Climate-Responsive Design of Photovoltaic Façades in Hot Climates: Materials, Technologies, and Implementation Strategies
Abstract
:1. Introduction
1.1. State-of-the-Art of Photovoltaic Façade
1.2. The Aim of the Study
- What are the critical material and encapsulation choices that enhance the thermal and functional durability of BIPV systems under hot arid and hot humid conditions?
- How do different passive and active cooling technologies compare in terms of energy performance, cost, and applicability across hot climate zones?
- What integrated design strategies (geometry, orientation, control systems) most effectively balance solar gain, indoor comfort, and electricity generation in tropical and desert cities?
- How can intelligent control and simulation tools be used to support dynamic optimization of BIPV systems in response to real time environmental conditions?
2. Climate Responsive Principles and Characteristics in Hot Climates
2.1. Bioclimatic Design Principles
- Thermodynamic level—Delaying heat transfer through thermal resistance gradient distribution in the building envelope and latent heat storage using phase change materials;
- Optical level—Balancing visible light transmission and near-infrared radiation reflection by employing spectrally selective glazing, such as Low E glass;
- Fluid dynamics level—Enhancing the built environment’s wind performance through computational fluid dynamics (CFD) simulations, creating self-organized air convection cooling pathways.
2.2. Energy Consumption Characteristics of Buildings in Hot Climates
3. Sustainable Materials
3.1. Semiconductor Materials
3.2. Encapsulant Materials
- Encapsulant Hydrolysis: EVA, a widely used encapsulant, undergoes hydrolysis to produce acetic acid, which corrodes metallic electrodes. In tropical (Class A) and humid subtropical (Cfa) climates, this process reduces module lifespans to below 20 years, significantly shorter than in arid regions (e.g., desert BWh climates) [82].
- Backsheet Permeability: Highly water soluble backsheet materials exacerbate moisture ingress, amplifying hydrolysis risks in encapsulants [83].
- Interfacial Delamination: Humidity induced weakening of interlayer adhesion promotes delamination, compromising mechanical integrity.
4. Sustainable Technology
4.1. Cooling Technology
4.1.1. Passive Radiative Cooling (PRC)
4.1.2. Double Skin Façade (DSF)
4.1.3. Evaporative Cooling
- Automatic water supply systems to maintain clay saturation, ensuring continuous evaporation;
- Optimized PV clay installation spacing to enhance natural ventilation, improving heat dissipation while preventing heat reabsorption by the building.
4.1.4. PCM
- PV PCM Windows: Addressing limitations of conventional PCM windows (fixed phase transition, winter solar blockage) and PV windows (summer heat gain), ref. [123] proposed a modular multi-layer PV PCM window. This design achieves a SHGC of <0.30 and a U value of <2.50 W/(m2·K), delaying indoor temperature peaks by 10–30 min. Simultaneously, it generates more electricity than standard PV windows while maintaining illuminance levels compliant with national building codes;
- Ventilated PV CPCM Walls: [124] developed a ventilated wall system integrating composite PCMs (CPCMs) with air cavities. The ventilation layer mitigates PV module overheating (reducing operating temperatures by 4.9 °C), while CPCMs reduce indoor temperature peaks by about 2 °C compared with the common double hollow block walls, demonstrating adaptability to diverse climatic conditions.
4.2. Dimming Technologies
4.2.1. Color Technologies
4.2.2. PVSD
5. Parametric Design and Integration of Intelligent Systems
5.1. Key Design Parameters
5.2. Intelligent Control and Multi Objective Optimization
6. Limitations of the Current State and Future Directions
6.1. Limitations of the Current State
6.1.1. Limitations of Climate Zoning in BIPV Design
- Urban Heat Island (UHI) intensity;
- Street canyon ventilation conditions;
- Local environmental parameters such as sandstorm frequency, UV radiation, and air pollution.
6.1.2. Overlooking Long-Term Stability in BIPV Materials
6.1.3. Cooling Technology Limitations in Hot Humid Climates
6.1.4. PV Grid Integration and Curtailment Issues [189]
- Intermittency and Variability: PV generation often misaligns with building load profiles. In hot climates, although cooling loads are high, the peak demand typically occurs in the late afternoon, whereas PV output peaks at midday. To prevent frequency instability caused by midday overgeneration, grid operators may curtail PV output. This problem is exacerbated by the high variability of solar irradiance in hot climates, as well as by seasonal fluctuations, with curtailment rates peaking in spring and autumn.
- Geographic Mismatch: There is often a spatial disconnect between areas suitable for PV generation (sunny, dry regions) and areas with high electricity demand (urban centers). Many large-scale PV plants are located in suburban or remote regions, while electricity consumption is concentrated in city centers. In addition, existing distribution infrastructure may be outdated or not designed for high levels of distributed PV, and limited transmission capacity between these areas further contributes to the geographic mismatch.
- Deployment of Distributed PV Systems: Distributed generation enables more flexible control by grid operators and allows for local balancing of generation and demand, thereby reducing curtailment. System level optimization can further minimize PV curtailment [191].
- Adaptive Shading and Demand Response Strategies: Adjusting load profiles through demand side measures can help better align building energy consumption with PV generation. Integrating energy demand–generation synchronization during the design phase can enhance the initial match between supply and demand.
- Building Integrated Energy Storage: On-site storage can capture surplus midday generation. However, the trade-off between avoided curtailment and the capital cost of battery storage must be considered. Coordinated electric vehicle (EV) charging strategies [192] and dynamic EV tariff design [193] can also help absorb excess PV output, reducing the need for costly stationary storage systems.
- AI-Based Energy Management: Machine learning models can forecast short-term PV output and cooling demand profiles. This enables predictive control strategies, such as pre-conditioning indoor temperatures and dynamically adjusting charge/discharge behavior of energy storage systems. Weather informed, feedforward control can thus improve the real-time matching of PV supply with building demand.
6.2. Future Directions
- Multi-climate parameter analysis (temperature, humidity, dust levels, UV exposure, wind speed, seasonal variations);
- Dynamic energy management strategies (real time PV efficiency optimization, adaptive shading, hybrid cooling);
- Economic and durability based on life cycle assessment (quantifying long-term performance and financial feasibility).
- Climate Adaptive Design (Materia, Technology and Architecture Integration)
- Establish climate specific criteria for material selection. For hot dry climates, prioritize CdTe/CIGS thin film modules with high temperature resistant encapsulation. In hot humid zones, recommend CIGS modules combined with POE encapsulation. Accelerate the development of moisture resistant PSC and dust-repellent surface technologies.
- Define climate adaptive performance indicators, such as resistance to hygrothermal cycling (>1000 cycles) and annual thermal attenuation rate (ΔT < 5 °C/year).
- The selection of cooling technologies for BIPV systems must account for the distinct characteristics of arid and humid heat conditions. As illustrated in Figure 2, a quantitative analysis based on climatic parameters—such as temperature, humidity, and solar radiation intensity—should inform the targeted selection of passive cooling techniques (e.g., phase change materials, ventilated structures) or optimized combinations with active cooling systems. Furthermore, it is recommended to dynamically integrate weather forecast data into the intelligent control strategies of BIPV systems.
