Experimental Evaluation of a Metal Polyhedron as a Rigid Node for Bamboo Joinery in Sustainable Construction
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.2.1. Axial Compression Testing
2.2.2. Shear Testing
2.2.3. Tensile Bond Testing
2.2.4. Mortar Compressive Strength
3. Results
3.1. Axial Compression Testing
3.2. Shear Testing Evaluation
3.3. Tensile Bond Evaluation
3.4. Mortar Testing
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aniñon, M.J.C.; Garciano, L.E.O. Advances in Connection Techniques for Raw Bamboo Structures—A Review. Buildings 2024, 14, 1126. [Google Scholar] [CrossRef]
- Pradhan, N.P.N.; Paraskeva, T.S.; Dimitrakopoulos, E.G. Simulation and experimental verification of an original full-scale bamboo truss. Eng. Struct. 2022, 256, 113965. [Google Scholar] [CrossRef]
- Michiels, T.; Lu, L.; Archer, R.; Adriaenssens, S.; Tresserra, G. Design of Three Hypar Roofs Made of Guadua Bamboo. J. IASS 2017, 58, 95–104. [Google Scholar] [CrossRef]
- Malkowska, D.; Norman, J.; Trujillo, D. Theoretical and experimental study on laterally loaded nailed bamboo connection. Constr. Build. Mater. 2022, 342, 127971. [Google Scholar] [CrossRef]
- Dey, D. Bamboo as a Building Material. IJRASET 2024, 12, 17–24. [Google Scholar] [CrossRef]
- Jaramillo Hurtado, J.L. Uniones estructurales de bambú: Criterios de su desempeño a partir de ensayos. MQRInvestigar 2023, 7, 381–396. [Google Scholar] [CrossRef]
- Mercedes, J.R. Guía Técnica Cultivo del Bambú. 2006. Available online: https://www.academia.edu/9592074/Gu%C3%ADa_T%C3%A9cnica_Cultivo_del_Bamb%C3%BA (accessed on 1 February 2025).
- Zea Escamilla, E.; Habert, G.; Wohlmuth, E. When CO2 Counts: Sustainability Assessment of Industrialized Bamboo as an Alternative for Social Housing Programs in the Philippines. Build. Environ. 2016, 103, 44–53. [Google Scholar] [CrossRef]
- Jain, M.K.; Rizwani, M.F. A Review on Medicinal Bamboo: An Ancient Source Towards Healthy Lifestyle. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 569–572. [Google Scholar] [CrossRef]
- Mayor, G.T.; Gutiérrez, G.O.; Arellano, J.F.N.; Enríquez, J.J.S.; Peña, J.R.M. Análisis de la normatividad de construcción con bambú en Latinoamérica. Rev. Arquit. Y Urban. Taypi 2024, 3, 10–18. [Google Scholar]
- Sánchez, M.T.; Espuna, J.A.; Roux, R.S. El bambú como elemento estructural: La especie Guadua amplexifolia. Nova Sci. 2016, 8, 657–677. [Google Scholar] [CrossRef]
- Jacobs, J.M.; von May, R.; Kavanaugh, D.H.; Connor, E.F. Beetles in bamboo forests: Community structure in a heterogeneous landscape of southwestern Amazonia. PeerJ 2018, 6, e5153. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, X.; Long, Y.; Li, W.; Wu, R. An Investigation into the Variables Influencing the Structural Bamboo Architecture Using Filled Concrete and Cement Mortar. Buildings 2024, 14, 2029. [Google Scholar] [CrossRef]
- Rashid, Z.; Chinnasamy, G. Numerical Modelling of Structural Bamboo Under Compression. Proc. Int. Struct. Eng. Constr. 2024, 11, SUS-06. [Google Scholar] [CrossRef]
- Bala, A.; Gupta, S. Engineered bamboo and bamboo-reinforced concrete elements as sustainable building materials: A review. Constr. Build. Mater. 2023, 394, 132116. [Google Scholar] [CrossRef]
- Himasree, P.R.; Korde, C.; West, R.P.; Ganesan, N. State of the art review of bamboo-reinforced concrete structural elements. Mag. Concr. Res. 2024, 76, 55–68. [Google Scholar] [CrossRef]
