Development and Evaluation of Mycelium-Based Composites from Agroforestry Residues: A Sustainable Approach to the Design of Innovative Building Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Source of Substrates and Characterization Processes
2.2. Source of Mushroom Mycelia and Culture Conditions
2.3. Primary Inoculation for Mycelial Growth
2.4. Mold Designs and Mycelium-Based Composite Production
2.4.1. Inoculum and Substrate Preparation
2.4.2. Mold Preparation and Sterilization
2.4.3. Development of Mycelium Bioblocks
2.5. Determination of Physical Properties
2.5.1. Density and Shrinkage
2.5.2. Water Absorption Measurements
2.5.3. Contact Angle Measurements
2.6. Determination of Mechanical Properties
2.7. Exposure to Controlled Temperature and Humidity Conditions
2.8. Biodegradability
3. Results
3.1. Characteristics of Substrates
3.2. In Vitro Mycelium Growth: Kinetics and Morphological Analysis
3.3. Characterization of Mycelium Bioblocks
3.4. Biodegradability of Mycelium Bioblocks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Livne, A.; Wösten, H.A.B.; Pearlmutter, D.; Gal, E. Fungal Mycelium Bio-Composite Acts as a CO2-Sink Building Material with Low Embodied Energy. ACS Sustain. Chem. Eng. 2022, 10, 12099–12106. [Google Scholar] [CrossRef]
- Sisti, L.; Gioia, C.; Totaro, G.; Verstichel, S.; Cartabia, M.; Camere, S.; Celli, A. Valorization of Wheat Bran Agro-Industrial Byproduct as an Upgrading Filler for Mycelium-Based Composite Materials. Ind. Crops Prod. 2021, 170, 113742. [Google Scholar] [CrossRef]
- Joshi, K.; Meher, M.K.; Poluri, K.M. Fabrication and Characterization of Bioblocks from Agricultural Waste Using Fungal Mycelium for Renewable and Sustainable Applications. ACS Appl. Bio Mater. 2020, 3, 1884–1892. [Google Scholar] [CrossRef]
- Hoşgün, E.Z.; Bozan, B. Effect of Different Types of Thermochemical Pretreatment on the Enzymatic Hydrolysis and the Composition of Hazelnut Shells. Waste Biomass Valorization 2020, 11, 3739–3748. [Google Scholar] [CrossRef]
- Bener, M.; Şen, F.B.; Önem, A.N.; Bekdeşer, B.; Çelik, S.E.; Lalikoglu, M.; Aşçı, Y.S.; Capanoglu, E.; Apak, R. Microwave-Assisted Extraction of Antioxidant Compounds from by-Products of Turkish Hazelnut (Corylus avellana L.) Using Natural Deep Eutectic Solvents: Modeling, Optimization and Phenolic Characterization. Food Chem. 2022, 385, 132633. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Crops and Livestock Products; Ministry of Agriculture-Czech Republic: Prague, Czechia, 2013. [Google Scholar]
- Allegrini, A.; Salvaneschi, P.; Schirone, B.; Cianfaglione, K.; Di Michele, A. Multipurpose Plant Species and Circular Economy: Corylus avellana L. as a Study Case. Front. Biosci. Landmark 2022, 27, 11. [Google Scholar] [CrossRef]
- Attias, N.; Livne, A.; Abitbol, T. State of the Art, Recent Advances, and Challenges in the Field of Fungal Mycelium Materials: A Snapshot of the 2021 Mini Meeting. Fungal Biol. Biotechnol. 2021, 8, 12. [Google Scholar] [CrossRef]
- Muñoz, H.; Molina, P.; Urzúa-Parra, I.A.; Vasco, D.A.; Walczak, M.; Rodríguez-Grau, G.; Chateau, F.; Sancy, M. Applicability of Paper and Pulp Industry Waste for Manufacturing Mycelium-Based Materials for Thermoacoustic Insulation. Sustainability 2024, 16, 8034. [Google Scholar] [CrossRef]