- 2.
- AI and IoT Driven Dynamic Control
- Apply machine learning algorithms for real-time energy optimization. This includes dynamic adjustment of PV tilt angles, activation of cooling systems, and solar shading based on current weather conditions. Develop smart façades capable of responding to climate sensor data and predictive weather inputs to adapt shading, ventilation, and inclination.
- Deploy IoT-enabled intelligent façades for continuous environmental monitoring and automated system adjustment, enhancing responsiveness and energy efficiency.
- 3.
- Life Cycle-Based Economic and Performance Optimization
- 4.
- Enhancing Industry Collaboration and Standardization
- Digital Collaborative Platforms
- Standardized Evaluation Systems
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BIPV | Building integrated photovoltaics |
NZEB | Nearly zero energy buildings |
TLA | Three letter acronym |
IEA | International Energy Agency |
SHGC | Solar heat gain coefficient |
TPV | Transparent photovoltaic |
PV DSF | Photovoltaic double skin façade |
PVSD | Photovoltaic integrated shading device |
CFD | Computational fluid dynamics |
UHI | Urban heat island |
TC | Temperature Coefficient |
Jsc | Short circuit current density |
Voc | Open circuit voltage |
FF | Fill factor |
c Si | Crystalline silicon |
EVA | Ethylene vinyl acetate |
POE | Polyolefin Elastomer |
PRC | Passive radiative cooling |
DRC | Daytime Radiative Cooling |
NRC | Nighttime Radiative Cooling |
PCRC | Passive colorful radiative cooling material |
PP | payback period |
DSF | Double Skin Façade |
HVAC | Heating, ventilation, and air conditioning |
VLT | Visible light transmittance |
BIPV/T | Building integrated photovoltaic/thermal |
PCM | Phase change material |
CPCM | Composite phase change material |
TEG | Thermoelectric generators |
BEMS | Building energy management systems |
ERV | Energy recovery ventilation |
SEER | Seasonal energy efficiency ratio |
EC | Electrochromic |
PVC | Photovoltachromic |
ESD | External shading device |
BIPVS | Bifacial photovoltaic |
GTD | Geometric transparency degree |
low E | Low emissivity |
WWR | Window to wall ratio |
LCE | Life Cycle Energy |
LCC | Life Cycle Cost |
DR | Demand response |
AI | Artificial intelligence |
CPV | Concentrated Photovoltaic |
References
- World Energy Outlook 2023—Analysis. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 14 October 2024).
- UNEP. Annual Report 2021; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Shi, W.; Shang, R.; Cheng, R.; Wang, X. A New Approach, Based on the Inverse Problem and Variation Method, for Solving Building Energy and Environment Problems: Preliminary Study and Illustrative Examples. Build. Environ. 2015, 91, 204–218. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A Review on Buildings Energy Consumption Information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Chen, T.; An, Y.; Heng, C.K. A Review of Building-Integrated Photovoltaics in Singapore: Status, Barriers, and Prospects. Sustainability 2022, 14, 10160. [Google Scholar] [CrossRef]
- Kuhn, T.E.; Erban, C.; Heinrich, M.; Eisenlohr, J.; Ensslen, F.; Neuhaus, D.H. Review of Technological Design Options for Building Integrated Photovoltaics (BIPV). Energy Build. 2021, 231, 110381. [Google Scholar] [CrossRef]
- Pillai, D.S.; Shabunko, V.; Krishna, A. A Comprehensive Review on Building Integrated Photovoltaic Systems: Emphasis to Technological Advancements, Outdoor Testing, and Predictive Maintenance. Renew. Sustain. Energy Rev. 2022, 156, 111946. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The City and Urban Heat Islands: A Review of Strategies to Mitigate Adverse Effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Alhamwi, A.; Medjroubi, W.; Vogt, T.; Agert, C. Development of a GIS-Based Platform for the Allocation and Optimisation of Distributed Storage in Urban Energy Systems. Appl. Energy 2019, 251, 113360. [Google Scholar] [CrossRef]
- Tao, G.; Zhu, Q.; Chen, Y.; Shi, X.; Guan, J. Performance Analysis of Novel Lightweight Photovoltaic Curtain Wall Modules under Different Climatic Conditions. Energies 2025, 18, 38. [Google Scholar] [CrossRef]
- Wang, C.; Ji, J. Comprehensive Performance Analysis of a Rural Building Integrated PV/T Wall in Hot Summer and Cold Winter Region. Energy 2023, 282, 128302. [Google Scholar] [CrossRef]
- Chen, T.; Tai, K.F.; Raharjo, G.P.; Heng, C.K.; Leow, S.W. A Novel Design Approach to Prefabricated BIPV Walls for Multi-Storey Buildings. J. Build. Eng. 2023, 63, 105469. [Google Scholar] [CrossRef]
- Shabunko, V.; Bieri, M.; Reindl, T. Building Integrated Photovoltaic Facades in Singapore: Online BIPV LCC Calculator. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 1231–1233. [Google Scholar]
- Attoye, D.E.; Tabet Aoul, K.A.; Hassan, A. A Review on Building Integrated Photovoltaic Façade Customization Potentials. Sustainability 2017, 9, 2287. [Google Scholar] [CrossRef]
- Parida, B.; Iniyan, S.; Goic, R. A Review of Solar Photovoltaic Technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Abdelsamie, M.M.; Ali, K.; Hassan Ali, M.I. Enhancing Building Efficiency: Multifunctional Glazing Windows with Integrated Semitransparent PV and Selective Liquid-Filters. Appl. Energy 2025, 377, 124723. [Google Scholar] [CrossRef]
- Skandalos, N.; Karamanis, D. An Optimization Approach to Photovoltaic Building Integration towards Low Energy Buildings in Different Climate Zones. Appl. Energy 2021, 295, 117017. [Google Scholar] [CrossRef]
- Gholami, H.; Nils Røstvik, H. The Effect of Climate on the Solar Radiation Components on Building Skins and Building Integrated Photovoltaics (BIPV) Materials. Energies 2021, 14, 1847. [Google Scholar] [CrossRef]
- Second-Warmest December Confirms 2024 as the Warmest Year|Copernicus. Available online: https://climate.copernicus.eu/second-warmest-december-confirms-2024-warmest-year (accessed on 2 May 2025).
- Liu, S. Building Performance and Passive Adaptation Strategies in Changing Climatic Conditions: A Case Study of Residential Buildings in Subtropical Hong Kong. Ph.D. Thesis, The Chinese University of Hong Kong (Hong Kong), Hong Kong, 2021. [Google Scholar]
- Liu, S.; Kwok, Y.T.; Lau, K.K.-L.; Ouyang, W.; Ng, E. Effectiveness of Passive Design Strategies in Responding to Future Climate Change for Residential Buildings in Hot and Humid Hong Kong. Energy Build. 2020, 228, 110469. [Google Scholar] [CrossRef]
- Ma, W.W.; Rasul, M.G.; Liu, G.; Li, M.; Tan, X.H. Climate Change Impacts on Techno-Economic Performance of Roof PV Solar System in Australia. Renew. Energy 2016, 88, 430–438. [Google Scholar] [CrossRef]
- Xiao, Z.; Tian, Z.; Chen, T.; Ouyang, C.; Zhou, Y.; Heng, C.K.; Lucchi, E. Sustainable Adaptation of Heritage Buildings in Tropical Rainforest Climates: The Innovative Practice of Tanjong Pagar Railway Station in Singapore. Energy Build. 2025, 335, 115560. [Google Scholar] [CrossRef]
- Climate of Singapore. Weather Information Portal. Available online: https://www.weather.gov.sg/climate-climate-of-singapore/ (accessed on 13 May 2025).