- Ba, Z.; Luo, H.; Cui, J.; Guo, Z. Mechanically robust and environmentally stable Al2O3/KH550 densified bamboo structural materials. Ind. Crops Prod. 2024, 211, 118201. [Google Scholar] [CrossRef]
- Dai, F.; Chen, Y.; Zhang, W.; Zhong, T.; Tian, G.; Wang, H. Analyzing the structure of bamboo culms using computer vision and mechanical simulation. Holzforschung 2024, 78, 62–71. [Google Scholar] [CrossRef]
- Sharma, B.; Bauer, H.; Schickhofer, G.; Ramage, M.H. Mechanical characterisation of structural laminated bamboo. Proc. Inst. Civ. Eng. Struct. Build. 2017, 170, 250–264. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Shang, L.; Ma, X.; Fang, C.; Fei, B.; Liu, H.; Zhang, S. Three-dimensional structural characterization and mechanical properties of bamboo parenchyma tissue. Ind. Crops Prod. 2024, 208, 117833. [Google Scholar] [CrossRef]
- Altieri, D.; Molari, L. Bamboo Scaffolding as a European Promising Opportunity: A Structural Feasibility Study. Sustainability 2024, 16, 915. [Google Scholar] [CrossRef]
- Rittironk, S. Design-built bamboo structure using multiple-member pre-fabricated connectors. Proc. Int. Struct. Eng. Constr. 2023, 10, AAE-01. [Google Scholar] [CrossRef]
- Carbonari, G.; Carbonari, L.T. Bamboo Structural Systems. In Bamboo and Sustainable Construction; Palombini, F.L., Nogueira, F.M., Eds.; Environmental Footprints and Eco-design of Products and Processes; Springer Nature: Singapore, 2023; pp. 61–97. [Google Scholar] [CrossRef]
- Han, S.; Chen, F.; Ye, H.; Zheng, Z.; Chen, L.; Wang, G. Bamboo-Inspired Renewable, High-Strength, Vibration-Damping Composites for Structural Applications. ACS Sustain. Chem. Eng. 2023, 11, 1146–1156. [Google Scholar] [CrossRef]
- Kelkar, B.U.; Shukla, S.R.; Nagraik, P.; Paul, B.N. Structural bamboo composites: A review of processing, factors affecting properties and recent advances. Adv. Bamboo Sci. 2023, 3, 100026. [Google Scholar] [CrossRef]
- Amede, E.A.; Hailemariama, E.K.; Hailemariam, L.M.; Nuramo, D.A. A Review of Codes and Standards for Bamboo Structural Design. Adv. Mater. Sci. Eng. 2021, 2021, 4788381. [Google Scholar] [CrossRef]
- Kaminski, S.; Lawrence, A.; Trujillo, D.; López, L.F. Structural use of bamboo. Part 4: Element design equations. Struct. Eng. 2017, 95, 24–27. [Google Scholar] [CrossRef]
- Waqas, H.A.; Bahrami, A.; Sahil, M.; Poshad Khan, A.; Ejaz, A.; Shafique, T.; Tariq, Z.; Ahmad, S.; Özkılıç, Y.O. Performance Prediction of Hybrid Bamboo-Reinforced Concrete Beams Using Gene Expression Programming for Sustainable Construction. Materials 2023, 16, 6788. [Google Scholar] [CrossRef]
- Modiano, J.Y.; Wijaya, P.A.D.; Putra, H.A. The Impact of Bamboo Cavities on Thermal Comfort in Building Construction. J. Archit. Hum. Exp. 2024, 2, 39–50. [Google Scholar] [CrossRef]
- ASTM International ASTM D143-22; Standard Test Methods for Small Clear Specimens of Timber. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021. Available online: https://store.astm.org/d0143-22.html (accessed on 8 April 2025).
- ASCE/SEI 7-16; Minimum Design Loads and Associated Criteria for Buildings and Other Structures (7-16). American Society of Civil Engineers: Reston, VA, USA, 2017. Available online: https://sp360.asce.org/personifyebusiness/Merchandise/Product-Details/productId/233133882 (accessed on 8 April 2025).
- E.100 Bambú E.100 Bambú DS N° 011-2012. Available online: https://www.gob.pe/institucion/munisantamariadelmar/informes-publicaciones/2619715-e-100-bambu-ds-n-011-2012 (accessed on 8 April 2025).