- Houette, T.; Maurer, C.; Niewiarowski, R.; Gruber, P. Growth and Mechanical Characterization of Mycelium-Based Composites towards Future Bioremediation and Food Production in the Material Manufacturing Cycle. Biomimetics 2022, 7, 103. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, F.; Still, B.; White, M.; Amstislavski, P. Physical and Mechanical Properties of Fungal Mycelium-Based Biofoam. J. Mater. Civ. Eng. 2017, 29, 04017030. [Google Scholar] [CrossRef]
- Pelletier, M.G.; Holt, G.A.; Wanjura, J.D.; Bayer, E.; McIntyre, G. An Evaluation Study of Mycelium Based Acoustic Absorbers Grown on Agricultural By-Product Substrates. Ind. Crops Prod. 2013, 51, 480–485. [Google Scholar] [CrossRef]
- Chan, X.Y.; Saeidi, N.; Javadian, A.; Hebel, D.E.; Gupta, M. Mechanical Properties of Dense Mycelium-Bound Composites under Accelerated Tropical Weathering Conditions. Sci. Rep. 2021, 11, 22112. [Google Scholar] [CrossRef] [PubMed]
- Appels, F.V.W.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.B.; Dijksterhuis, J.; Krijgsheld, P.; Wösten, H.A.B. Fabrication Factors Influencing Mechanical, Moisture- and Water-Related Properties of Mycelium-Based Composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Aiduang, W.; Kumla, J.; Srinuanpan, S.; Thamjaree, W.; Lumyong, S.; Suwannarach, N. Mechanical, Physical, and Chemical Properties of Mycelium-Based Composites Produced from Various Lignocellulosic Residues and Fungal Species. J. Fungi 2022, 8, 1125. [Google Scholar] [CrossRef] [PubMed]
- Charpentier-Alfaro, C.; Benavides-Hernández, J.; Poggerini, M.; Crisci, A.; Mele, G.; Della Rocca, G.; Emiliani, G.; Frascella, A.; Torrigiani, T.; Palanti, S. Wood-Decaying Fungi: From Timber Degradation to Sustainable Insulating Biomaterials Production. Materials 2023, 16, 3547. [Google Scholar] [CrossRef]
- Sydor, M.; Bonenberg, A.; Doczekalska, B.; Cofta, G. Mycelium-Based Composites in Art, Architecture, and Interior Design: A Review. Polymers 2021, 14, 145. [Google Scholar] [CrossRef]
- Ghazvinian, A.; Khalilbeigi, A.; Mottaghi, E.; Gürsoy, B. The Design And Fabrication Of Mycocreate 2.0: A Spatial Structure Built With Load-Bearing Mycelium-Based Composite Components. J. Int. Assoc. Shell Spat. Struct. 2022, 63, 85–97. [Google Scholar] [CrossRef]
- Holt, G.A.; Mcintyre, G.; Flagg, D.; Bayer, E.; Wanjura, J.D.; Pelletier, M.G. Fungal Mycelium and Cotton Plant Materials in the Manufacture of Biodegradable Molded Packaging Material: Evaluation Study of Select Blends of Cotton Byproducts. J. Biobased Mater. Bioenergy 2012, 6, 431–439. [Google Scholar] [CrossRef]
- Jendrossek, D. Polyethylene and Related Hydrocarbon Polymers (“Plastics”) Are Not Biodegradable. New Biotechnol. 2024, 83, 231–238. [Google Scholar] [CrossRef]
- Alemu, D.; Tafesse, M.; Mondal, A.K. Mycelium-Based Composite: The Future Sustainable Biomaterial. Int. J. Biomater. 2022, 2022, 8401528. [Google Scholar] [CrossRef]
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties. Sci. Rep. 2017, 7, 41292. [Google Scholar] [CrossRef] [PubMed]
- Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Ávila, S.; Hornung, P.S.; Júnior, A.M.; Ribani, R.H. Factors Affecting Mushroom Pleurotus spp. Saudi J. Biol. Sci. 2019, 26, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Park, D.; Qin, Z. Material Function of Mycelium-Based Bio-Composite: A Review. Front. Mater. 2021, 8, 737377. [Google Scholar] [CrossRef]
