Review of In Situ Resource Utilization-Based Biocementation and Regolith Consolidation Techniques for Space Applications
Abstract
:1. Introduction
2. Overview of Current Construction Technologies Based on In Situ Resource Utilization
2.1. Sulfur Concrete
2.2. Polymer Concrete
2.3. Geopolymer Concrete
2.4. Sintering
3. Current Research Status of Space Biocement
4. Future Directions for Biocement Based on In Situ Resource Utilization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neukart, F. Towards Sustainable Horizons: A Comprehensive Blueprint for Mars Colonization. Heliyon 2024, 10, e26180. [Google Scholar] [CrossRef] [PubMed]
- Dominguez Calabuig, G.J.; Wilson, A.; Bi, S.; Vasile, M.; Sippel, M.; Tajmar, M. Environmental Life Cycle Assessment of Reusable Launch Vehicle Fleets: Large Climate Impact Driven by Rocket Exhaust Emissions. Acta Astronaut. 2024, 221, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, L.; Li, Y.; Sun, Q.; Sun, M.; Huang, Y.; Li, Z.; Tang, D.; Wang, Y.; Xiao, L. In-Situ Utilization of Regolith Resource and Future Exploration of Additive Manufacturing for Lunar/Martian Habitats: A Review. Appl. Clay Sci. 2022, 229, 106673. [Google Scholar] [CrossRef]
- Rivera-Ingraham, G.A.; Andrade, M.; Vigouroux, R.; Solé, M.; Brokordt, K.; Lignot, J.-H.; Freitas, R. Are We Neglecting Earth While Conquering Space? Effects of Aluminized Solid Rocket Fuel Combustion on the Physiology of a Tropical Freshwater Invertebrate. Chemosphere 2021, 268, 128820. [Google Scholar] [CrossRef]
- Dallas, J.A.; Raval, S.; Alvarez Gaitan, J.P.; Saydam, S.; Dempster, A.G. The Environmental Impact of Emissions from Space Launches: A Comprehensive Review. J. Clean. Prod. 2020, 255, 120209. [Google Scholar] [CrossRef]
- Hoffman, J.A.; Hecht, M.H.; Rapp, D.; Hartvigsen, J.J.; SooHoo, J.G.; Aboobaker, A.M.; McClean, J.B.; Liu, A.M.; Hinterman, E.D.; Nasr, M.; et al. Mars Oxygen ISRU Experiment (MOXIE)—Preparing for Human Mars Exploration. Sci. Adv. 2022, 8, eabp8636. [Google Scholar] [CrossRef]
- Ellery, A. Leveraging in Situ Resources for Lunar Base Construction. Can. J. Civ. Eng. 2022, 49, 657–674. [Google Scholar] [CrossRef]
- Kruyer, N.S.; Realff, M.J.; Sun, W.; Genzale, C.L.; Peralta-Yahya, P. Designing the Bioproduction of Martian Rocket Propellant via a Biotechnology-Enabled in Situ Resource Utilization Strategy. Nat. Commun. 2021, 12, 6166. [Google Scholar] [CrossRef]
- Naser, M.Z. Space-Native Construction Materials for Earth-Independent and Sustainable Infrastructure. Acta Astronaut. 2019, 155, 264–273. [Google Scholar] [CrossRef]
- Wasilewski, T.G. Evaluation of Drilling-Based Water Extraction Methods for Martian ISRU from Mid-Latitude Ice Resources. Planet. Space Sci. 2018, 158, 16–24. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Liu, Y.; Sun, X.D.; Zeng, W.; Xing, H.P.; Lin, J.Z.; Kang, S.B.; Yu, L. Application of Microbially Induced Calcium Carbonate Precipitation (MICP) Technique in Concrete Crack Repair: A Review. Constr. Build. Mater. 2024, 411, 134313. [Google Scholar] [CrossRef]