- Climate: Dubai in the United Arab Emirates. Available online: https://www.worlddata.info/asia/arab-emirates/climate-dubai.php (accessed on 2 May 2025).
- Al Touma, A.; Ouahrani, D. Evaporatively-Cooled Façade Integrated with Photovoltaic Thermal Panel Applied in Hot and Humid Climates. Energy 2019, 172, 409–422. [Google Scholar] [CrossRef]
- Li, D.H.W.; Aghimien, E.I.; Alshaibani, K. An Analysis of Real-Time Measured Solar Radiation and Daylight and Its Energy Implications for Semi-Transparent Building-Integrated Photovoltaic Façades. Buildings 2023, 13, 386. [Google Scholar] [CrossRef]
- Shabunko, V.; Reindl, T. Measurement of Solar Heat Gain Coefficient for Semi-Transparent Building-Integrated Photovoltaics in the Tropics. In Proceedings of the 35th European Photovoltaic Solar Energy Conference and Exhibition, Brussels, Belgium, 24–28 September 2018. [Google Scholar]
- Niu, H.; Yao, X.; Luo, S.; Cui, H.; Chen, W.; Ahmmed, M.D.A.; Zhou, R.; Wang, H.; Wan, L.; Hu, L. Composite Superhydrophobic Coating with Transparency and Thermal Insulation for Glass Curtain Walls. ACS Appl. Mater. Interfaces 2024, 16, 48374–48385. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhang, W.; Huang, F.; Zhao, R.; Tang, K. Experimental and Simulation Study on the Thermoelectric Performance of Semi-Transparent Crystalline Silicon Photovoltaic Curtain Walls. J. Build. Eng. 2024, 90, 109421. [Google Scholar] [CrossRef]
- Hu, W.; Duan, Y.; Li, D.; Zhang, C.; Yang, H.; Yang, R. Optimizing the Indoor Thermal Environment and Daylight Performance of Buildings with PCM Glazing. Energy Build. 2024, 318, 114481. [Google Scholar] [CrossRef]
- Zhou, K.; Shi, J.-L.; Fu, J.-Y.; Zhang, S.-X.; Liao, T.; Yang, C.-Q.; Wu, J.-R.; He, Y.-C. An Improved YOLOv10 Algorithm for Automated Damage Detection of Glass Curtain-Walls in High-Rise Buildings. J. Build. Eng. 2025, 101, 111812. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Zhang, M.; Liu, Z.; Bai, Y.; Zhao, Z.; Su, X.; Li, M. Design and Self-Calibration Method of a Rope-Driven Cleaning Robot for Complex Glass Curtain Walls. Actuators 2024, 13, 272. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Tang, S.-H.; Chen, N. Application of Multi-Stage Ionic Wind Technology in Glass Curtain Walls for Enhanced Thermal Insulation Performance. J. Build. Eng. 2024, 95, 110159. [Google Scholar] [CrossRef]
- Liu, M.; Liu, C.; Xie, H.; Zhao, Z.; Zhu, C.; Lu, Y.; Bu, C. Analysis of the Impact of Photovoltaic Curtain Walls Replacing Glass Curtain Walls on the Whole Life Cycle Carbon Emission of Public Buildings Based on BIM Modeling Study. Energies 2023, 16, 7030. [Google Scholar] [CrossRef]
- Hamida, H.; Prieto, A.; Beneito, L.; Konstantinou, T.; Knaack, U. Design and Evaluation Strategies for Solar Cooling Integrated Façades: A Case Study in a Southern European Office Building. J. Build. Eng. 2025, 105, 112440. [Google Scholar] [CrossRef]
- Salameh, T.; Assad, M.E.H.; Tawalbeh, M.; Ghenai, C.; Merabet, A.; Öztop, H.F. Analysis of Cooling Load on Commercial Building in UAE Climate Using Building Integrated Photovoltaic Façade System. Sol. Energy 2020, 199, 617–629. [Google Scholar] [CrossRef]
- Liu, T.; Almutairi, M.M.S.; Ma, J.; Stewart, A.; Xing, Z.; Liu, M.; Hou, B.; Cho, Y. Solution-Processed Thin Film Transparent Photovoltaics: Present Challenges and Future Development. Nano-Micro Lett. 2024, 17, 49. [Google Scholar] [CrossRef]
- Alshareef, M.J. A Comprehensive Review of the Soiling Effects on PV Module Performance. IEEE Access 2023, 11, 134623–134651. [Google Scholar] [CrossRef]
- Liu, X.; Shen, C.; Wang, J.; Zhang, C.; Shuai, Y. Static and Dynamic Regulations of Photovoltaic Double Skin Facades towards Building Sustainability: A Review. Renew. Sustain. Energy Rev. 2023, 183, 113458. [Google Scholar] [CrossRef]
- Shi, S.; Zhu, N. Challenges and Optimization of Building-Integrated Photovoltaics (BIPV) Windows: A Review. Sustainability 2023, 15, 15876. [Google Scholar] [CrossRef]
- Mangherini, G.; Diolaiti, V.; Bernardoni, P.; Andreoli, A.; Vincenzi, D. Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings. Energies 2023, 16, 6901. [Google Scholar] [CrossRef]
- Alyami, S.H.; Ashraf, N.; Alyami, F.M.; Alhamami, A. Energy Assessment of BIPV System in Code-Compliant Residential Building in Cooling-Dominated Climates. PLoS ONE 2025, 20, e0318786. [Google Scholar] [CrossRef]
- Curtius, H.C. The Adoption of Building-Integrated Photovoltaics: Barriers and Facilitators. Renew. Energy 2018, 126, 783–790. [Google Scholar] [CrossRef]
- Olgyay, V.; Olgyay, A.; Lyndon, D.; Olgyay, V.W.; Reynolds, J.; Yeang, K. Design with Climate: Bioclimatic Approach to Architectural Regionalism—New and Expanded Edition; REV-Revised; Princeton University Press: Princeton, NJ, USA, 2015; ISBN 978-0-691-16973-6. [Google Scholar]
- Singh, M.K.; Mahapatra, S.; Atreya, S.K. Thermal Performance Study and Evaluation of Comfort Temperatures in Vernacular Buildings of North-East India. Build. Environ. 2010, 45, 320–329. [Google Scholar] [CrossRef]
- Yeang, K.K.-M. Theoretical Framework for Incorporating Ecological Considerations in the Design and Planning of the Built Environment. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1980. [Google Scholar]
- Tzikopoulos, A.F.; Karatza, M.C.; Paravantis, J.A. Modeling Energy Efficiency of Bioclimatic Buildings. Energy Build. 2005, 37, 529–544. [Google Scholar] [CrossRef]
- Anna-Maria, V. Evaluation of a Sustainable Greek Vernacular Settlement and Its Landscape: Architectural Typology and Building Physics. Build. Environ. 2009, 44, 1095–1106. [Google Scholar] [CrossRef]
- AR6 Synthesis Report: Climate Change 2023; IPCC: Geneva, Switzerland, 2023.