- Zhang, J.; Tong, K.; Wu, P.; Li, Y. Research Status on Steel-bamboo Composite Structure. MATEC Web Conf. 2019, 275, 01018. [Google Scholar] [CrossRef]
- Mahdavi, M.; Clouston, P.L.; Arwade, S.R. Development of Laminated Bamboo Lumber: Review of Processing, Performance, and Economical Considerations. J. Mater. Civ. Eng. 2011, 23, 1036–1042. [Google Scholar] [CrossRef]
- Bundi, T.; Lopez, L.F.; Habert, G.; Zea Escamilla, E. Bridging Housing and Climate Needs: Bamboo Construction in the Philippines. Sustainability 2024, 16, 498. [Google Scholar] [CrossRef]
- Torres, B.; Segarra, M.; Bragança, L. El bambú como alternativa de construcción sostenible. Extensionismo Innovación Transf. Tecnológica 2019, 5, 389. [Google Scholar] [CrossRef]
- Umar, M.Z.; Arsyad, M.; Santi, S.; Faslih, A. Principles of sustainable architecture in the production of bamboo woven wall materials (dendrocalamus asper). Sinergi 2020, 24, 57–64. [Google Scholar] [CrossRef]
- Ega, I.J.; Job, O.F. Comparative Study of Materials used for Props and Scaffoldings in Southern Nigeria. Laujoces 2023, 10, 52–61. [Google Scholar] [CrossRef]
- Manandhar, R.; Kim, J.-H.; Kim, J.-T. Environmental, social and economic sustainability of bamboo and bamboo-based construction materials in buildings. J. Asian Archit. Build. Eng. 2019, 18, 49–59. [Google Scholar] [CrossRef]
- Eleftheriou, E.; Lopez Muñoz, L.F.; Habert, G.; Zea Escamilla, E. Parametric Approach to Simplified Life Cycle Assessment of Social Housing Projects. Sustainability 2022, 14, 7409. [Google Scholar] [CrossRef]
- Gutiérrez-Collao, J.E.; Acosta-Román, M.; Abanto-Rodríguez, C.; Palomino-Santos, E.R.; Chavarría Márquez, E.Y.; Massa-Palacios, L.A. Propiedades mecánicas de la Guadua angustifolia para uso y preservación medioambiental de la Amazonia peruana. Prod. + Limpia 2025, 19, 66–83. [Google Scholar] [CrossRef]
- Latifah, K.; Siswanto, J.; Supriyadi, B. The Relation Tensile Strength And Flexibility Of Bamboo For Soil Stabilization. JACEE J. Adv. Civ. Environ. Eng. 2021, 4, 11. [Google Scholar] [CrossRef]
- Mortero Rapimix para Asentado de Muros Estructurales. Pacasmayo Profesional. Available online: https://pacasmayoprofesional.com/ (accessed on 8 April 2025).
- INACAL NTP 399.610. Unidades de Albañilería. Especificación Normalizada Para Morteros. 2a Edición. Available online: https://es.scribd.com/document/674751069/NTP-399-610 (accessed on 2 June 2025).
- ASTM Internacional ASTM C270-25; Standard Specification for Mortar for Unit Masonry. American Society of Testing Materials: West Conshohocken, PA, USA, 2025. Available online: https://store.astm.org/c0270-25.html (accessed on 2 June 2025).
- ASTM Internacional ASTM C33 C33M-18; Standard Specification for Concrete Aggregates. American Society of Testing Materials: West Conshohocken, PA, USA, 2023. Available online: https://store.astm.org/c0033_c0033m-18.html (accessed on 17 October 2024).
- INACAL NTP 400.037. AGREGADOS. Agregados Para Concreto. Especificaciones. 5a Edición. Available online: https://es.scribd.com/document/713215674/33406-NTP-400-037-1 (accessed on 3 June 2025).
- ASTM Internacional ASTM C144-24; Standard Specification for Aggregate for Masonry Mortar. ASTM International: West Conshohocken, PA, USA, 2024. Available online: https://store.astm.org/c0144-24.html (accessed on 3 June 2025).
- NACAL NTP 399.607:2018. Unidades de Albañilería. Agregados Para Mortero de Albañilería. Requisitos. 2a Edición. Available online: https://es.slideshare.net/slideshow/ntp-399607-2018/242540241 (accessed on 8 April 2025).
- INACAL NTP 400.011:2020. AGREGADOS. Definición y Clasificación de Agregados Para uso en Morteros y Concretos. Available online: https://www.collegesidekick.com/study-docs/19238144 (accessed on 8 April 2025).
- ASTM Internacional ASTM C952-12; Standard Test Method for Bond Strength of Mortar to Masonry Units (Withdrawn 2018). ASTM International: West Conshohocken, PA, USA, 2018. Available online: https://store.astm.org/c0952-12.html (accessed on 8 April 2025).