- Zhang, K.; Tang, C.-S.; Jiang, N.-J.; Pan, X.-H.; Liu, B.; Wang, Y.-J.; Shi, B. Microbial-induced Carbonate Precipitation (MICP) Technology: A Review on the Fundamentals and Engineering Applications. Environ. Earth Sci. 2023, 82, 229. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, Y.; Liu, L.; Yan, B.; Li, L.; Meng, H.; Hang, L.; Qi, Y.; Wu, M.; Gao, Y. Recent Development on Optimization of Bio-Cementation for Soil Stabilization and Wind Erosion Control. Biogeotechnics 2023, 1, 100022. [Google Scholar] [CrossRef]
- Fu, T.; Saracho, A.C.; Haigh, S.K. Microbially Induced Carbonate Precipitation (MICP) for Soil Strengthening: A Comprehensive Review. Biogeotechnics 2023, 1, 100002. [Google Scholar] [CrossRef]
- Ahenkorah, I.; Rahman, M.M.; Karim, M.R.; Beecham, S. Enzyme Induced Calcium Carbonate Precipitation and Its Engineering Application: A Systematic Review and Meta-Analysis. Constr. Build. Mater. 2021, 308, 125000. [Google Scholar] [CrossRef]
- Snehal, K.; Sinha, P.; Chaunsali, P. Development of Waterless Extra-Terrestrial Concrete Using Martian Regolith. Adv. Space Res. 2024, 73, 933–944. [Google Scholar] [CrossRef]
- Giwa, I.; Dempsey, M.; Fiske, M.; Kazemian, A. 3D Printed Sulfur-Regolith Concrete Performance Evaluation for Waterless Extraterrestrial Robotic Construction. Autom. Constr. 2024, 165, 105571. [Google Scholar] [CrossRef]
- Rasheed, M.F.; Rahim, A.; Irfan-ul-Hassan, M.; Ali, B.; Ali, N. Sulfur Concrete Made with Waste Marble and Slag Powders: 100% Recycled and Waterless Concrete. Environ. Sci. Pollut. Res. 2022, 29, 65655–65669. [Google Scholar] [CrossRef]
- Ding, S.; Dasgupta, R.; Tsuno, K. Sulfur Concentration of Martian Basalts at Sulfide Saturation at High Pressures and Temperatures—Implications for Deep Sulfur Cycle on Mars. Geochim. Cosmochim. Acta 2014, 131, 227–246. [Google Scholar] [CrossRef]
- Gaillard, F.; Michalski, J.; Berger, G.; McLennan, S.M.; Scaillet, B. Geochemical Reservoirs and Timing of Sulfur Cycling on Mars. Space Sci. Rev. 2013, 174, 251–300. [Google Scholar] [CrossRef]
- King, P.L.; McLennan, S.M. Sulfur on Mars. Elements 2010, 6, 107–112. [Google Scholar] [CrossRef]
- Righter, K.; Pando, K.; Danielson, L.R. Experimental Evidence for Sulfur-Rich Martian Magmas: Implications for Volcanism and Surficial Sulfur Sources. Earth Planet. Sci. Lett. 2009, 288, 235–243. [Google Scholar] [CrossRef]
- Halevy, I.; Zuber, M.T.; Schrag, D.P. A Sulfur Dioxide Climate Feedback on Early Mars. Science 2007, 318, 1903–1907. [Google Scholar] [CrossRef]
- Gracia, V.; Casanova, I. Sulfur Concrete: A Viable Alternative for Lunar Construction. Space 98; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 585–591. [Google Scholar] [CrossRef]
- Barkatt, A.; Okutsu, M. Obtaining Elemental Sulfur for Martian Sulfur Concrete. J. Chem. Res. 2022, 46, 17475198221080729. [Google Scholar] [CrossRef]
- Naser, M.Z. Extraterrestrial Construction Materials. Prog. Mater. Sci. 2019, 105, 100577. [Google Scholar] [CrossRef]
