Uncertainty-Based Model Averaging for Prediction of Corrosion Ratio of Reinforcement Embedded in Concrete
Abstract
:1. Introduction
2. Structure of Bayesian Probabilistic Prediction Model for the Corroded Mass Reduction Ratio of Reinforcement
2.1. Deterministic Model
2.2. Probabilistic Prediction Model
3. Accelerated Corrosion Test and Result Analysis
3.1. Specimen Design
3.2. Accelerated Corrosion and HCP Test
3.3. Data Collection
3.4. Test Results
4. Prior Correlation Model and Bayesian Updating
4.1. Prior Correlation Model
4.2. Accuracy Validation of the Proposed Prior Model
4.3. Influence Analysis of Prior Information
4.4. Correlation Analysis of Corroded Mass Reduction Ratio and HCP
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodriguez, D.; Ortega, L.; Casal, J. Load carrying capacity of concrete structures with corroded reinforcement. Constr. Build. Mater. 1997, 11, 239–248. [Google Scholar] [CrossRef]
- Cabrera, J. Deterioration of concrete due to reinforcement steel corrosion. Cem. Concr. Compos. 1996, 18, 47–59. [Google Scholar] [CrossRef]
- Assouli, B.; Ballivy, G.; Rivard, P. Influence of environmental parameters on application of standard ASTM C876-91: Half-cell potential measurements. Corrosion Engineering. Sci. Technol. 2009, 43, 93–96. [Google Scholar] [CrossRef]
- Wilson, J.M. Modeling Half-Cell Potentials and Their Relationship to Corrosion of Reinforcing Steel. Master’s Thesis, University of Massachusetts Lowell, Lowell, MA, USA, 2013. [Google Scholar]
- Zou, Z.H.; Wu, J.; Wang, Z.; Wang, Z. Relationship between half-cell potential and corrosion level of rebar in concrete. Corros. Eng. Sci. Technol. 2016, 51, 588–595. [Google Scholar] [CrossRef]
- Yodsudjai, W.; Pattarakittam, T. Factors influencing half-cell potential measurement and its relationship with corrosion level. Measurement 2017, 104, 159–168. [Google Scholar] [CrossRef]
- Nie, Z.H.; Wu, J. Potential, resistivity and the relationship between the corrosion rate of steel. Low. Temp. Arch. Technol. 2011, 10, 6–8. [Google Scholar]
- Zhou, Y. Study on Bond Behavior of Corroded Reinforced Concrete in Marine Environment: Degradation Law and Variability. Ph.D. Thesis, Shenzhen University, Shenzhen, China, 2019. [Google Scholar]
- Yodsudjai, W.; Vanrak, P.; Suwanvitaya, P.; Jutasiriwong, A. Corrosion behavior of reinforcement in concrete with different compositions. J. Sustain. Cem.-Based Mater. 2021, 10, 129–148. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Miranda, J.M.; Feliu, S. Considerations on reproducibility of potential and corrosion rate measurements in reinforced concrete. Corros. Sci. 2004, 46, 2467–2485. [Google Scholar] [CrossRef]
- Almashakbeh, Y.; Saleh, E.; Al-Akhras, N. Evaluation of Half-Cell Potential Measurements for Reinforced Concrete Corrosion. Coatings 2022, 12, 975. [Google Scholar] [CrossRef]
- Guo, R.; Guo, Z.; Yao, G.; Jin, Y.; Liu, Z. Hybrid prediction model for reinforcements’ corrosion stage by multiple nondestructive electrochemical indices. J. Build. Eng. 2024, 82, 108327. [Google Scholar] [CrossRef]
