, 51, 47–67. [Google Scholar] [CrossRef]
- Bucur, V. A Review on Acoustics of Wood as a Tool for Quality Assessment. Forests 2023, 14, 1545. [Google Scholar] [CrossRef]
- El Najjar, J.; Mustapha, S. Condition assessment of timber utility poles using ultrasonic guided waves. Constr. Build. Mater. 2021, 272, 121902. [Google Scholar] [CrossRef]
- Gonçalves, R.; Lorensani, R.G.M.; Negreiros, T.O.; Bertoldo, C. Moisture-related adjustment factor to obtain a reference ultrasonic velocity in structural lumber of plantation hardwood. Wood Mater. Sci. Eng. 2018, 13, 254–261. [Google Scholar] [CrossRef]
- Ronnie, Y.V. Ultrasonic Characterization of Engineering Performance of Oriented Strandboard. Dissertations Theses, Louisiana State University, Baton Rouge, LA, USA, 2003. Available online: https://repository.lsu.edu/gradschool_dissertations (accessed on 27 September 2023).
- Candian, M.; Sales, A. Aplicação das técnicas não-destrutivas de ultra-som, vibração transversal e ondas de tensão para avaliação de madeira. Ambiente Construído 2009, 9, 83–98. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Zhang, Y.; Jiang, S. Defect Detection in Solid Timber Panels Using Air-Coupled Ultrasonic Imaging Techniques. Appl. Sci. 2024, 14, 434. [Google Scholar] [CrossRef]
- Pearson, L.H.; Pearson, A.C.; Griffiths, E.W.; Eden, T.J. Ultrasonic Inspection. Compr. Struct. Integr. 2023, 7, 217–245. [Google Scholar] [CrossRef]
- Aydin, T.Y. Ultrasonic evaluation of time and temperature-dependent orthotropic compression properties of oak wood. J. Mater. Res. Technol. 2020, 9, 6028–6036. [Google Scholar] [CrossRef]
- Carrasco, E.V.M.; Souza Mde, F.; Pereira, L.R.S.; Vargas, C.B.; Mantilla, J.N.R. Determinação do módulo de elasticidade da madeira em função da inclinação das fibras utilizando tomógrafo acústico. Rev. Mater. 2017, 22, e11935. [Google Scholar] [CrossRef]
- Carrillo, M.; Carreon, H.G. Ultrasonic determination of the elastic and shear modulus on aged wood. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII; SPIE-International Society for Optics and Photonics: Bellingham, WA, USA, 2019. [Google Scholar] [CrossRef]
- Palizi, S.; Toufigh, V.; Ramezanpour Kami, M. Ultrasonic pulse velocity for mechanical properties determination of wood. Wood Mater. Sci. Eng. 2023, 18, 1966–1977. [Google Scholar] [CrossRef]
- Ramezanpour Kami, M.; Toufigh, V. Ultrasonic evaluation for the detection of contact defects of the timber and fiber-reinforced polymer. Struct. Health Monit. 2022, 22, 2868–2887. [Google Scholar] [CrossRef]
- Sharma, S.K.; Shukla, S.R. Properties evaluation and defects detection in timbers by ultrasonic non-destructive technique. J. Indian Acad. Wood Sci. 2012, 9, 66–71. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef]
- Klapka, O.; Slabý, A. Visual analysis of search results in Scopus database focused on sustainable tourism. Czech J. Tour. 2020, 9, 41–53. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L.; VOSviewer Manual (Version 1.6.20) [Software manual]. Universiteit Leiden. Available online: http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.20.pdf (accessed on 31 October 2023).
- Xie, J.; Zhang, G.; Li, Y.; Yan, X.; Zang, L.; Liu, Q.; Chen, D.; Sui, M.; He, Y. A Bibliometric Analysis of Forest Gap Research during 1980–2021. Sustainability 2023, 15, 1994. [Google Scholar] [CrossRef]
- da Mastela, L.C.; de Segundinho, P.G.A.; Gonçalves, F.G.; de Souza, C.G.F.; Lahr, F.A.R.; Taquetti, V.B. The use of non-destructive testing methods on glued laminated wood to obtain data. In A Look at Development; Sustainable Development and Planning IX; WIT Press: Southampton, UK, 2023; Volume 226, pp. 559–568. [Google Scholar] [CrossRef]
- Nallar, M.; Bernier, A.P.; Potter, J.T.; Evaluation of Non-Destructive Testing (NDT) Methods for Wood Power Poles (ERDC/CRREL TR-23-9). U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory. 2023. Available online: https://apps.dtic.mil/sti/trecms/pdf/AD1213544.pdf (accessed on 27 September 2023).
- Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; Van den Bulcke, J.; Wang, X. Non-destructive evaluation techniques and what they tell us about wood property variation. Forests 2019, 10, 728. [Google Scholar] [CrossRef]
- Dipova, N. Nondestructive testing of stabilized soils and soft rocks via needle penetration. Period. Polytech. Civ. Eng. 2018, 62, 539–544. [Google Scholar] [CrossRef]
- Abdallah, W.; Saliba, J.; Sbartaï, Z.-M.; Sadek, M.; Chehade, F.H.; ElAchachi, S.M. Reliability analysis of non-destructive testing models within a probabilistic approach. MATEC Web Conf. 2019, 281, 04003. [Google Scholar] [CrossRef]
- Küttenbaum, S.; Taffe, A.; Braml, T.; Maack, S. Reliability assessment of existing bridge constructions based on results of non-destructive testing. MATEC Web Conf. 2018, 199, 06001. [Google Scholar] [CrossRef]
- Xue, X.; Wang, Y.; Tian, P.; Zhan, S. Reliability Simulation Research for Nondestructive Ultrasonic Structure Testing Based on In Situ Influential Factors. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part. A Civil. Eng. 2020, 6, 04020027. [Google Scholar] [CrossRef]
- Borján, J. Reliability of nondestructive concrete tests. Period. Polytech. Civ. Eng. 1982, 26, 109–118. [Google Scholar]
- Mironov, A.A. An analysis of nondestructive testing data with consideration for their stochasticity. Russ. J. Nondestruct. Test. 2015, 51, 166–170. [Google Scholar] [CrossRef]
- Mohammadi, J. An Overview of Non-Destructive Test Methods in Fatigue and Fracture Reliability Assessment. In NDT Methods Applied to Fatigue Reliability Assessment of Structures; American Society of Civil Engineers, 1801 Alexander Bell Drive: Reston, VA, USA, 2004. [Google Scholar] [CrossRef]
- Park, J.-W.; Choo, J.-H.; Park, G.-R.; Hwang, I.-B.; Shin, Y.-S. The Evaluation of Non-Destructive Formulas on Compressive Strength Using the Reliability Based on Probability. J. Korea Inst. Struct. Maint. Insp. 2015, 19, 25–34. [Google Scholar] [CrossRef]
- Sweeting, T. Statistical Models for Nondestructive Evaluation. Int. Stat. Rev. Rev. Int. De Stat. 1995, 63, 199. [Google Scholar] [CrossRef]
- Yesmin, S.; Islam, A. Strength Assessment of Jute Fiber Reinforced Concrete by Destructive and Non-destructive Test Methods. Int. J. Res. Publ. 2019, 39, 1–11. Available online: www.ijrp.org (accessed on 25 November 2023).
- Voznesenskii, A.S.; Krasilov, M.N.; Kutkin, Y.O.; Tavostin, M.N. Reliability increasing of an estimation of rocks strength by non-destructive methods of acoustic testing due to additional informative parameters. In Characterization of Minerals, Metals, and Materials 2019; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Nowak, T.; Patalas, F.; Karolak, A. Estimating mechanical properties of wood in existing structures—Selected aspects. Materials 2021, 14, 1941. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Radhika, M.A. Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: A review of wired, wireless and energy-harvesting methods. J. Intell. Mater. Syst. Struct. 2013, 24, 1021–1042. [Google Scholar] [CrossRef]
- Nowak, T.P.; Jasieńko, J.; Hamrol-Bielecka, K. In situ assessment of structural timber using the resistance drilling method—Evaluation of usefulness. Constr. Build. Mater. 2016, 102, 403–415. [Google Scholar] [CrossRef]
- Auty, D.; Achim, A. The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands. Forestry 2008, 81, 475–487. [Google Scholar] [CrossRef]
- Wessels, C.B.; Malan, F.S.; Rypstra, T. A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. Eur. J. For. Res. 2011, 130, 881–893. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Gong, M. Measurement of dynamic modulus of elasticity and damping ratio of wood-based composites using the cantilever beam vibration technique. Constr. Build. Mater. 2012, 28, 831–834. [Google Scholar] [CrossRef]
- Feio, A.; Machado, J.S. In-situ assessment of timber structural members: Combining information from visual strength grading and NDT/SDT methods—A review. Constr. Build. Mater. 2015, 101, 1157–1165. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Feio, A.O.; Machado, J.S. Chestnut wood in compression perpendicular to the grain: Non-destructive correlations for test results in new and old wood. Constr. Build. Mater. 2007, 21, 1617–1627. [Google Scholar] [CrossRef]
- Fathi, H.; Nasir, V.; Kazemirad, S. Prediction of the mechanical properties of wood using guided wave propagation and machine learning. Constr. Build. Mater. 2020, 262, 120848. [Google Scholar] [CrossRef]