- Wan, L.; Wendner, R.; Cusatis, G. A Novel Material for in Situ Construction on Mars: Experiments and Numerical Simulations. Constr. Build. Mater. 2016, 120, 222–231. [Google Scholar] [CrossRef]
- Toutanji, H.A.; Evans, S.; Grugel, R.N. Performance of Lunar Sulfur Concrete in Lunar Environments. Constr. Build. Mater. 2012, 29, 444–448. [Google Scholar] [CrossRef]
- Li, H.; Meng, H.; Lan, M.; Zhou, J.; Xu, M.; Zhao, X.; Xiang, B. Development of a Novel Material and Casting Method for in Situ Construction on Mars. Powder Technol. 2021, 390, 219–229. [Google Scholar] [CrossRef]
- Khitab, A.; Anwar, W.; Mehmood, I.; Kazmi, S.M.S.; Munir, M.J. Lunar Concrete: Prospects and Challenges. Astron. Rep. 2016, 60, 306–312. [Google Scholar] [CrossRef]
- Shahsavari, M.H.; Karbala, M.M.; Iranfar, S.; Vandeginste, V. Martian and Lunar Sulfur Concrete Mechanical and Chemical Properties Considering Regolith Ingredients and Sublimation. Constr. Build. Mater. 2022, 350, 128914. [Google Scholar] [CrossRef]
- Grugel, R.N.; Toutanji, H. Sulfur “Concrete” for Lunar Applications—Sublimation Concerns. Adv. Space Res. 2008, 41, 103–112. [Google Scholar] [CrossRef]
- Zamani, M.N.; Noor, N.M.; Umar, S.; Shah, M.S.A.; Yahaya, N.; Kim, J.H.-J.; Teng, N.C. Laboratory Studies on the Mechanical Properties of Sulphur-Based Construction Material at Simulated Martian Temperatures. Acta Astronaut. 2024, 221, 163–179. [Google Scholar] [CrossRef]
- Liu, J.; Yan, C.; Li, J.; Zhang, J.; Liu, S. Investigation on the Mechanical Properties and Strengthening Mechanism of Solid-Waste–Sulfur-Based Cementitious Composites. Materials 2023, 16, 1203. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Kalb, P.D.; Milian, L.; Northrup, P.A. Characterization of a Sustainable Sulfur Polymer Concrete Using Activated Fillers. Cem. Concr. Compos. 2016, 67, 20–29. [Google Scholar] [CrossRef]
- Vlahovic, M.M.; Martinovic, S.P.; Boljanac, T.D.; Jovanic, P.B.; Volkov-Husovic, T.D. Durability of Sulfur Concrete in Various Aggressive Environments. Constr. Build. Mater. 2011, 25, 3926–3934. [Google Scholar] [CrossRef]
- Mohamed, A.-M.O.; El Gamal, M. Sulfur Based Hazardous Waste Solidification. Environ. Geol. 2007, 53, 159–175. [Google Scholar] [CrossRef]
- Grugel, R.N. Integrity of Sulfur Concrete Subjected to Simulated Lunar Temperature Cycles. Adv. Space Res. 2012, 50, 1294–1299. [Google Scholar] [CrossRef]
- Wang, Q.; Snoeck, D. To Boldly Go Where No One Has Gone before: Sulfur Concrete, a Promising Construction Material Fulfilling the Demands for a Sustainable Future on Celestial Objects: A Review. Mater. Today 2024, 72, 301–317. [Google Scholar] [CrossRef]
- Amanova, N.; Turaev, K.; Shadhar, M.H.; Tadjixodjayeva, U.; Jumaeva, Z.; Berdimurodov, E.; Eliboev, I.; Hosseini-Bandegharaei, A. Sulfur-Based Concrete: Modifications, Advancements, and Future Prospects. Constr. Build. Mater. 2024, 435, 136765. [Google Scholar] [CrossRef]