- INACAL NTP 334.051:2022. Método de Ensayo—Resistencia a La Compresión. Available online: https://www.scribd.com/document/654388524/NTP-334-051-2022-Metodo-de-ensayo-Resistencia-a-la-compresion (accessed on 17 October 2024).
- Hogg, R.V.; Tanis, E.A.; Zimmerman, D.L. Probability and Statistical Inference; Pearson Education, Inc.: London, UK, 2015. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- ASTM E122-17; Practice for Calculating Sample Size to Estimate, With Specified Precision, The Average for a Characteristic of a Lot or Process. E11 Committee ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- 334.051:2022 INACAL CEMENTOS. Determinación de la Resistencia a la Compresión de Morteros de Cemento Hidráulico usando es-Pecímenes Cúbicos de 50 mm de Lado. Método de Ensayo. 7a Edición. Available online: http://www.inacal.gob.pe/cid/categoria/normas-tecnicas-peruanas (accessed on 8 April 2025).
- Janssen, J.J.A. Designing and Building with Bamboo; en INBAR Technical Report, No. 20; International Network for Bamboo and Rattan: Beijing, China, 2000. [Google Scholar]
- Xiao, Y., Inoue, M., Eds.; Modern bamboo structures. In Proceedings of the First International Conference on Modern Bamboo Structures (ICBS-2007), Changsha, China, 28–30 October 2007; CRC Press/Balkema: Boca Raton, FL, USA, 2008. [Google Scholar]
- Zea, E.; Habert, G.; Correal, J.F.; Archilla, H.F.; Echeverry, J.S.; Trujillo, D. Industrial or Traditional Bamboo Construction? Comparative Life Cycle Assessment (LCA) of Bamboo-Based Buildings. Sustainability 2018, 10, 3096. [Google Scholar] [CrossRef]
- Bredenoord, J. Bamboo as a Sustainable Building Material for Innovative, Low-Cost Housing Construction. Sustainability 2024, 16, 2347. [Google Scholar] [CrossRef]
- Seixas, M.; Moreira, L.E.; Stoffel, P.; Bina, J.; Ripper, J.L.M.; Ferreira, J.L.; Ghavami, K. Analysis of a self-supporting bamboo structure with flexible joints. Int. J. Space Struct. 2021, 36, 137–151. [Google Scholar] [CrossRef]
- Seixas, M.; Eustáquio Moreira, L.; Bina, J.; Ripper, J. Design and Analysis of a Self-Supporting Bamboo Roof Structure with Flexible Connections. J. Int. Assoc. Shell Spat. Struct. 2019, 60, 221. [Google Scholar] [CrossRef]
Prototype | Model 1 (Without Clamp) | Model 2 (With Clamp) | Model 3 (With Clamp) |
---|---|---|---|
Pattern | m1_pa | m2_pa | m3_pa |
Prototype A | m1_pA | m2_pA | m3_pA |
Prototype B | m1_pB | m2_pB | m3_pB |
TOTAL | 3 | 3 | 3 |
Prototype Specimens | Test Type |
---|---|
C1, C2, C3 | Compression |
Cor1, Cor2, Cor3 | Shear |
AT1, AT2, AT3 | Tensile Bond |
Specimen | Max Load (kN) |
---|---|
C1 | 47.35 |
C2 | 62.51 |
C3 | 76.72 |
Test Type | Specimens | Maximum Load (kN) | Cross-Sectional Area (cm2) | Normalized Stress (MPa) |
---|---|---|---|---|
Compression | C1 | 47.35 | 23.12 | 20.48 |
C2 | 62.51 | 23.62 | 26.46 | |
C3 | 76.72 | 24.38 | 31.47 | |
Shear | Cor1 | 10.944 | 27.13 | 3.99 |
Cor2 | 9.274 | 21.55 | 4.30 | |
Cor3 | 10.265 | 20.45 | 5.02 | |
Tensile Bond | AT1 | 25.40 | 10.273 | 24.72 |
AT2 | 26.60 | 10.273 | 25.89 | |
AT3 | 24.23 | 10.273 | 23.58 |