- Environment, U.N. Annual Report 2022 | UNEP—UN Environment Programme. Available online: https://www.unep.org/resources/annual-report-2022 (accessed on 3 March 2025).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Publisher Correction: Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2020, 7, 274. [Google Scholar] [CrossRef]
- Amraoui, K.; Sriti, L.; Di Turi, S.; Ruggiero, F.; Kaihoul, A. Exploring Building’s Envelope Thermal Behavior of the Neo-Vernacular Residential Architecture in a Hot and Dry Climate Region of Algeria. Build. Simul. 2021, 14, 1567–1584. [Google Scholar] [CrossRef]
- Bamisile, O.; Acen, C.; Cai, D.; Huang, Q.; Staffell, I. The Environmental Factors Affecting Solar Photovoltaic Output. Renew. Sustain. Energy Rev. 2025, 208, 115073. [Google Scholar] [CrossRef]
- Heather, E.K. ASHRAE Handbook—Fundamentals; American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2021. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Selected Heat Transfer Topics. In Solar Engineering of Thermal Processes; John Wiley and Sons: Hoboken, NJ, USA, 2013; pp. 138–172. ISBN 978-1-118-67160-3. [Google Scholar]
- Yan, H.; Ji, G.; Yan, K. Data-Driven Prediction and Optimization of Residential Building Performance in Singapore Considering the Impact of Climate Change. Build. Environ. 2022, 226, 109735. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Available Solar Radiation. In Solar Engineering of Thermal Processes; John Wiley and Sons: Hoboken, NJ, USA, 2013; pp. 43–137. ISBN 978-1-118-67160-3. [Google Scholar]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D.N. On the Impact of Urban Climate on the Energy Consumption of Buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- ISO 13786:2017(En), Thermal Performance of Building Components—Dynamic Thermal Characteristics—Calculation Methods. Available online: https://www.iso.org/obp/ui/#iso:std:iso:13786:ed-3:v2:en (accessed on 4 March 2025).
- Asan, H. Numerical Computation of Time Lags and Decrement Factors for Different Building Materials. Build. Environ. 2006, 41, 615–620. [Google Scholar] [CrossRef]
- Climate Considerations in Building and Urban Design|Wiley. Available online: https://www.wiley.com/en-us/Climate+Considerations+in+Building+and+Urban+Design-p-9780471291770 (accessed on 4 March 2025).
- Dubey, R.; Chattopadhyay, S.; Kuthanazhi, V.; Kottantharayil, A.; Singh Solanki, C.; Arora, B.M.; Narasimhan, K.L.; Vasi, J.; Bora, B.; Singh, Y.K.; et al. Comprehensive Study of Performance Degradation of Field-Mounted Photovoltaic Modules in India. Energy Sci. Eng. 2017, 5, 51–64. [Google Scholar] [CrossRef]
- Jin, Z.; Zheng, Y.; Huang, D.; Zhang, Y.; Lv, S.; Sun, H. Dehumidification Load Ratio: Influence Mechanism on Air Conditioning and Energy Saving Potential Analysis for Building Cooling. Sustain. Cities Soc. 2023, 99, 104942. [Google Scholar] [CrossRef]
- Paudyal, B.R.; Imenes, A.G. Investigation of Temperature Coefficients of PV Modules through Field Measured Data. Sol. Energy 2021, 224, 425–439. [Google Scholar] [CrossRef]
- Pal, P.; Mukherjee, V.; Kumar, P.; Makhatha, M.E. Pre-Feasibility Analysis and Performance Assessment of Solar Photovoltaic (PV) Modules for the Application of Renewable Power Generation. Mater. Today: Proc. 2021, 39, 1813–1819. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Abdelkareem, M.A.; Al-Alami, A.H.; Ramadan, M.; Mushtaha, E.; Wilberforce, T.; Olabi, A.G. State-of-the-Art Technologies for Building-Integrated Photovoltaic Systems. Buildings 2021, 11, 383. [Google Scholar] [CrossRef]
- Luo, W.; Khaing, A.M.; Rodriguez-Gallegos, C.D.; Leow, S.W.; Reindl, T.; Pravettoni, M. Long-term Outdoor Study of an Organic Photovoltaic Module for Building Integration. Prog. Photovolt. Res. Appl. 2024, 32, 481–491. [Google Scholar] [CrossRef]
- Liang, R.; Wang, P.; Zhou, C.; Pan, Q.; Riaz, A.; Zhang, J. Thermal Performance Study of an Active Solar Building Façade with Specific PV/T Hybrid Modules. Energy 2020, 191, 116532. [Google Scholar] [CrossRef]
- Singh, P.; Ravindra, N.M. Temperature Dependence of Solar Cell Performance—An Analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Han, J.; Lu, L.; Peng, J.; Yang, H. Performance of Ventilated Double-Sided PV Façade Compared with Conventional Clear Glass Façade. Energy Build. 2013, 56, 204–209. [Google Scholar] [CrossRef]
- Moot, T.; Patel, J.B.; McAndrews, G.; Wolf, E.J.; Morales, D.; Gould, I.E.; Rosales, B.A.; Boyd, C.C.; Wheeler, L.M.; Parilla, P.A.; et al. Temperature Coefficients of Perovskite Photovoltaics for Energy Yield Calculations. ACS Energy Lett. 2021, 6, 2038–2047. [Google Scholar] [CrossRef]
- Dash, P.; Gupta, N. Effect of Temperature on Power Output from Different Commercially Available Photovoltaic Modules. Int. J. Eng. Res. Appl. 2015, 5, 148–151. [Google Scholar]
- Alhammadi, N.; Rodriguez-Ubinas, E.; Alzarouni, S.; Alantali, M. Building-Integrated Photovoltaics in Hot Climates: Experimental Study of CIGS and c-Si Modules in BIPV Ventilated Facades. Energy Convers. Manag. 2022, 274, 116408. [Google Scholar] [CrossRef]
- Uddin, A.; Upama, M.B.; Yi, H.; Duan, L. Encapsulation of Organic and Perovskite Solar Cells: A Review. Coatings 2019, 9, 65. [Google Scholar] [CrossRef]
- Polo López, C.S.; Troia, F.; Nocera, F. Photovoltaic BIPV Systems and Architectural Heritage: New Balance between Conservation and Transformation. An Assessment Method for Heritage Values Compatibility and Energy Benefits of Interventions. Sustainability 2021, 13, 5107. [Google Scholar] [CrossRef]