- Dobrosmyslov, S.S.; Zadov, V.E.; Nazirov, R.A.; Nagibin, G.E.; Voronin, A.S.; Simunin, M.M.; Fadeev, Y.V.; Khartov, S.V. High Strength Construction Material Based on Sulfur Binder Obtained by Physical Modification. Buildings 2022, 12, 1012. [Google Scholar] [CrossRef]
- Gwon, S.; Ahn, E.; Shin, M. Water Permeability and Rapid Self-Healing of Sustainable Sulfur Composites Using Superabsorbent Polymer and Binary Cement. Constr. Build. Mater. 2020, 265, 120306. [Google Scholar] [CrossRef]
- Mohamed, A.-M.O.; Gamal, M.E. Hydro-Mechanical Behavior of a Newly Developed Sulfur Polymer Concrete. Cem. Concr. Compos. 2009, 31, 186–194. [Google Scholar] [CrossRef]
- Sik Lee, T.; Lee, J.; Yong Ann, K. Manufacture of Polymeric Concrete on the Moon. Acta Astronaut. 2015, 114, 60–64. [Google Scholar] [CrossRef]
- Lee, J.; Ann, K.Y.; Lee, T.S.; Mitikie, B.B. Bottom-up Heating Method for Producing Polyethylene Lunar Concrete in Lunar Environment. Adv. Space Res. 2018, 62, 164–173. [Google Scholar] [CrossRef]
- Varela Miranda, L.; Valdes, J.R.; Cortes, D.D. Solar Bricks for Lunar Construction. Constr. Build. Mater. 2017, 139, 241–246. [Google Scholar] [CrossRef]
- Chen, T.; Chow, B.J.; Zhong, Y.; Wang, M.; Kou, R.; Qiao, Y. Formation of Polymer Micro-Agglomerations in Ultralow-Binder-Content Composite Based on Lunar Soil Simulant. Adv. Space Res. 2018, 61, 830–836. [Google Scholar] [CrossRef]
- Sen, S.; Carranza, S.; Pillay, S. Multifunctional Martian Habitat Composite Material Synthesized from in Situ Resources. Adv. Space Res. 2010, 46, 582–592. [Google Scholar] [CrossRef]
- Marnot, A.; Milliken, J.; Cho, J.; Lin, Z.; Wong, C.; Jones, J.M.; Hill, C.; Brettmann, B. Thermal Weathering of 3D-Printed Lunar Regolith Simulant Composites. ACS Appl. Eng. Mater. 2024, 2, 2016–2026. [Google Scholar] [CrossRef]
- Hu, Z.; Shi, T.; Cen, M.; Wang, J.; Zhao, X.; Zeng, C.; Zhou, Y.; Fan, Y.; Liu, Y.; Zhao, Z. Research Progress on Lunar and Martian Concrete. Constr. Build. Mater. 2022, 343, 128117. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, C.; Sun, X.; Dong, W. Lunar Regolith Geopolymer Concrete for In-Situ Construction of Lunar Bases: A Review. Polymers 2024, 16, 1582. [Google Scholar] [CrossRef]
- Matta, M.; Smith, S.; Baumgardner, J.; Wilson, J.; Martinis, C.; Mendillo, M. The Sodium Tail of the Moon. Icarus 2009, 204, 409–417. [Google Scholar] [CrossRef]
- Liu, J.; Doh, J.-H.; Dinh, H.L.; Ong, D.E.L.; Zi, G.; You, I. Effect of Si/Al Molar Ratio on the Strength Behavior of Geopolymer Derived from Various Industrial Waste: A Current State of the Art Review. Constr. Build. Mater. 2022, 329, 127134. [Google Scholar] [CrossRef]
- Dehghani, A.; Aslani, F.; Ghaebi Panah, N. Effects of Initial SiO2/Al2O3 Molar Ratio and Slag on Fly Ash-Based Ambient Cured Geopolymer Properties. Constr. Build. Mater. 2021, 293, 123527. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhang, W.; Li, Z.; Zhang, Y.; Li, Y.; Ren, Y. Effects of Si/Al Ratio on the Efflorescence and Properties of Fly Ash Based Geopolymer. J. Clean. Prod. 2020, 244, 118852. [Google Scholar] [CrossRef]