- Viguié, J.; Latil, P.; Orgéas, L.; Dumont, P.J.J.; Rolland du Roscoat, S.; Bloch, J.F.; Marulier, C.; Guiraud, O. Finding fibres and their contacts within 3D images of disordered fibrous media. Compos. Sci. Technol. 2013, 89, 202–210. [Google Scholar] [CrossRef]
- Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. Holzforschung 2019, 73, 827–838. [Google Scholar] [CrossRef]
- Fathi, H.; Kazemirad, S.; Nasir, V. Lamb wave propagation method for nondestructive characterization of the elastic properties of wood. Appl. Acoust. 2021, 171, 107565. [Google Scholar] [CrossRef]
- Faggiano, B.; Grippa, M.R.; Marzo, A.; Mazzolani, F.M. Experimental study for non-destructive mechanical evaluation of ancient chestnut timber. J. Civ. Struct. Health Monit. 2011, 1, 103–112. [Google Scholar] [CrossRef]
- Jaskowska-Lemańska, J.; Przesmycka, E. Semi-destructive and non-destructive tests of timber structure of various moisture contents. Materials 2021, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Lin, C.J.; Chiu, C.M. Evaluation of wood quality of Taiwania trees grown with different thinning and pruning treatments using ultrasonic-wave testing. Wood Fiber Sci. 2005, 37, 192–200. [Google Scholar]
- Zhang, L.; Tiemann, A.; Zhang, T.; Gauthier, T.; Hsu, K.; Mahamid, M.; Moniruzzaman, P.K.; Ozevin, D. Nondestructive assessment of cross-laminated timber using non-contact transverse vibration and ultrasonic testing. Eur. J. Wood Wood Prod. 2021, 79, 335–347. [Google Scholar] [CrossRef]
- Chiu, C.M.; Lin, C.H.; Yang, T.H. Application of nondestructive methods to evaluate mechanical properties of 32-year-old taiwan incense cedar (Calocedrus formosana) wood. BioResources 2013, 8, 688–700. [Google Scholar] [CrossRef]
- Kovryga, A.; Khaloian Sarnaghi, A.; van de Kuilen, J.W.G. Strength grading of hardwoods using transversal ultrasound. Eur. J. Wood Wood Prod. 2020, 78, 951–996. [Google Scholar] [CrossRef]
- Montero, M.J.; de La Mata, J.; Esteban, M.; Hermoso, E. Influence of moisture content on the wave velocity to estimate the mechanical properties of large cross-section pieces for structural use of scots pine from Spain. Maderas Cienc. Y Tecnol. 2015, 17, 407–420. [Google Scholar] [CrossRef]
- Smulski, S.J. Relationship of stress wave-and static bending-determined properties of four northeastern hardwoods. Wood Fiber Sci. 1991, 23, 44–57. [Google Scholar]
- Yamasaki, M.; Tsuzuki, C.; Sasaki, Y.; Onishi, Y. Influence of moisture content on estimating Young’s modulus of full-scale timber using stress wave velocity. J. Wood Sci. 2017, 63, 225–235. [Google Scholar] [CrossRef]
- Kertész, P.; Marek, I. Application des ondes ultrasonores Aux Essais de la physique des roches. Period. Polytech. Civil. Eng. 1970, 15, 13–30. [Google Scholar]
- Esteban, L.G.; Fernández, F.G.; de Palacios, P. MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing. Comput. Struct. 2009, 87, 1360–1365. [Google Scholar] [CrossRef]
- Liang, S.Q.; Fu, F. Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber. J. For. Res. 2007, 18, 309–312. [Google Scholar] [CrossRef]
- Karlinasari, L.; Wahyuna, M.E.; Nugroho, N. Non-destructive ultrasonic testing method for determining bending strength properties of Gmelina wood (Gmelina Arborea). J. Trop. For. Sci. 2008, 20, 99–104. [Google Scholar]
- Osuna-Sequera, C.; Llana, D.F.; Íñiguez-González, G.; Arriaga, F. The influence of cross-section variation on bending stiffness assessment in existing timber structures. Eng. Struct. 2020, 204, 110082. [Google Scholar] [CrossRef]
- Mori, M.; Hasegawa, M.; Yoo, J.C.; Kang, S.G.; Matsumura, J. Nondestructive evaluation of bending strength of wood with artificial holes by employing air-coupled ultrasonics. Constr. Build. Mater. 2016, 110, 24–31. [Google Scholar] [CrossRef]
Title | Journal | Cited by | Reference |
---|---|---|---|
Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: A review of wired, wireless and energy-harvesting methods. | Journal of Intelligent Material Systems and Structures | 154 | [54] |
In situ assessment of structural timber using the resistance drilling method—Evaluation of usefulness. | Construction and Building Materials | 76 | [55] |
The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands. | Forestry | 74 | [56] |
A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. | European Journal of Forest Research | 67 | [57] |
Measurement of dynamic modulus of elasticity and damping ratio of wood-based composites using the cantilever beam vibration technique. | Construction and Building Materials | 66 | [58] |