- Ghazvinian, A.; Farrokhsiar, P.; Vieira, F.; Pecchia, J.; Gursoy, B. Mycelium-Based Bio-Composites for Architecture: Assessing the Effects of Cultivation Factors on Compressive Strength. Mater. Res. Innov. 2019, 2, 505–514. [Google Scholar]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered Mycelium Composite Construction Materials from Fungal Biorefineries: A Critical Review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Anaele, J.U.; Oke, T.M.; Kareem, S.A.; Adediran, M.; Ajibuwa, O.A.; Anabaranze, Y.O. Mycelium Based Composites: A Review of Their Bio-Fabrication Procedures, Material Properties and Potential for Green Building and Construction Applications. Alex. Eng. J. 2023, 83, 234–250. [Google Scholar] [CrossRef]
- Sydor, M.; Cofta, G.; Doczekalska, B.; Bonenberg, A. Fungi in Mycelium-Based Composites: Usage and Recommendations. Materials 2022, 15, 6283. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Long, L.; Sheng, Y.; Xu, J.; Qiu, H.; Li, X.; Wang, Y.; Wu, H. Preparation of a Kind of Novel Sustainable Mycelium/Cotton Stalk Composites and Effects of Pressing Temperature on the Properties. Ind. Crops Prod. 2019, 141, 111732. [Google Scholar] [CrossRef]
- Mohseni, A.; Vieira, F.R.; Pecchia, J.A.; Gürsoy, B. Three-Dimensional Printing of Living Mycelium-Based Composites: Material Compositions, Workflows, and Ways to Mitigate Contamination. Biomimetics 2023, 8, 257. [Google Scholar] [CrossRef]
- Luo, D.; Yang, J.; Peek, N. 3D-Printed Mycelium Biocomposites: Method for 3D Printing and Growing Fungi-Based Composites. 3D Print. Addit. Manuf. 2025, 12, 98–111. [Google Scholar] [CrossRef]
- Li, K.; Jia, J.; Wu, N.; Xu, Q. Recent Advances in the Construction of Biocomposites Based on Fungal Mycelia. Front. Bioeng. Biotechnol. 2022, 10, 1067869. [Google Scholar] [CrossRef] [PubMed]
- Tacer-Caba, Z.; Varis, J.J.; Lankinen, P.; Mikkonen, K.S. Comparison of Novel Fungal Mycelia Strains and Sustainable Growth Substrates to Produce Humidity-Resistant Biocomposites. Mater. Des. 2020, 192, 108728. [Google Scholar] [CrossRef]
- Vašatko, H.; Gosch, L.; Jauk, J.; Stavric, M. Basic Research of Material Properties of Mycelium-Based Composites. Biomimetics 2022, 7, 51. [Google Scholar] [CrossRef]
- ASTM D570-22; Standard Test Method for Water Absorption of Plastics. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- ASTM D5988-18; Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials Under High-Solids Anaerobic-Digestion Conditions. ASTM: West Conshohocken, PA, USA, 2018.
- Zhao, J.; Wang, X.; Lin, H.; Lin, Z. Hazelnut and Its By-Products: A Comprehensive Review of Nutrition, Phytochemical Profile, Extraction, Bioactivities and Applications. Food Chem. 2023, 413, 135576. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Li, S.; Jin, J.; Lin, L.; Zhou, Y.; Peng, L.; Fu, F. Effect of High-Intensity Microwave (HIMW) Treatment on Chemistry of Radiata Pine. Wood Sci. Technol. 2023, 57, 1077–1097. [Google Scholar] [CrossRef]
- Datta, R.; Kelkar, A.; Baraniya, D.; Molaei, A.; Moulick, A.; Meena, R.; Formanek, P. Enzymatic Degradation of Lignin in Soil: A Review. Sustainability 2017, 9, 1163. [Google Scholar] [CrossRef]
- Scheu, S. Cellulose and Lignin Decomposition in Soils from Different Ecosystems on Limestone as Affected by Earthworm Processing. Pedobiologia 1993, 37, 167–177. [Google Scholar] [CrossRef]