- Lahoti, M.; Wong, K.K.; Yang, E.-H.; Tan, K.H. Effects of Si/Al Molar Ratio on Strength Endurance and Volume Stability of Metakaolin Geopolymers Subject to Elevated Temperature. Ceram. Int. 2018, 44, 5726–5734. [Google Scholar] [CrossRef]
- He, P.; Wang, M.; Fu, S.; Jia, D.; Yan, S.; Yuan, J.; Xu, J.; Wang, P.; Zhou, Y. Effects of Si/Al Ratio on the Structure and Properties of Metakaolin Based Geopolymer. Ceram. Int. 2016, 42, 14416–14422. [Google Scholar] [CrossRef]
- Wang, K.; Lemougna, P.N.; Tang, Q.; Li, W.; Cui, X. Lunar Regolith Can Allow the Synthesis of Cement Materials with Near-Zero Water Consumption. Gondwana Res. 2017, 44, 1–6. [Google Scholar] [CrossRef]
- Pilehvar, S.; Arnhof, M.; Erichsen, A.; Valentini, L.; Kjøniksen, A. Investigation of Severe Lunar Environmental Conditions on the Physical and Mechanical Properties of Lunar Regolith Geopolymers. J. Mater. Res. Technol. 2021, 11, 1506–1516. [Google Scholar] [CrossRef]
- Wang, K.; Tang, Q.; Cui, X.; He, Y.; Liu, L. Development of Near-Zero Water Consumption Cement Materials via the Geopolymerization of Tektites and Its Implication for Lunar Construction. Sci. Rep. 2016, 6, 29659. [Google Scholar] [CrossRef]
- Alexiadis, A.; Alberini, F.; Meyer, M.E. Geopolymers from Lunar and Martian Soil Simulants. Adv. Space Res. 2017, 59, 490–495. [Google Scholar] [CrossRef]
- Mills, J.N.; Katzarova, M.; Wagner, N.J. Comparison of Lunar and Martian Regolith Simulant-Based Geopolymer Cements Formed by Alkali-Activation for in-Situ Resource Utilization. Adv. Space Res. 2022, 69, 761–777. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Z.; Peng, S.; Liu, J.; Wu, Q.; Xu, X. State-of-the-Art Review of Geopolymer Concrete Carbonation: From Impact Analysis to Model Establishment. Case Stud. Constr. Mater. 2024, 20, e03124. [Google Scholar] [CrossRef]
- Li, F.; Chen, D.; Yang, Z.; Lu, Y.; Zhang, H.; Li, S. Effect of Mixed Fibers on Fly Ash-Based Geopolymer Resistance against Carbonation. Constr. Build. Mater. 2022, 322, 126394. [Google Scholar] [CrossRef]
- Pasupathy, K.; Sanjayan, J.; Rajeev, P. Evaluation of Alkalinity Changes and Carbonation of Geopolymer Concrete Exposed to Wetting and Drying. J. Build. Eng. 2021, 35, 102029. [Google Scholar] [CrossRef]
- Pasupathy, K.; Berndt, M.; Castel, A.; Sanjayan, J.; Pathmanathan, R. Carbonation of a Blended Slag-Fly Ash Geopolymer Concrete in Field Conditions after 8 Years. Constr. Build. Mater. 2016, 125, 661–669. [Google Scholar] [CrossRef]
- Bernal, S.A.; Mejía de Gutiérrez, R.; Provis, J.L. Engineering and Durability Properties of Concretes Based on Alkali-Activated Granulated Blast Furnace Slag/Metakaolin Blends. Constr. Build. Mater. 2012, 33, 99–108. [Google Scholar] [CrossRef]
- Meurisse, A.; Makaya, A.; Willsch, C.; Sperl, M. Solar 3D Printing of Lunar Regolith. Acta Astronaut. 2018, 152, 800–810. [Google Scholar] [CrossRef]