In situ assessment of timber structural members: Combining information from visual strength grading and NDT/SDT methods—A review. | Construction and Building Materials | 63 | [59] |
Chestnut wood in compression perpendicular to the grain: Non-destructive correlations for test results in new and old wood. | Construction and Building Materials | 59 | [60] |
Prediction of the mechanical properties of wood using guided wave propagation and machine learning. | Construction and Building Materials | 59 | [61] |
Finding fibres and their contacts within 3D images of disordered fibrous media. | Composites Science and Technology | 52 | [62] |
Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. | Holzforschung | 41 | [63] |
Title | Journal | Cited by | Reference |
---|---|---|---|
Prediction of the mechanical properties of wood using guided wave propagation and machine learning. | Construction and Building Materials | 59 | [61] |
Chestnut wood in compression perpendicular to the grain: Non-destructive correlations for test results in new and old wood. | Construction and Building Materials | 59 | [60] |
Lamb wave propagation method for nondestructive characterization of the elastic properties of wood. | Applied Acoustics | 30 | [64] |
Experimental study for non-destructive mechanical evaluation of ancient chestnut timber. | Journal of Civil Structural Health Monitoring | 28 | [65] |
Estimating mechanical properties of wood in existing structures—selected aspects. | Materials | 18 | [53] |
Semi-destructive and non-destructive tests of timber structure of various moisture contents. | Materials | 16 | [66] |
Evaluation of wood quality of Taiwania trees grown with different thinning and pruning treatments using ultrasonic-wave testing. | Wood and Fiber Science | 15 | [67] |
Nondestructive assessment of cross-laminated timber using non-contact transverse vibration and ultrasonic testing. | European Journal of Wood and Wood Products | 13 | [68] |
Application of nondestructive methods to evaluate mechanical properties of 32-year-old taiwan incense cedar (Calocedrus formosana) wood. | BioResources | 11 | [69] |
Strength grading of hardwoods using transversal ultrasound. | European Journal of Wood and Wood Products | 10 | [70] |
Title | Journal | Cited by | Reference |
---|---|---|---|
MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing. | Computers and Structures | 62 | [75] |
Prediction of the mechanical properties of wood using guided wave propagation and machine learning. | Construction and Building Materials | 59 | [61] |
Lamb wave propagation method for nondestructive characterization of the elastic properties of wood. | Applied Acoustics | 30 | [65] |
Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber. | Journal of Forestry Research | 29 | [76] |
Experimental study for non-destructive mechanical evaluation of ancient chestnut timber. | Journal of Civil Structural Health Monitoring | 28 | [66] |
Non-destructive ultrasonic testing method for determining bending strength properties of Gmelina wood (Gmelina Arborea). | Journal of Tropical Forest Science | 25 | [77] |
The influence of cross-section variation on bending stiffness assessment in existing timber structures. | Engineering Structures | 19 | [78] |
Estimating mechanical properties of wood in existing structures—selected aspects. | Materials | 18 | [53] |
Non-destructive evaluation of bending strength of wood with artificial holes by employing air-coupled ultrasonics. | Construction and Building Materials | 15 | [79] |
Evaluation of wood quality of Taiwania trees grown with different thinning and pruning treatments using ultrasonic wave testing. | Wood and Fiber Science | 15 | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brougui, M.; Andor, K.; Szabó, P. Evaluation of Timber Mechanical Properties Through Non-Destructive Testing: A Bibliometric Analysis. Buildings 2025, 15, 2192. https://doi.org/10.3390/buildings15132192
Brougui M, Andor K, Szabó P. Evaluation of Timber Mechanical Properties Through Non-Destructive Testing: A Bibliometric Analysis. Buildings. 2025; 15(13):2192. https://doi.org/10.3390/buildings15132192
Chicago/Turabian StyleBrougui, Marwa, Krisztián Andor, and Péter Szabó. 2025. "Evaluation of Timber Mechanical Properties Through Non-Destructive Testing: A Bibliometric Analysis" Buildings 15, no. 13: 2192. https://doi.org/10.3390/buildings15132192
APA StyleBrougui, M., Andor, K., & Szabó, P. (2025). Evaluation of Timber Mechanical Properties Through Non-Destructive Testing: A Bibliometric Analysis. Buildings, 15(13), 2192. https://doi.org/10.3390/buildings15132192