- Aridas, C.; Karlos, S.; Kanas, V.; Fazakis, N.; Kotsiantis, S. Uncertainty Based Under-Sampling for Learning Naive Bayes Classifiers Under Imbalanced Data Sets. IEEE Access 2020, 8, 2122–2133. [Google Scholar] [CrossRef]
- Ghods, P.; Isgor, O.; Pour-Ghaz, M. Experimental verification and application of a practical corrosion model for uniformly depassivated steel in concrete. Mater. Struct. 2007, 41, 1211–1223. [Google Scholar] [CrossRef]
- Xia, J.; Shen, J.; Li, T.; Jin, W. Corrosion prediction models for steel bars in chloride-contaminated concrete: A review. Mag. Concr. Res. 2022, 74, 123–142. [Google Scholar] [CrossRef]
- Song, H.-W.; Saraswathy, V. Corrosion monitoring of reinforced concrete structures—A review. Int. J. Electrochem. Sci. 2007, 2, 1–28. [Google Scholar] [CrossRef]
- Adriman, R.; Ibrahim, I.B.M.; Huzni, S.; Fonna, S.; Ariffin, A.K. Improving half-cell potential survey through computational inverse analysis for quantitative corrosion profiling. Case Stud. Constr. Mater. 2022, 16, e00854. [Google Scholar] [CrossRef]
- Mancio, M.; Carlos, C., Jr.; Zhang, J.; Harvey, J.T.; Monteiro, P.J.; Ali, A. Laboratory Evaluation of Corrosion Resistance of Steel Dowels in Concrete Pavement; University of California Pavement Research Center: Davis, CA, USA, 2005. [Google Scholar]
- Angst, U.; Büchler, M. On the applicability of the Stern–Geary relationship to determine instantaneous corrosion rates in macro-cell corrosion. Mater. Corros. 2015, 66, 1017–1028. [Google Scholar] [CrossRef]
- Hidenobu, T.; Takahiko, S. Studies on diagnosis and repair for reinforcing bar corrosion by salt injury. Trans. Jpn. Concr. Inst. 2001, 22, 211–220. [Google Scholar]
- Sofiani, F.M.; Tacq, J.; Elahi, S.A.; Chaudhuri, S.; De Waele, W. A hybrid probabilistic-deterministic framework for prediction of characteristic size of corrosion pits in low-carbon steel following long-term seawater exposure. Corros. Sci. 2024, 232, 112039. [Google Scholar] [CrossRef]
- Ma, Y.; Che, Y.; Gong, J. Behavior of corrosion damaged circular reinforced concrete columns under cyclic loading. Constr. Build. Mater. 2012, 29, 548–556. [Google Scholar] [CrossRef]
- Nasser, H.V.; Vrijdaghs, R. Experimental investigation of corrosion damage on reinforced concrete beams to correlate crack width and mass loss. In Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations; CRC Press: Boca Raton, FL, USA, 2021; pp. 2927–2934. [Google Scholar]
- Zhao, Z.; Zhang, H.; Xian, L.; Liu, H. Tensile strength of Q345 steel with random pitting corrosion based on numerical analysis. Thin-Walled Struct. 2020, 148, 106579. [Google Scholar] [CrossRef]
- Ge, X.; Dietz, M.; Alexander, N.; Kashani, M. Nonlinear dynamic behaviour of severely corroded reinforced concrete columns: Shaking table study. Bull. Earthq. Eng. 2019, 18, 1417–1443. [Google Scholar] [CrossRef]
- Mei, K.; He, Z.; Yi, B.; Lin, X.; Wang, J.; Wang, H.; Liu, J. Study on electrochemical characteristics of reinforced concrete corrosion under the action of carbonation and chloride. Case Stud. Constr. Mater. 2022, 17, e01351. [Google Scholar] [CrossRef]
- Woo, B.-H.; Lee, J.; Kim, J.; Kim, H. Corrosion state assessment of the rebar via Bayesian inference. Constr. Build. Mater. 2023, 392, 131791. [Google Scholar] [CrossRef]