- Fateri, M.; Meurisse, A.; Sperl, M.; Urbina, D.; Madakashira, H.K.; Govindaraj, S.; Gancet, J.; Imhof, B.; Hoheneder, W.; Waclavicek, R.; et al. Solar Sintering for Lunar Additive Manufacturing. J. Aerosp. Eng. 2019, 32, 04019101. [Google Scholar] [CrossRef]
- Hintze, P.E.; Quintana, S. Building a Lunar or Martian Launch Pad with In Situ Materials: Recent Laboratory and Field Studies. J. Aerosp. Eng. 2013, 26, 134–142. [Google Scholar] [CrossRef]
- Lim, S.; Prabhu, V.L.; Anand, M.; Taylor, L.A. Extra-Terrestrial Construction Processes—Advancements, Opportunities and Challenges. Adv. Space Res. 2017, 60, 1413–1429. [Google Scholar] [CrossRef]
- Lai, H.-J.; Cui, M.-J.; Chu, J. Stress–Dilatancy Behavior of Biocementation-Enhanced Geogrid-Reinforced Sand. Int. J. Geomech. 2023, 23, 04023043. [Google Scholar] [CrossRef]
- Yan, Z.; Gowthaman, S.; Nakashima, K.; Kawasaki, S. Polymer-Assisted Enzyme Induced Carbonate Precipitation for Non-Ammonia Emission Soil Stabilization. Sci. Rep. 2022, 12, 8821. [Google Scholar] [CrossRef]
- Tang, C.-S.; Li, H.; Pan, X.-H.; Yin, L.-Y.; Cheng, L.; Cheng, Q.; Liu, B.; Shi, B. Coupling Effect of Biocementation-Fiber Reinforcement on Mechanical Behavior of Calcareous Sand for Ocean Engineering. Bull. Eng. Geol. Environ. 2022, 81, 163. [Google Scholar] [CrossRef]
- Xiao, Y.; Stuedlein, A.W.; Pan, Z.; Liu, H.; Matthew Evans, T.; He, X.; Lin, H.; Chu, J.; van Paassen, L.A. Toe-Bearing Capacity of Precast Concrete Piles through Biogrouting Improvement. J. Geotech. Geoenviron. Eng. 2020, 146, 06020026. [Google Scholar] [CrossRef]
- Xiao, Y.; He, X.; Evans, T.M.; Stuedlein, A.W.; Liu, H. Unconfined Compressive and Splitting Tensile Strength of Basalt Fiber–Reinforced Biocemented Sand. J. Geotech. Geoenviron. Eng. 2019, 145, 04019048. [Google Scholar] [CrossRef]
- Farajnia, A.; Shafaat, A.; Farajnia, S.; Sartipipour, M.; Khodadadi Tirkolaei, H. The Efficiency of Ureolytic Bacteria Isolated from Historical Adobe Structures in the Production of Bio-Bricks. Constr. Build. Mater. 2022, 317, 125868. [Google Scholar] [CrossRef]
- Arab, M.G.; Omar, M.; Almajed, A.; Elbaz, Y.; Ahmed, A.H. Hybrid Technique to Produce Bio-Bricks Using Enzyme-Induced Carbonate Precipitation (EICP) and Sodium Alginate Biopolymer. Constr. Build. Mater. 2021, 284, 122846. [Google Scholar] [CrossRef]
- Li, Y.; Wen, K.; Li, L.; Huang, W.; Bu, C.; Amini, F. Experimental Investigation on Compression Resistance of Bio-Bricks. Constr. Build. Mater. 2020, 265, 120751. [Google Scholar] [CrossRef]
- Cheng, L.; Kobayashi, T.; Shahin, M.A. Microbially Induced Calcite Precipitation for Production of “Bio-Bricks” Treated at Partial Saturation Condition. Constr. Build. Mater. 2020, 231, 117095. [Google Scholar] [CrossRef]
- Bernardi, D.; DeJong, J.T.; Montoya, B.M.; Martinez, B.C. Bio-Bricks: Biologically Cemented Sandstone Bricks. Constr. Build. Mater. 2014, 55, 462–469. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Liu, B.; Cao, X.; Chen, J. Biocementation for Desert Sand against Wind-Induced Erosion with Different Treatment Processes. J. Soils Sediments 2024, 24, 3265–3275. [Google Scholar] [CrossRef]