- Zhou, X.-W.; Cong, W.-R.; Su, K.-Q.; Zhang, Y.-M. Ligninolytic Enzymes from Ganoderma Spp: Current Status and Potential Applications. Crit. Rev. Microbiol. 2013, 39, 416–426. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; Brancart, J.; Peeters, E.; De Laet, L. Mechanical, Physical and Chemical Characterisation of Mycelium-Based Composites with Different Types of Lignocellulosic Substrates. PLoS ONE 2019, 14, e0213954. [Google Scholar] [CrossRef]
- Teeraphantuvat, T.; Jatuwong, K.; Jinanukul, P.; Thamjaree, W.; Lumyong, S.; Aiduang, W. Improving the Physical and Mechanical Properties of Mycelium-Based Green Composites Using Paper Waste. Polymers 2024, 16, 262. [Google Scholar] [CrossRef]
- Aiduang, W.; Chanthaluck, A.; Kumla, J.; Jatuwong, K.; Srinuanpan, S.; Waroonkun, T.; Oranratmanee, R.; Lumyong, S.; Suwannarach, N. Amazing Fungi for Eco-Friendly Composite Materials: A Comprehensive Review. J. Fungi 2022, 8, 842. [Google Scholar] [CrossRef] [PubMed]
- Kuribayashi, T.; Lankinen, P.; Hietala, S.; Mikkonen, K.S. Dense and Continuous Networks of Aerial Hyphae Improve Flexibility and Shape Retention of Mycelium Composite in the Wet State. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106688. [Google Scholar] [CrossRef]
- Sakunwongwiriya, P.; Taweepreda, W.; Luenram, S.; Chungsiriporn, J.; Iewkittayakorn, J. Characterization of Uncoated and Coated Fungal Mycelium-Based Composites from Water Hyacinth. Coatings 2024, 14, 862. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; Damsin, B.; Van Wylick, A.; Peeters, E.; De Laet, L. Mechanical Characteristics of Bacterial Cellulose-Reinforced Mycelium Composite Materials. Fungal Biol. Biotechnol. 2021, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.-H.; Zhong, J.-J. Effect of Initial PH on Production of Ganoderic Acid and Polysaccharide by Submerged Fermentation of Ganoderma Lucidum. Process Biochem. 2002, 37, 769–774. [Google Scholar] [CrossRef]
- Dessi-Olive, J. Strategies for Growing Large-Scale Mycelium Structures. Biomimetics 2022, 7, 129. [Google Scholar] [CrossRef]
- Gan, J.K.; Soh, E.; Saeidi, N.; Javadian, A.; Hebel, D.E.; Le Ferrand, H. Temporal Characterization of Biocycles of Mycelium-Bound Composites Made from Bamboo and Pleurotus Ostreatus for Indoor Usage. Sci. Rep. 2022, 12, 19362. [Google Scholar] [CrossRef]
- Walter, N.; Gürsoy, B. A Study on the Sound Absorption Properties of Mycelium-Based Composites Cultivated on Waste Paper-Based Substrates. Biomimetics 2022, 7, 100. [Google Scholar] [CrossRef]
- Schritt, H.; Vidi, S.; Pleissner, D. Spent Mushroom Substrate and Sawdust to Produce Mycelium-Based Thermal Insulation Composites. J. Clean. Prod. 2021, 313, 127910. [Google Scholar] [CrossRef]
- Le Ferrand, H. Critical Review of Mycelium-Bound Product Development to Identify Barriers to Entry and Paths to Overcome Them. J. Clean. Prod. 2024, 450, 141859. [Google Scholar] [CrossRef]
- Bonenberg, A.; Sydor, M.; Cofta, G.; Doczekalska, B.; Grygorowicz-Kosakowska, K. Mycelium-Based Composite Materials: Study of Acceptance. Materials 2023, 16, 2164. [Google Scholar] [CrossRef] [PubMed]
- Weinland, F.; Lingner, T.; Schritt, H.; Gradl, D.; Reintjes, N.; Schüler, M. Life Cycle Assessment of Mycelium Based Composite Acoustic Insulation Panels. Clean. Circ. Bioecon. 2024, 9, 100106. [Google Scholar] [CrossRef]