- Lee, H.-S.; Kim, H.G.; Ryou, J.-S.; Kim, Y.; Woo, B.-H. Corrosion state assessment of the rebar: Experimental investigation by ambient temperature and relative humidity. Constr. Build. Mater. 2023, 408, 133598. [Google Scholar] [CrossRef]
- Muthulingam, S.; Rao, B. Non-uniform corrosion states of rebar in concrete under chloride environment. Corros. Sci. 2015, 93, 267–282. [Google Scholar] [CrossRef]
- Song, L.; Liu, J.; Liu, R.; Sun, H.; Yu, Z. Unification and calibration of steel corrosion models based on long-term natural corrosion. Constr. Build. Mater. 2024, 411, 134611. [Google Scholar] [CrossRef]
- Yao, L. Experimental Study on Bond Performance of Corroded Reinforced Concrete Under Fatigue Loading. Master’ Thesis, Shenzhen University, Shenzhen, China, 2020. [Google Scholar]
- Poursaee, A.; Hansson, C. Potential pitfalls in assessing chloride-induced corrosion of steel in concrete. Cem. Concr. Res. 2009, 39, 391–400. [Google Scholar] [CrossRef]
- Pour-Ghaz, M.; Isgor, O.; Ghods, P. Quantitative Interpretation of Half-Cell Potential Measurements in Concrete Structures. J. Mater. Civ. Eng. 2009, 21, 467–475. [Google Scholar] [CrossRef]
- Reichling, K.; Raupach, M.; Broomfield, J.; Gulikers, J.; L’Hostis, V.; Kessler, S.; Osterminski, K.; Pepenar, I.; Schneck, U.; Sergi, G.; et al. Full surface inspection methods regarding reinforcement corrosion of concrete structures. Mater. Corros.-Werkst. Und Korros. 2013, 64, 116–127. [Google Scholar] [CrossRef]
- Koga, G.; Albert, B.; Nogueira, R. Revisiting the ASTM C876 standard for corrosion of reinforcing steel: On the correlation between corrosion potential and polarization resistance during the curing of different cement mortars. Electrochem. Commun. 2018, 94, 1–4. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, J.; Bang, J.; Kwon, S. Effect of cover depth, w/c ratio, and crack width on half-cell potential in cracked concrete exposed to salt sprayed condition. Constr. Build. Mater. 2014, 54, 636–645. [Google Scholar] [CrossRef]
- Su, J.; Yang, C.; Wu, W.; Huang, R. Effect of Moisture Content on Concrete Resistivity Measurement. J. Chin. Inst. Eng. 2002, 25, 117–122. [Google Scholar] [CrossRef]
- Elsener, B.; Andrade, C.; Gulikers, J. Half-cell potential measurements—Potential mapping on reinforced concrete structures, recommendations. Mater. Struct. 2003, 36, 461–471. [Google Scholar] [CrossRef]
- Haenni, R.; Romeijn, J.; Wheeler, G.; Williamson, J. Probabilistic Logics and Probabilistic Networks; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Wang, S. Learning, Reasoning and Application of Bayesian Network; Lixin Accounting Press: Shanghai, China, 2010. [Google Scholar]
- Brooks, S.; Gelman, A.; Jones, G.; Meng, X. Handbook of Markov Chain Monte Carlo; Taylor and Francis; CRC Press: New York, NY, USA, 2011. [Google Scholar]
- Mao, S.; Tang, Y. Bayesian Statistics; China Statistics Press: Beijing, China, 2012. [Google Scholar]
- Boslaugb, S. Statistics in a Nutshell Second Edition; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2012. [Google Scholar]