- Paraskeva, V.; Norton, M.; Livera, A.; Kyprianou, A.; Hadjipanayi, M.; Peraticos, E.; Aguirre, A.; Ramesh, S.; Merckx, T.; Ebner, R.; et al. Diurnal Changes and Machine Learning Analysis of Perovskite Modules Based on Two Years of Outdoor Monitoring. ACS Energy Lett. 2024, 9, 5081–5091. [Google Scholar] [CrossRef]
- Shabunko, V.; Badrinarayanan, S.; Pillai, D.S. Evaluation of In-Situ Thermal Transmittance of Innovative Building Integrated Photovoltaic Modules: Application to Thermal Performance Assessment for Green Mark Certification in the Tropics. Energy 2021, 235, 121316. [Google Scholar] [CrossRef]
- Skoplaki, E.; Palyvos, J.A. Operating Temperature of Photovoltaic Modules: A Survey of Pertinent Correlations. Renew. Energy 2009, 34, 23–29. [Google Scholar] [CrossRef]
- Oreski, G.; Omazic, A.; Eder, G.C.; Voronko, Y.; Neumaier, L.; Mühleisen, W.; Hirschl, C.; Ujvari, G.; Ebner, R.; Edler, M. Properties and Degradation Behaviour of Polyolefin Encapsulants for Photovoltaic Modules. Prog. Photovolt.: Res. Appl. 2020, 28, 1277–1288. [Google Scholar] [CrossRef]
- Damo, U.M.; Ozoegwu, C.G.; Ogbonnaya, C.; Maduabuchi, C. Effects of Light, Heat and Relative Humidity on the Accelerated Testing of Photovoltaic Degradation Using Arrhenius Model. Sol. Energy 2023, 250, 335–346. [Google Scholar] [CrossRef]
- Irikawa, J.; Hashimoto, H.; Kanno, H.; Taguchi, M. Correlation between Damp-Heat Test and Field Operation for Electrode Corrosion in Photovoltaic Modules. Sol. Energy Mater. Sol. Cells 2025, 284, 113375. [Google Scholar] [CrossRef]
- Mitterhofer, S.; Slapšak, J.; Astigarraga, A.; Moser, D.; Hernandez, G.O.; Chiantore, P.V.; Luo, W.; Khoo, Y.S.; Rabanal-Arabach, J.; Fuentealba, E.; et al. Measurement and Simulation of Moisture Ingress in PV Modules in Various Climates. IEEE J. Photovolt. 2024, 14, 140–148. [Google Scholar] [CrossRef]
- Fiandra, V.; Sannino, L.; Andreozzi, C.; Flaminio, G.; Pellegrino, M. New PV Encapsulants: Assessment of Change in Optical and Thermal Properties and Chemical Degradation after UV Aging. Polym. Degrad. Stab. 2024, 220, 110643. [Google Scholar] [CrossRef]
- Shi, L.; Bucknall, M.P.; Young, T.L.; Zhang, M.; Hu, L.; Bing, J.; Lee, D.S.; Kim, J.; Wu, T.; Takamure, N.; et al. Gas Chromatography-Mass Spectrometry Analyses of Encapsulated Stable Perovskite Solar Cells. Science 2020, 368, eaba2412. [Google Scholar] [CrossRef] [PubMed]
- Riedl, G.; Wallner, G.M.; Pugstaller, R.; Säckl, G.; Dauskardt, R.H. Methodology for Local Ageing and Damage Development Characterization of Solar Glass/Encapsulant Interfaces under Superimposed Fatigue Stresses and Environmental Influences. Sol. Energy Mater. Sol. Cells 2022, 248, 112017. [Google Scholar] [CrossRef]
- Han, H.; Dong, X.; Li, B.; Yan, H.; Verlinden, P.J.; Liu, J.; Huang, J.; Liang, Z.; Shen, H. Degradation Analysis of Crystalline Silicon Photovoltaic Modules Exposed over 30 Years in Hot-Humid Climate in China. Sol. Energy 2018, 170, 510–519. [Google Scholar] [CrossRef]
- Fiandra, V.; Sannino, L.; Andreozzi, C.; Flaminio, G.; Romano, A.; Rametta, G. New High UV Transparency PV Encapsulants: Properties and Degradation after Accelerated UV Aging Tests. Polym. Degrad. Stab. 2025, 234, 111257. [Google Scholar] [CrossRef]
- Uličná, S.; Sinha, A.; Miller, D.C.; Habersberger, B.M.; Schelhas, L.T.; Owen-Bellini, M. PV Encapsulant Formulations and Stress Test Conditions Influence Dominant Degradation Mechanisms. Sol. Energy Mater. Sol. Cells 2023, 255, 112319. [Google Scholar] [CrossRef]
- Shimpi, T.M.; Moffett, C.; Sampath, J.S.; Barth, K.L. Materials Selection Investigation for Thin Film Photovoltaic Module Encapsulation. Sol. Energy 2019, 187, 226–232. [Google Scholar] [CrossRef]
- Skoplaki, E.; Palyvos, J.A. On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Tso, C.Y.; Ha, J.; Wong, Y.M.; Chao, C.Y.H.; Huang, B.; Qiu, H. Field Investigation of a Photonic Multi-Layered TiO2 Passive Radiative Cooler in Sub-Tropical Climate. Renew. Energy 2020, 146, 44–55. [Google Scholar] [CrossRef]
- Khan, H.S.; Julia, O.M.L.; Paolini, R.; Webb, J.E.A.; Soeriyadi, A.; Krajcic, D.; Ranzi, G.; Wen, J.; Valenta, J.; Santamouris, M. Coloured Radiative Cooling Materials in the Built Environment Parallel the Cooling Benefits of White Conventional Surfaces and Balanced Winter Performance. Sol. Energy Mater. Sol. Cells 2025, 282, 113365. [Google Scholar] [CrossRef]
- Kumar, R.; Montero, F.J.; Lamba, R.; Vashishtha, M.; Upadhyaya, S. Thermal Management of Photovoltaic-Thermoelectric Generator Hybrid System Using Radiative Cooling and Heat Pipe. Appl. Therm. Eng. 2023, 227, 120420. [Google Scholar] [CrossRef]
- Tang, H.; Wu, J.; Chen, W.; Li, C. Building Energy Saving of a Rotatable Radiative Cooling-Photovoltaic System by Alternate Utilization of Solar Energy and Radiative Cooling. Energy Build. 2024, 316, 114350. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Y.; Shi, L.; Hu, X.; Chen, M.; Wu, L. A Structural Polymer for Highly Efficient All-Day Passive Radiative Cooling. Nat. Commun. 2021, 12, 365. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Xu, K.; Wu, M.; Guo, H.; Feng, Y.; Yin, X.; Qu, J. A Micro-Sandwich-Structured Membrane with High Solar Reflectivity for Durable Radiative Cooling. Matter 2024, 7, 4297–4308. [Google Scholar] [CrossRef]
- Alshammari, A.A.; Salilih, E.M.; Almatrafi, E.; Rady, M. Polymeric Coatings for Passive Radiative Cooling of PV Modules in Hot and Humid Weather: Design, Optimization, and Performance Evaluation. Case Stud. Therm. Eng. 2024, 57, 104341. [Google Scholar] [CrossRef]
- Han, D.; Ng, B.F.; Wan, M.P. Preliminary Study of Passive Radiative Cooling under Singapore’s Tropical Climate. Sol. Energy Mater. Sol. Cells 2020, 206, 110270. [Google Scholar] [CrossRef]