- Fernández Rodríguez, R.; Cardoso, R. Study of Biocementation Treatment to Prevent Erosion by Concentrated Water Flow in a Small-Scale Sand Slope. Transp. Geotech. 2022, 37, 100873. [Google Scholar] [CrossRef]
- Hamid Lajevardi, S.; Shafiei, H. Investigating the Biological Treatment Effect on Fine-Grained Soil Resistance against Wind Erosion: An Experimental Case Study. Aeolian Res. 2023, 60, 100841. [Google Scholar] [CrossRef]
- Namdar-Khojasteh, D.; Bazgir, M.; Hashemi Babaheidari, S.A.; Asumadu-Sakyi, A.B. Application of Biocementation Technique Using Bacillus Sphaericus for Stabilization of Soil Surface and Dust Storm Control. J. Arid Land 2022, 14, 537–549. [Google Scholar] [CrossRef]
- Zomorodian, S.M.A.; Ghaffari, H.; O’Kelly, B.C. Stabilisation of Crustal Sand Layer Using Biocementation Technique for Wind Erosion Control. Aeolian Res. 2019, 40, 34–41. [Google Scholar] [CrossRef]
- Zuo, H.; Ni, S.; Xu, M. An Assumption of in Situ Resource Utilization for “Bio-Bricks” in Space Exploration. Front. Mater. 2023, 10, 1155643. [Google Scholar] [CrossRef]
- Dikshit, R.; Gupta, N.; Dey, A.; Viswanathan, K.; Kumar, A. Microbial Induced Calcite Precipitation Can Consolidate Martian and Lunar Regolith Simulants. PLoS ONE 2022, 17, e0266415. [Google Scholar] [CrossRef]
- Dikshit, R.; Dey, A.; Gupta, N.; Varma, S.C.; Venugopal, I.; Viswanathan, K.; Kumar, A. Space Bricks: From LSS to Machinable Structures via MICP. Ceram. Int. 2021, 47, 14892–14898. [Google Scholar] [CrossRef]
- Gleaton, J.; Lai, Z.; Xiao, R.; Chen, Q.; Zheng, Y. Microalga-Induced Biocementation of Martian Regolith Simulant: Effects of Biogrouting Methods and Calcium Sources. Constr. Build. Mater. 2019, 229, 116885. [Google Scholar] [CrossRef]
- Gleaton, J.; Lai, Z.; Xiao, R.; Zhang, K.; Chen, Q.; Zheng, Y. Optimization of Mechanical Strength of Biocemented Martian Regolith Simulant Soil Columns. Constr. Build. Mater. 2022, 315, 125741. [Google Scholar] [CrossRef]
- Shi, J.; Xiao, Z.; Xiao, Y.; Liu, H. Bio-Molding of Lunar Regolith with Bio-Carbonized Magnesium Oxide. Biogeotechnics 2024, 100159, in press. [Google Scholar] [CrossRef]
- Yan, Z.; Nakashima, K.; Takano, C.; Kawasaki, S. Kitchen Waste Bone-Driven Enzyme-Induced Calcium Phosphate Precipitation under Microgravity for Space Biocementation. Biogeotechnics 2024, 100156, in press. [Google Scholar] [CrossRef]
- Dawara, V.; Gupta, N.; Dey, A.; Kumar, A.; Viswanathan, K. Pore–Microcrack Interaction Governs Failure in Bioconsolidated Space Bricks. Ceram. Int. 2022, 48, 35874–35882. [Google Scholar] [CrossRef]
- Yang, Y.; Chu, J.; Cheng, L.; Liu, H. Utilization of Carbide Sludge and Urine for Sustainable Biocement Production. J. Environ. Chem. Eng. 2022, 10, 107443. [Google Scholar] [CrossRef]
- Crane, L.; Ray, H.; Hamdan, N.; Boyer, T.H. Enzyme-Induced Carbonate Precipitation Utilizing Fresh Urine and Calcium-Rich Zeolites. J. Environ. Chem. Eng. 2022, 10, 107238. [Google Scholar] [CrossRef]