- Guo, Z.; Guo, R.; Yao, G. Bayesian Probabilistic Model for Reinforcement Corrosion Ratio of Reinforcement in Concrete Prediction Based on Modified Half-cell Potential. J. Civ. Struct. Health. 2024, 14, 485–500. [Google Scholar] [CrossRef]
- Li, Q.; Dong, Z.; He, Q.; Fu, C.; Jin, X. Effects of Reinforcement Corrosion and Sustained Load on Mechanical Behavior of Reinforced Concrete Columns. Materials 2022, 15, 3590. [Google Scholar] [CrossRef]
- Xia, J.; Jin, W.; Li, L. Shear performance of reinforced concrete beams with corroded stirrups in chloride environment. Corros. Sci. 2011, 53, 1794–1805. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, W.; Gu, X. Deterioration of shear behavior of corroded reinforced concrete beams. Eng. Strut. 2018, 168, 708–720. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, X.; Ji, Y. A comparative study on structural behavior of deteriorated reinforced concrete beam under two different environments. China Civ. Eng. J. 2006, 39, 42–46. [Google Scholar]
- Fan, L.; Tan, X.; Zhang, Q.; Meng, W.; Chen, G.; Bao, Y. Monitoring corrosion of steel bars in reinforced concrete based on helix strains measured from a distributed fiber optic sensor. Eng. Struct. 2020, 204, 110039. [Google Scholar] [CrossRef]
- Sun, Y.; Qiao, G. Influence of Constant Current Accelerated Corrosion on the Bond Properties of Reinforced Concrete. Int. J. Electrochem. Sci. 2019, 14, 4580–4594. [Google Scholar] [CrossRef]
- Sun, J. Fatigue Behavior Analysis, Safety and Durability Assessment of Corroded RC Beam Bridges in Coastal Area. Ph.D. Thesis, Southeast University, Nanjing, China, 2016. [Google Scholar]
- Chen, C. Experimental Research on Fatigue Performance of Reinforced Concrete Beams Under Overload and Corrosion Damage. Master’s Thesis, Zhejiang University, Hangzhou, China, 2015. [Google Scholar]
- Williamson, S.; Du, Y.G.; Clark, L.A. Deflection of RC beams under simultaneous load and steel corrosion. Mag. Concr. Res. 2003, 55, 405–406. [Google Scholar] [CrossRef]
- Higgins, C.; Ii, W. Tests of Reinforced Concrete Beams with Corrosion-Damaged Stirrups. ACI Struct. J. 2006, 103, 133–141. [Google Scholar]
- Minh, H.; Mutsuyoshi, H.; Niitani, K. Influence of grouting condition on crack and load-carrying capacity of post-tensioned concrete beam due to chloride-induced corrosion. Constr. Build. Mater. 2005, 21, 1568–1575. [Google Scholar] [CrossRef]
- Yi, W.J.; Zhao, X. The effect of bar corrosion on the performance of reinforced concrete beams under long-term load. China Civ. Eng. J. 2006, 39, 7–12. [Google Scholar]
- Leelalerkiet, V.; Kyung, J.; Ohtsu, M.; Yokota, M. Analysis of half-cell potential measurement for corrosion of reinforced concrete. Constr. Build. Mater. 2004, 18, 155–1623. [Google Scholar] [CrossRef]
- Said, M.; Hussein, A. Induced Corrosion Techniques for Two-Way Slabs. J. Perform. Constr. Facil. 2019, 33, 04019026. [Google Scholar] [CrossRef]
- Abouhussien, A.; Hassan, A. Evaluation of damage progression in concrete structures due to reinforcing steel corrosion using acoustic emission monitoring. J. Civ. Struct. Health Monit. 2015, 5, 751–765. [Google Scholar] [CrossRef]