- Al-Dharob, M.H.; Hamad, A.A.; Qasim, A.Y.; Abdulrazzaq, O.A.; Alwan, A.A. Investigating the Potential of Al2O3 Nanocomposites for Innovative Self-Cooling Photovoltaic Technology. Iraqi J. Appl. Phys. 2024, 20, 517–522. [Google Scholar]
- Abd El-Samie, M.M.; Mahmoud, O.E.; Yang, Y.; Fatouh, M. Performance Evaluation of Multifunctional Windows for Commercial Buildings under Hot-Humid Climatic Environments. Energy Build. 2024, 303, 113816. [Google Scholar] [CrossRef]
- Song, J.; Shen, Q.; Shao, H.; Deng, X. Anti-environmental Aging Passive Daytime Radiative Cooling. Adv. Sci. 2023, 11, 2305664. [Google Scholar] [CrossRef]
- Lai, D.J.Y.; Chua, E.M.; Koyande, A.K.; Hong, W.T.; Khoiroh, I. Harnessing Acrylic-PVDF Binders in Paint Formulation for Enhanced Passive Cooling Performance. Appl. Energy 2025, 377, 124510. [Google Scholar] [CrossRef]
- Fernandez, N.; Wang, W.; Alvine, K.J.; Katipamula, S. Energy Savings Potential of Radiative Cooling Technologies; Pacific Northwest National Laboratory: Richland, WA, USA, 2015; p. PNNL-24904. [Google Scholar]
- Kaaya, I.; Alzade, A.; Bouguerra, S.; Kyranaki, N.; Bakovasilis, A.; Ramesh, S.; Saelens, D.; Daenen, M.; Morlier, A. A Physics-Based Framework for Modelling the Performance and Reliability of BIPV Systems. Sol. Energy 2024, 277, 112730. [Google Scholar] [CrossRef]
- Aldawoud, A.; Salameh, T.; Ki Kim, Y. Double Skin Façade: Energy Performance in the United Arab Emirates. Energy Sources Part B: Econ. Plan. Policy 2021, 16, 387–405. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L.; Su, X.; Wu, J.; Liu, Z. Experimental and Numerical Analysis of Naturally Ventilated PV-DSF in a Humid Subtropical Climate. Renew. Energy 2022, 200, 633–646. [Google Scholar] [CrossRef]
- Yang, S.; Cannavale, A.; Prasad, D.; Sproul, A.; Fiorito, F. Numerical Simulation Study of BIPV/T Double-Skin Facade for Various Climate Zones in Australia: Effects on Indoor Thermal Comfort. Build. Simul. 2019, 12, 51–67. [Google Scholar] [CrossRef]
- Alwi, N.M.; Flor, J.-F.; Anuar, N.H.; Mohamad, J.; Hanafi, N.N.H.; Muhammad, N.H.; Zain, M.H.K.M.; Nasir, M.R.M. Retrofitting Measures for Climate Resilience: Enhancing the Solar Performance of Malaysian School Buildings with Passive Design Concepts. IOP Conf. Ser. Earth Environ. Sci. 2022, 1102, 012014. [Google Scholar] [CrossRef]
- Zheng, Y.; Miao, J.; Yu, H.; Liu, F.; Cai, Q. Thermal Analysis of Air-Cooled Channels of Different Sizes in Naturally Ventilated Photovoltaic Wall Panels. Buildings 2023, 13, 3002. [Google Scholar] [CrossRef]
- Karunyasopon, P.; Park, D.Y.; Le, D.M.; Chang, S. Performance Analysis of Transparent BIPV/T Double Skin Façades Integrated with the Decision-Making Algorithm for Mixed-Mode Building Ventilation. Archit. Eng. Des. Manag. 2024, 20, 1141–1163. [Google Scholar] [CrossRef]
- Jhumka, H.; Yang, S.; Gorse, C.; Wilkinson, S.; Yang, R.; He, B.-J.; Prasad, D.; Fiorito, F. Assessing Heat Transfer Characteristics of Building Envelope Deployed BIPV and Resultant Building Energy Consumption in a Tropical Climate. Energy Build. 2023, 298, 113540. [Google Scholar] [CrossRef]
- Barbosa, S.; Carlo, J.; Ip, K. Energy Performance of PV Integrated Office Buildings with Fan-Assisted Double Skin Façades under Tropical Climates. Int. J. Green Energy 2019, 16, 1061–1072. [Google Scholar] [CrossRef]
- Tang, Y.; Ji, J.; Zhang, C.; Ke, W.; Xie, H. An Advanced Exhausting Airflow Photovoltaic Curtain Wall System Coupled with an Air Source Heat Pump for Outdoor Air Treatment: Energy-Saving Performance Assessment. Energy Convers. Manag. 2024, 299, 117872. [Google Scholar] [CrossRef]
- Al Touma, A.; Ouahrani, D. The Application of Control Algorithm for Optimal Performance of Evaporatively-Cooled Façade System in Hot Dry and Humid Weathers. J. Build. Eng. 2021, 44, 102642. [Google Scholar] [CrossRef]
- Ghazali Ali, M.; Hassan, H.; Ookawara, S.; Nada, S.A. Assessment of Evaporative Porous Clay Cooler for Building-Integrated Photovoltaic Systems via Energy, Exergy, Economic and Environmental Approaches. Therm. Sci. Eng. Prog. 2024, 51, 102641. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Zhou, Z.; Du, Y.; Wang, C.; Liu, J.; Guo, Z.; Yang, H.; Yu, L.; Zhang, S.; et al. Enhancing Photovoltaic Power Generation through Hydrogel-Based Passive Cooling: Theoretical Model and Global Application Potential. Appl. Energy 2024, 376, 124174. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, Y.; Li, W.; Li, Y.; Ge, M.; Xie, L. Experimental Investigation of Heat Pipe Thermoelectric Generator. Energy Convers. Manag. 2022, 252, 115123. [Google Scholar] [CrossRef]
- Nižetić, S.; Giama, E.; Papadopoulos, A.M. Comprehensive Analysis and General Economic-Environmental Evaluation of Cooling Techniques for Photovoltaic Panels, Part II: Active Cooling Techniques. Energy Convers. Manag. 2018, 155, 301–323. [Google Scholar] [CrossRef]
- Ge, M.; Zhao, Y.; Xuan, Z.; Zhao, Y.; Wang, S. Experimental Research on the Performance of BIPV/T System with Water-Cooled Wall. Energy Rep. 2022, 8, 454–459. [Google Scholar] [CrossRef]
- Mohammad, A.K.; Garrod, A.; Ghosh, A. Do Building Integrated Photovoltaic (BIPV) Windows Propose a Promising Solution for the Transition toward Zero Energy Buildings? A Review. J. Build. Eng. 2023, 79, 107950. [Google Scholar] [CrossRef]
- Elarga, H.; Goia, F.; Zarrella, A.; Dal Monte, A.; Benini, E. Thermal and Electrical Performance of an Integrated PV-PCM System in Double Skin Façades: A Numerical Study. Sol. Energy 2016, 136, 112–124. [Google Scholar] [CrossRef]
- Tang, H.; Long, Q.; Li, C.; Li, C. Experimental Study of a PV-PCM Window under Hot Summer and Warm Winter Climate. J. Energy Storage 2024, 96, 112724. [Google Scholar] [CrossRef]