- Volk, R.; Schröter, M.; Saeidi, N.; Steffl, S.; Javadian, A.; Hebel, D.E.; Schultmann, F. Life Cycle Assessment of Mycelium-Based Composite Materials. Resour. Conserv. Recycl. 2024, 205, 107579. [Google Scholar] [CrossRef]
Substrate and Mixing Ratio | Code |
---|---|
Sawdust 100% | SW |
Sawdust 75%–hazelnut shells 25% | SW75-HZ25 |
Sawdust 50%–hazelnut shells 50% | SW-HZ |
Sawdust 25%–hazelnut shells 75% | SW25-HZ75 |
Hazelnut shells 100% | HZ |
Substrate | Extractives 1 | Lignin 2 | Holocellulose 3 | pH | WHC (%) |
---|---|---|---|---|---|
Sawdust (SW) | 2.23 ± 0.5 | 27.94 ± 0.2 | 61.26 ± 5.9 | 4.9 ± 0.1 | 184.19 ± 7.7 |
Hazelnut shells (HZ) | 8.11 ± 0.3 | 44.2 ± 0.01 | 43.6 ± 0.02 | 5.6 ± 0.07 | 28.24 ± 1.2 |
Substrates (Code) | Growth Rate (cm/Day) |
---|---|
Hazelnut shells 100% (HZ100) | 1.15 ± 0.16 |
Hazelnut shells 75%–sawdust 25% (HZ75-SW25) | 0.95 ± 0.11 |
Hazelnut shells 50%–sawdust 50% (HZ50-SW50) | 0.88 ± 0.05 |
Hazelnut shells 25%–sawdust 75% (HZ25-SW75) | 0.92 ± 0.06 |
Sawdust 100% (SW100) | 0.9 ± 0.15 |
Physical Properties | Mycelium Bioblocks | |
---|---|---|
HZ75-SW25 | HZ100 | |
Apparent density (g/cm3) | 0.49 ± 0.01 | 0.60 ± 0.1 |
Shrinkage (%) | 19.8 ± 2.2 | 14.9 ± 1.6 |
Hydrophobicity after drying (contact angle in degrees) | 98.70 ± 21.8 | 105.14 ± 13.3 |
Water absorption at 48 h (%) | 60.35 ± 2.3 | 52.43 ± 9.3 |
Water absorption rate (Kg m−2 h−0.5) | 0.32 ± 0.01 | 0.32 ± 0.02 |
Mechanical Properties | Mycelium Bioblocks | |
---|---|---|
HZ75-SW25 | HZ100 | |
Before exposure to climatic conditions: | ||
Modulus of rupture MOR (kPa) | 56.03 ± 5.7 | 43.01 ± 2.9 |
Modulus of elasticity MOE (kPa) | 42.62 ± 2.8 | 33.86 ± 0.8 |
Internal bond strength (Pa) | 13.33 ± 1.1 | 8.54 ± 0.23 |
After exposure to climatic conditions: | ||
Modulus of rupture MOR (kPa) | 48.94 ± 5.8 | 17.56 ± 4.5 |
Modulus of elasticity MOE (kPa) | 61.87 ± 3.1 | 22.94 ± 13.3 |
Internal bond strength (Pa) | 8.03 ± 3.8 | 11.23 ± 2.24 |
Sample | Equation | Constant k | Time (Days) |
---|---|---|---|
HZ75-SW25 | B (%) = 0.3324 t + 2.2828 (R2 = 0.997) | 0.3324 | 294 |
HZ100 | B (%) = 0.2782 t + 2.906 (R2 = 0.996) | 0.2782 | 349 |
Cellulose | B (%) = 0.43 t + 1.1674 (R2 = 0.994) | 0.43 | 230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fritz, C.; Olivera, J.F.; Garrido-Manque, V.; Garay, R. Development and Evaluation of Mycelium-Based Composites from Agroforestry Residues: A Sustainable Approach to the Design of Innovative Building Materials. Buildings 2025, 15, 1764. https://doi.org/10.3390/buildings15111764
Fritz C, Olivera JF, Garrido-Manque V, Garay R. Development and Evaluation of Mycelium-Based Composites from Agroforestry Residues: A Sustainable Approach to the Design of Innovative Building Materials. Buildings. 2025; 15(11):1764. https://doi.org/10.3390/buildings15111764
Chicago/Turabian StyleFritz, Consuelo, Juan Francisco Olivera, Víctor Garrido-Manque, and Rosemarie Garay. 2025. "Development and Evaluation of Mycelium-Based Composites from Agroforestry Residues: A Sustainable Approach to the Design of Innovative Building Materials" Buildings 15, no. 11: 1764. https://doi.org/10.3390/buildings15111764
APA StyleFritz, C., Olivera, J. F., Garrido-Manque, V., & Garay, R. (2025). Development and Evaluation of Mycelium-Based Composites from Agroforestry Residues: A Sustainable Approach to the Design of Innovative Building Materials. Buildings, 15(11), 1764. https://doi.org/10.3390/buildings15111764