- Yoon, S.; Wang, K.; Weiss, W. Interaction between Loading, Corrosion, and Serviceability of Reinforced Concrete. ACI Mater. J. 2000, 97, 637–644. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, H.; Pei, H.; Li, Z. Steel corrosion in magnesia-phosphate cement concrete beams. Mag. Concr. Res. 2017, 69, 35–45. [Google Scholar] [CrossRef]
- Jin, W.; Wang, Y. Experimental study on mechanics behaviors of reinforced concrete beams under simultaneous chloride attacks and sustained load. J. Zhejiang Univ. Eng. Sci. 2014, 48, 221–227. [Google Scholar]
- Lu, Z.; Lun, P.; Li, W.; Luo, Z.; Li, Y.; Liu, P. Empirical model of corrosion rate for steel reinforced concrete structures in chloride-laden environments. Adv. Struct. Eng. 2019, 22, 223–239. [Google Scholar] [CrossRef]
- Chun, P.; Ujike, I.; Mishima, K.; Kusumoto, M.; Okazaki, S. Random forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results. Constr. Build. Mater. 2020, 253, 119238. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, J.; Zheng, Y.; Zhou, J.; Qiu, J. Characterization and grading assessment of rebar corrosion in loaded RC beams via SMFL technology. Constr. Build. Mater. 2024, 411, 134484. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, X.; Jia, C.; Du, B.; Liu, S.; Qian, Y. An experimental study on the corrosion amount using a statistical analysis, Corrosion Engineering. Sci. Technol. 2018, 53, 26–35. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Guo, L.; Jin, L.; Du, X. Probabilistic bond strength prediction between the corroded reinforcing bars and concrete considering the concrete strength and non-uniform corrosion. Constr. Build. Mater. 2022, 357, 129338. [Google Scholar] [CrossRef]
- Ji, C.; Song, J.; Liu, Y. Corrosion of internal rebar of recycled aggregate thermal insulation concrete under carbonization. Concrete 2020, 2, 13–16. [Google Scholar]
- Cai, R.; Han, T.; Liao, W.; Huang, J.; Li, D.; Kumar, A.; Ma, H. Prediction of surface chloride concentration of marine concrete using ensemble machine learning. Cem. Concr. Res. 2020, 136, 106164. [Google Scholar] [CrossRef]
- Zhang, C. A Study on Parameter Estimation and Model Selection Based on Approximate Bayesian Computation. Master’s Thesis, Hefei University of Technology, Hefei, China, 2019. [Google Scholar]
Mainstream Models | Advantages | Limitations |
---|---|---|
Probabilistic Discriminant Models [18] | (1) High level of standardization (e.g., ASTM C876); (2) Widely applied in preliminary engineering assessments. | (1) Incapable of quantifying the degree of corrosion—only provides probabilistic judgments; (2) Susceptible to interference from factors such as concrete resistivity, humidity, and temperature, which may result in false positives or false negatives; (3) Insensitive to localized corrosion. |
Electrochemical Correlation Models [19] | (1) Enable quantitative prediction of corrosion rates rather than simple probabilistic assessment; (2) Account for environmental and material parameters, offering greater adaptability. | (1) Require additional measurements (e.g., concrete resistivity), increasing operational complexity; (2) Model parameters are often empirically calibrated, limiting generalizability. |