- Kong, X.; Zhao, Z.; Feng, G.; Fan, M.; Li, H.; Zhang, Y.; Rabie, R.; Mansour, T.M. Synergistic Performance Study of Ventilated Photovoltaic Based on Composite Phase Change Wall in Summer. Renew. Energy 2025, 240, 122199. [Google Scholar] [CrossRef]
- Karthick, A.; Murugavel, K.K.; Ramanan, P. Performance Enhancement of a Building-Integrated Photovoltaic Module Using Phase Change Material. Energy 2018, 142, 803–812. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Joung, J.; Kim, S.; Park, J.; Jeong, J.-W. Design of a Thermoelectric Generator-Assisted Photovoltaic Panel Hybrid Harvester Using Microencapsulate Phase Change Material. J. Build. Eng. 2024, 87, 109110. [Google Scholar] [CrossRef]
- Leman, A.M.; Sharif, H.Z.; Krizou, A.N.; Al-Tarawne, M.T.A.; Subbiah, M.; Farsi, M.A.; Irfan, A.R. Single Objective Optimization of Net Zero Energy Residential Building in Tropical Climate. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 864, 012015. [Google Scholar] [CrossRef]
- Shi, S.; Zhu, N.; Wu, S.; Song, Y. Evaluation and Analysis of Transmitted Daylight Color Quality for Different Colored Semi-Transparent PV Glazing. Renew. Energy 2024, 222, 119826. [Google Scholar] [CrossRef]
- Pelle, M.; Gubert, M.; Dalla Maria, E.; Astigarraga, A.; Avesani, S.; Maturi, L. Experimental Evaluation of the Temperature Related Behaviour of Pigment Based Coloured BIPV Modules Integrated in a Ventilated Façade. Energy Build. 2024, 323, 114763. [Google Scholar] [CrossRef]
- Pu, J.; Shen, C.; Yang, S.; Zhang, C.; Chwieduk, D.; Kalogirou, S.A. Feasibility Investigation on Using Silver Nanorods in Energy Saving Windows for Light/Heat Decoupling. Energy 2022, 245, 123289. [Google Scholar] [CrossRef]
- Sun, Y.; Hao, Y.; Wang, D.; Wang, W.; Deng, S.; Qi, H.; Xue, P. A Predictive Control Strategy for Electrochromic Glazing to Balance the Visual and Thermal Environmental Requirements: Approach and Energy-Saving Potential Assessment. Renew. Energy 2022, 194, 334–348. [Google Scholar] [CrossRef]
- Fiorito, F.; Cannavale, A.; Santamouris, M. Development, Testing and Evaluation of Energy Savings Potentials of Photovoltachromic Windows in Office Buildings. A Perspective Study for Australian Climates. Sol. Energy 2020, 205, 358–371. [Google Scholar] [CrossRef]
- Ghosh, A.; Mesloub, A.; Touahmia, M.; Ajmi, M. Visual Comfort Analysis of Semi-Transparent Perovskite Based Building Integrated Photovoltaicwindow for Hot Desert Climate (Riyadh, Saudi Arabia). Energies 2021, 14, 1043. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, W.; Chen, J.; Su, P. Photovoltaic Integrated Shading Devices in the Retrofitting of Existing Buildings on Chinese Campuses Within a Regional Context. Buildings 2024, 14, 3577. [Google Scholar] [CrossRef]
- Sun, T.; Ji, G.; Liu, H.; He, Y. Research on the Solar Performance of Folded Dynamic BIPV Shading. Sol. Energy 2024, 282, 112971. [Google Scholar] [CrossRef]
- Chandrasekaran, C.; Sasidhar, K.; Madhumathi, A. Energy-Efficient Retrofitting with Exterior Shading Device in Hot and Humid Climate—Case Studies from Fully Glazed Multi-Storied Office Buildings in Chennai, India. J. Asian Archit. Build. Eng. 2023, 22, 2209–2223. [Google Scholar]
- Wang, M.; Jia, Z.; Tao, L.; Wang, W.; Xiang, C. Optimizing the Tilt Angle of Kinetic Photovoltaic Shading Devices Considering Energy Consumption and Power Generation—Hong Kong Case. Energy Build. 2025, 326, 115072. [Google Scholar] [CrossRef]
- Monteleone, A.; Rodonò, G.; Gagliano, A.; Sapienza, V. SLICE: An Innovative Photovoltaic Solution for Adaptive Envelope Prototyping and Testing in a Relevant Environment. Sustainability 2021, 13, 8701. [Google Scholar] [CrossRef]
- Mesloub, A.; Ghosh, A.; Touahmia, M.; Albaqawy, G.A.; Noaime, E.; Alsolami, B.M. Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate. Sustainability 2020, 12, 10145. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Zhang, Y.; Zhang, H.; Xiong, B.; Shi, X. Multi-Objective Analysis of Visual, Thermal, and Energy Performance in Coordination with the Outdoor Thermal Environment of Productive Façades of Residential Communities in Guangzhou, China. Buildings 2023, 13, 1540. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Tan, J.; Liu, W.; Lyu, Y.; Tang, H. Energy Performance of an Innovative Bifacial Photovoltaic Sunshade (BiPVS) under Hot Summer and Warm Winter Climate. Heliyon 2023, 9, e18700. [Google Scholar] [CrossRef] [PubMed]
- Kutty, N.A.; Barakat, D.; Darsaleh, A.O.; Kim, Y.K. A Systematic Review of Climate Change Implications on Building Energy Consumption: Impacts and Adaptation Measures in Hot Urban Desert Climates. Buildings 2024, 14, 13. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Wu, J.; Lyu, Y.; Tang, H. Experimental Study of a Vertically Mounted Bifacial Photovoltaic Sunshade. Renew. Energy 2023, 219, 119518. [Google Scholar] [CrossRef]
- Shi, S.; Sun, J.; Liu, M.; Chen, X.; Gao, W.; Song, Y. Energy-Saving Potential Comparison of Different Photovoltaic Integrated Shading Devices (PVSDs) for Single-Story and Multi-Story Buildings. Energies 2022, 15, 9196. [Google Scholar] [CrossRef]
- Kim, C.; Jeong, M.S.; Ko, J.; Ko, M.; Kang, M.G.; Song, H.-J. Inhomogeneous Rear Reflector Induced Hot-Spot Risk and Power Loss in Building-Integrated Bifacial c-Si Photovoltaic Modules. Renew. Energy 2021, 163, 825–835. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Y.; Lin, Z. Coupled Evaluation of the Optical-Thermal-Electrical Performance of Customized Building-Integrated Photovoltaic Components. Renew. Energy 2024, 223, 119994. [Google Scholar] [CrossRef]