Specimen | Max Load (kN) | Area (cm2) | Actual Stress (MPa) | Verification (13 MPa) |
---|---|---|---|---|
C1 | 47.35 | 23.12 | 20.48 | Pass (20.48 > 13) |
C2 | 62.51 | 23.62 | 26.46 | Pass (26.46 > 13) |
C3 | 76.72 | 24.38 | 31.47 | Pass (31.47 > 13) |
Specimen | Max Load (kN) |
---|---|
Cor1 | 10.944 |
Cor2 | 9.274 |
Cor3 | 10.265 |
Specimen | Max Load (kN) | Cross-Sectional Area (cm2) | Actual Stress (MPa) | Normative Verification (16 MPa) |
---|---|---|---|---|
Cor1 | 10.944 | 27.13 | 4.03 | Pass (4.03 > 1) |
Cor2 | 9.274 | 21.55 | 4.30 | Pass (4.30 > 1) |
Cor3 | 10.265 | 20.45 | 5.02 | Pass (5.02 > 1) |
Specimen | Max Load (kN) |
---|---|
AT1 | 25.40 |
AT2 | 26.60 |
AT3 | 24.23 |
Specimen | Max Load (kN) | Cross-Sectional Area (cm2) | Actual Stress (MPa) | Normative Verification (16 MPa) |
---|---|---|---|---|
AT1 | 25.40 | 10.273 | 24.72 | Pass (24.72 > 16) |
AT2 | 26.60 | 10.273 | 25.89 | Pass (25.89 > 16) |
AT3 | 24.23 | 10.273 | 23.58 | Pass (23.58 > 16) |
Sample ID | Dimensions (cm) | Net Area (cm2) | Failure Load (kN) | Failure Load (kg) | Compressive Strength (kg/cm2) | ||
---|---|---|---|---|---|---|---|
Length | Width | Height | |||||
MP-01 | 5.00 | 5.00 | 5.00 | 25.00 | 52.26 | 5329 | 213 |
MP-02 | 5.00 | 4.90 | 4.90 | 24.50 | 56.01 | 5711 | 233 |
MP-03 | 4.90 | 5.00 | 5.00 | 24.50 | 50.75 | 5175 | 211 |
MP-04 | 5.00 | 5.00 | 5.00 | 25.00 | 44.62 | 4550 | 182 |
MP-05 | 4.90 | 5.10 | 5.00 | 24.99 | 52.34 | 5337 | 214 |
MP-06 | 5.00 | 5.10 | 5.00 | 25.50 | 46.60 | 4752 | 186 |
MP-07 | 4.90 | 5.00 | 4.90 | 24.50 | 49.94 | 5092 | 208 |
MP-08 | 5.10 | 5.00 | 5.00 | 25.50 | 51.35 | 5236 | 205 |
MP-09 | 5.10 | 5.00 | 4.95 | 25.50 | 42.35 | 4318 | 169 |
Average | 4.99 | 5.01 | 4.97 | 25.00 | 49.58 | 5056 | 202.33 |
Std. Dev | 19.67 | ||||||
Sig. Level | 0.006 (0.06%) |
Test | Compression kN | Shear kN | Tensile Bond kN |
---|---|---|---|
E1 | 47.35 | 10.944 | 25.4 |
E2 | 62.51 | 9.274 | 26.6 |
E3 | 76.72 | 10.265 | 24.23 |
Average | 62.19 | 10.16 | 25.41 |
Minimun limit | 4.1879 kN (13 MPa) | 0.1016 kN (1 MPa) | 5.1091 kN (16 MPa) |
Interpretation | Pass | Pass | Pass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-García, G.; Farfán-Córdova, M. Experimental Evaluation of a Metal Polyhedron as a Rigid Node for Bamboo Joinery in Sustainable Construction. Buildings 2025, 15, 1971. https://doi.org/10.3390/buildings15121971
Díaz-García G, Farfán-Córdova M. Experimental Evaluation of a Metal Polyhedron as a Rigid Node for Bamboo Joinery in Sustainable Construction. Buildings. 2025; 15(12):1971. https://doi.org/10.3390/buildings15121971
Chicago/Turabian StyleDíaz-García, Gonzalo, and Marlon Farfán-Córdova. 2025. "Experimental Evaluation of a Metal Polyhedron as a Rigid Node for Bamboo Joinery in Sustainable Construction" Buildings 15, no. 12: 1971. https://doi.org/10.3390/buildings15121971
APA StyleDíaz-García, G., & Farfán-Córdova, M. (2025). Experimental Evaluation of a Metal Polyhedron as a Rigid Node for Bamboo Joinery in Sustainable Construction. Buildings, 15(12), 1971. https://doi.org/10.3390/buildings15121971