Multi-Parameter Correction Models [20] | (1) Capable of quantifying corrosion severity, providing closer alignment with actual damage; (2) Reduce misjudgment caused by relying solely on potential measurements. | (1) Require laboratory-based chloride ion testing, which limits real-time on-site application; (2) Correction parameters are environment-specific (e.g., marine exposure). |
Probabilistic-Deterministic Hybrid Models [21] | (1) High accuracy under specific environmental conditions while retaining the simplicity of probabilistic models. | (1) Significant regional limitations; (2) General applicability is constrained. |
Group | w/b | Amount of Materials Per Cubic Meter of Concrete/kg | ||||
---|---|---|---|---|---|---|
Cementitious Material (Cement) | Fine Aggregate (River Sand) | Coarse Aggregate (2#) | Water | Admixture | ||
A | 0.30 | 480 | 817 | 959 | 144 | 5.28 |
B | 0.25 | 576 | 790 | 890 | 144 | 6.34 |
C | 0.35 | 411 | 830 | 1015 | 144 | 4.52 |
No. | Function | Equation | Regression Parameters | Ref. |
---|---|---|---|---|
1 | Exponential Function | a = −1304.0, b = 1000.0, c = 39.7 | [8] | |
2 | Logarithmic Function | a = −109.7, b = −320.7 | [7] | |
3 | Cubic Function | a = −0.22, b = 5.35, c = −52.39, d = −85.21 | [5] | |
4 | Linear Function | a = −15.1, b = −444.6 | [9] |
Update Times | Update 1 | Update 2 | Update 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Mean | Sd. | Distribution | Mean | Sd. | Distribution | Mean | Sd. | Distribution |
θ1 | 0.3833 | 0.09789 | Normal | 0.4588 | 0.05626 | Normal | 0.4718 | 0.04179 | Normal |
θ2 | 0.0902 | 0.07506 | Normal | 0.0503 | 0.04343 | Normal | 0.0350 | 0.03193 | Normal |
θ3 | 0.2857 | 0.03663 | Normal | 0.2493 | 0.02296 | Normal | 0.2710 | 0.01819 | Normal |
θ4 | 0.0238 | 0.02382 | Normal | 0.0117 | 0.01163 | Normal | 0.0069 | 0.00688 | Normal |
σ | 93.96 | - | - | 90.68 | - | - | 90.14 | - | - |
Combination scheme of prior functions | ① | ② | ③ | ④ | |||||
Variables | θ1 | γ | θ2 | γ | θ3 | γ | θ4 | γ | |
Mean | 0.7349 | 107.2 | 0.7025 | 129.0 | 0.7663 | 151.7 | 0.6307 | 131.0 | |
Sd. | 0.008523 | - | 0.009845 | - | 0.01299 | - | 0.00902 | - | |
Distribution | Gaussian | - | Gaussian | - | Gaussian | - | Gaussian | - | |
Combination scheme of prior functions | ① + ② | ① + ③ | ① + ④ | ||||||
Variables | θ1 | θ2 | Γ | θ1 | θ3 | γ | θ1 | θ4 | γ |
Mean | 0.7315 | 0.007831 | 107.3 | 0.5216 | 0.2639 | 90.86 | 0.7334 | 0.005289 | 107.4 |
Sd. | 0.01169 | 0.007752 | - | 0.01587 | 0.01708 | - | 0.01039 | 0.005235 | - |
Distribution | Gaussian | Gaussian | - | Gaussian | Gaussian | - | Gaussian | Gaussian | - |
Combination scheme of prior functions | ② + ③ | ② + ④ | ③ + ④ | ||||||
Variables | θ1 | θ3 | Γ | θ2 | θ4 | γ | θ3 | θ4 | γ |
Mean | 0.43 | 0.356 | 94.19 | 0.4632 | 0.2164 | 128.4 | 0.3525 | 0.3847 | 100.4 |
Sd. | 0.01379 | 0.01544 | - | 0.08762 | 0.07879 | - | 0.01746 | 0.01404 | - |
Distribution | Gaussian | Gaussian | - | Gaussian | Gaussian | - | Gaussian | Gaussian | - |
Combination scheme of prior functions | ① + ② + ③ | ① + ② + ④ | |||||||
Variables | θ1 | θ2 | θ3 | γ | θ1 | θ2 | θ4 | γ | |