- Comadran-Casas, C.; Schaschke, C.J.; Akunna, J.C.; Jorat, M.E. Cow Urine as a Source of Nutrients for Microbial-Induced Calcite Precipitation in Sandy Soil. J. Environ. Manag. 2022, 304, 114307. [Google Scholar] [CrossRef]
- Lambert, S.E.; Randall, D.G. Manufacturing Bio-Bricks Using Microbial Induced Calcium Carbonate Precipitation and Human Urine. Water Res. 2019, 160, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-J.; Huang, Y.-H.; Chen, C.-C.; Maity, J.P.; Chen, C.-Y. Microbial Induced Calcium Carbonate Precipitation (MICP) Using Pig Urine as an Alternative to Industrial Urea. Waste Biomass Valorization 2019, 10, 2887–2895. [Google Scholar] [CrossRef]
- Yan, Z.; Nakashima, K.; Takano, C.; Kawasaki, S. Feasibility Study of Enhancing Enzyme-Induced Carbonate Precipitation with Eggshell Waste for Sand Solidification. Biogeotechnics 2024, 2, 100108. [Google Scholar] [CrossRef]
- Liu, J.; Li, G.; Li, X. Geotechnical Engineering Properties of Soils Solidified by Microbially Induced CaCO3 Precipitation (MICP). Adv. Civ. Eng. 2021, 2021, 6683930. [Google Scholar] [CrossRef]
- Almajed, A.; Abbas, H.; Arab, M.; Alsabhan, A.; Hamid, W.; Al-Salloum, Y. Enzyme-Induced Carbonate Precipitation (EICP)-Based Methods for Ecofriendly Stabilization of Different Types of Natural Sands. J. Clean. Prod. 2020, 274, 122627. [Google Scholar] [CrossRef]
- Xiao, Y.; Stuedlein, A.W.; Ran, J.; Evans, T.M.; Cheng, L.; Liu, H.; van Paassen, L.A.; Chu, J. Effect of Particle Shape on Strength and Stiffness of Biocemented Glass Beads. J. Geotech. Geoenviron. Eng. 2019, 145, 06019016. [Google Scholar] [CrossRef]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-Mediated Soil Improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Wang, J.L.; Rosenbaum, J.J.; Prasad, A.N.; Raad, R.R.; Putman, E.J.; Harrington, A.D.; Aintablian, H.; Hynek, B.M. Potential Health Impacts, Treatments, and Countermeasures of Martian Dust on Future Human Space Exploration. GeoHealth 2025, 9, e2024GH001213. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Kawasaki, S. Review of In Situ Resource Utilization-Based Biocementation and Regolith Consolidation Techniques for Space Applications. Buildings 2025, 15, 1815. https://doi.org/10.3390/buildings15111815
Yan Z, Kawasaki S. Review of In Situ Resource Utilization-Based Biocementation and Regolith Consolidation Techniques for Space Applications. Buildings. 2025; 15(11):1815. https://doi.org/10.3390/buildings15111815
Chicago/Turabian StyleYan, Zhen, and Satoru Kawasaki. 2025. "Review of In Situ Resource Utilization-Based Biocementation and Regolith Consolidation Techniques for Space Applications" Buildings 15, no. 11: 1815. https://doi.org/10.3390/buildings15111815
APA StyleYan, Z., & Kawasaki, S. (2025). Review of In Situ Resource Utilization-Based Biocementation and Regolith Consolidation Techniques for Space Applications. Buildings, 15(11), 1815. https://doi.org/10.3390/buildings15111815