Mean | 0.4829 | 0.03303 | 0.2697 | 90.97 | 0.7258 | 0.007592 | 0.005198 | 107.5 | |
Sd. | 0.03844 | 0.02991 | 0.01811 | - | 0.01284 | 0.007441 | 0.005186 | - | |
Distribution | Gaussian | Gaussian | Gaussian | - | Gaussian | Gaussian | Gaussian | - | |
Combination scheme of prior functions | ① + ③ + ④ | ② + ③ + ④ | |||||||
Variables | θ1 | θ3 | θ4 | γ | θ2 | θ3 | θ4 | γ | |
Mean | 0.5131 | 0.2646 | 0.006872 | 90.99 | 0.4133 | 0.3547 | 0.01595 | 94.32 | |
Sd. | 0.01792 | 0.01717 | 0.006706 | - | 0.02135 | 0.01581 | 0.01512 | - | |
Distribution | Gaussian | Gaussian | Gaussian | - | Gaussian | Gaussian | Gaussian | - |
Combination scheme of a priori functions | ① | ② | ③ | ④ | ① + ② | ① + ③ | ① + ④ | ② + ③ |
MAE | 69.5 | 93.4 | 106.3 | 88.7 | 69.8 | 49.7 | 69.7 | 51.9 |
RMSE | 88.9 | 116.9 | 129.8 | 111.8 | 89.2 | 61.6 | 89.1 | 64.6 |
R2 | 0.72 | 0.52 | 0.41 | 0.56 | 0.72 | 0.87 | 0.72 | 0.85 |
Mean width of 95% confidence interval/mV | 420.6 | 506.1 | 595.2 | 513.9 | 421.6 | 363.0 | 421.7 | 371.5 |
Combination scheme of a priori functions | ② + ④ | ③ + ④ | ① + ② + ④ | ① + ② + ④ | ① + ③ + ④ | ② + ③ + ④ | ① + ② + ③ + ④ | |
MAE | 91.6 | 56.5 | 49.8 | 69.9 | 49.8 | 52.1 | 50.0 | |
RMSE | 114.4 | 68.7 | 61.8 | 89.4 | 61.7 | 64.7 | 61.9 | |
R2 | 0.54 | 0.84 | 0.87 | 0.72 | 0.87 | 0.85 | 0.87 | |
Mean width of 95% confidence interval/mV | 566.0 | 396.3 | 375.5 | 422.7 | 364.2 | 375.3 | 371.4 |
Combination scheme of a priori functions | ① | ② | ③ | ④ | ① + ② | ① + ③ | ① + ④ | ② + ③ |
MAE | 60.9 | 71.9 | 106.1 | 106.1 | 61.1 | 48.4 | 61.0 | 50.5 |
RMSE | 74.5 | 88.5 | 122.7 | 122.7 | 74.7 | 61.5 | 74.6 | 64.1 |
R2 | 0.57 | 0.39 | <0.05 | <0.05 | 0.57 | 0.71 | 0.57 | 0.68 |
Mean width of 95% confidence interval/mV | 420.6 | 506.1 | 594.9 | 513.9 | 421.6 | 362.1 | 421.7 | 370.9 |
Combination forms of a priori functions | ② + ④ | ③ + ④ | ① + ② + ④ | ① + ② + ④ | ① + ③ + ④ | ② + ③ + ④ | ① + ② + ③ + ④ | |
MAE | 69.8 | 52.0 | 48.5 | 61.1 | 48.5 | 50.4 | 48.6 | |
RMSE | 86.0 | 64.7 | 61.6 | 74.7 | 61.5 | 64.0 | 61.6 | |
R2 | 0.43 | 0.68 | 0.71 | 0.57 | 0.71 | 0.68 | 0.71 | |
Mean width of 95% confidence interval/mV | 564.8 | 395.5 | 374.4 | 422.6 | 363.3 | 374.6 | 370.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, S.; Yang, F.; Guo, Z.; Guo, R.; Yao, G. Uncertainty-Based Model Averaging for Prediction of Corrosion Ratio of Reinforcement Embedded in Concrete. Buildings 2025, 15, 2095. https://doi.org/10.3390/buildings15122095
Zeng S, Yang F, Guo Z, Guo R, Yao G. Uncertainty-Based Model Averaging for Prediction of Corrosion Ratio of Reinforcement Embedded in Concrete. Buildings. 2025; 15(12):2095. https://doi.org/10.3390/buildings15122095
Chicago/Turabian StyleZeng, Siqing, Fulin Yang, Zengwei Guo, Ruiqi Guo, and Guowen Yao. 2025. "Uncertainty-Based Model Averaging for Prediction of Corrosion Ratio of Reinforcement Embedded in Concrete" Buildings 15, no. 12: 2095. https://doi.org/10.3390/buildings15122095
APA StyleZeng, S., Yang, F., Guo, Z., Guo, R., & Yao, G. (2025). Uncertainty-Based Model Averaging for Prediction of Corrosion Ratio of Reinforcement Embedded in Concrete. Buildings, 15(12), 2095. https://doi.org/10.3390/buildings15122095