- Kosorić, V.; Lau, S.-K.; Tablada, A.; Bieri, M.; Nobre, A.M. A Holistic Strategy for Successful Photovoltaic (Pv) Implementation into Singapore’s Built Environment. Sustainability 2021, 13, 6452. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A.; Wright, D. Optimal Orientation Angles for Maximizing Energy Yield for Solar PV in Saudi Arabia. Renew. Energy 2019, 133, 538–550. [Google Scholar] [CrossRef]
- Elminir, H.K.; Ghitas, A.E.; El-Hussainy, F.; Hamid, R.; Beheary, M.M.; Abdel-Moneim, K.M. Optimum Solar Flat-Plate Collector Slope: Case Study for Helwan, Egypt. Energy Convers. Manag. 2006, 47, 624–637. [Google Scholar] [CrossRef]
- Chen, H.; Cai, B.; Yang, H.; Wang, Y.; Yang, J. Study on Natural Lighting and Electrical Performance of Louvered Photovoltaic Windows in Hot Summer and Cold Winter Areas. Energy Build. 2022, 271, 112313. [Google Scholar] [CrossRef]
- Mendis, T.; Huang, Z.; Xu, S.; Zhang, W. Economic Potential Analysis of Photovoltaic Integrated Shading Strategies on Commercial Building Facades in Urban Blocks: A Case Study of Colombo, Sri Lanka. Energy 2020, 194, 116908. [Google Scholar] [CrossRef]
- Xu, K.; Song, S.; Xiang, C. Parametric Design for Combined Solar Facades for High-Rise Residential Buildings. Sustain. Energy Technol. Assess. 2025, 74, 104167. [Google Scholar] [CrossRef]
- Kumar, N.M.; Sudhakar, K.; Samykano, M. Performance Evaluation of CdTe BIPV Roof and Façades in Tropical Weather Conditions. Energy Sources Part A: Recovery Util. Environ. Eff. 2020, 42, 1057–1071. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Cheng, Q. Optimization Design of a New Polyhedral Photovoltaic Curtain Wall for Different Climates in China. Sustain. Energy Technol. Assess. 2024, 72, 104078. [Google Scholar] [CrossRef]
- Elshazly, E.; El-Rehim, A.A.A.; Kader, A.A.; El-Mahallawi, I. Effect of Dust and High Temperature on Photovoltaics Performance in the New Capital Area. WSEAS Trans. Environ. Dev. 2021, 17, 360–370. [Google Scholar] [CrossRef]
- Izadpanah, S.; Fazelpour, F.; Eftekhari Yazdi, M. Comparative Study of Simultaneous Use of a Double or a Triple Skin Facade with Phase Change Materials, Green Roof, and Photovoltaics in Residential Buildings of Iran. Environ. Prog. Sustain. Energy 2023, 42, e13935. [Google Scholar] [CrossRef]
- Chen, T.; Lau, S.Y.; Zhang, J.; Xue, X.; Lau, S.K.; Khoo, Y.S. A Design-Driven Approach to Integrate High-Performance Photovoltaics Devices on the Building Façade. IOP Conf. Ser.: Earth Environ. Sci. 2019, 294, 012030. [Google Scholar] [CrossRef]
- Xiao, Y.; Ren, T. The Layout and Form Design Research on BIPV External Sun-Shading Skin in Hot-Humid Areas. In Sustainable Development of Urban Environment and Building Material, PTS 1–4; Li, H., Liu, Y.F., Guo, M., Zhang, R., Du, J., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2012; Volume 374–377, pp. 220–229. [Google Scholar]
- Chen, L.; Yang, J.; Li, P. Modelling the Effect of BIPV Window in the Built Environment: Uncertainty and Sensitivity. Build. Environ. 2022, 208, 108605. [Google Scholar] [CrossRef]
- Ghaleb, B.; Khan, M.I.; Asif, M. Application of PV on Commercial Building Facades: An Investigation into the Impact of Architectural and Structural Features. Sustainability 2024, 16, 9095. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, J.; Zhou, J.; Li, C.; Hu, J.; Hu, F.; Nie, Z. LCA and Scenario Analysis of Building Carbon Emission Reduction: The Influencing Factors of the Carbon Emission of a Photovoltaic Curtain Wall. Energies 2023, 16, 4501. [Google Scholar] [CrossRef]
- Huang, J.; Chen, X.; Yang, H.; Zhang, W. Numerical Investigation of a Novel Vacuum Photovoltaic Curtain Wall and Integrated Optimization of Photovoltaic Envelope Systems. Appl. Energy 2018, 229, 1048–1060. [Google Scholar] [CrossRef]
- Li, K.; Zhong, W.; Zhang, T. Improving Building Retrofit Decision-Making by Integrating Passive and BIPV Techniques with Ensemble Model. Energy Build. 2024, 323, 114727. [Google Scholar] [CrossRef]
- Susan, S.; bin Zakaria, S.A.; Fadzil, S.F.S.M. Opt Imization of the Building -Int Egrated Transparent Photovo Ltaic Con Figu Ration Based on Daylight and Energy Performance in School Buildings in the Tropics. Archit. Eng. 2024, 9, 29–43. [Google Scholar] [CrossRef]
- Carpino, C.; Chen Austin, M.; Mora, D.; Arcuri, N. Retrofit Measures for Achieving NZE Single-Family Houses in a Tropical Climate via Multi-Objective Optimization. Buildings 2024, 14, 566. [Google Scholar] [CrossRef]
- Wang, C.; Uddin, M.M.; Ji, J.; Yu, B.; Wang, J. The Performance Analysis of a Double-Skin Ventilated Window Integrated with CdTe Cells in Typical Climate Regions. Energy Build. 2021, 241, 110922. [Google Scholar] [CrossRef]
- Gomes, M.M.d.M.; Cavalcante, R.D.L.d.S.; Ando Junior, O.H.; Pero, C.D.; Lima, J.A.d.; Lago, T.G.S. do The Effect of Facade Orientation on the Electrical Performance of a BIPV System: A Case Study in João Pessoa, Brazil. Energies 2025, 18, 829. [Google Scholar] [CrossRef]
- Mangkuto, R.A.; Tresna, D.N.A.T.; Hermawan, I.M.; Pradipta, J.; Jamala, N.; Paramita, B. Atthaillah Experiment and Simulation to Determine the Optimum Orientation of Building-Integrated Photovoltaic on Tropical Building Façades Considering Annual Daylight Performance and Energy Yield. Energy Built Environ. 2024, 5, 414–425. [Google Scholar] [CrossRef]
- Agbajor, F.D.; Mewomo, M.C.; Mogaji, I.J. Optimized Energy-Performance of Building Integrated Photovoltaic Systems in Hot and Arid Regions of South Africa. In Proceedings of the 10th International Conference on Energy Engineering and Environmental Engineering; Sun, Z., Das, P.K., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 129–140. [Google Scholar]
- Tao, L.; Wang, M.; Xiang, C. Assessing Urban Morphology’s Impact on Solar Potential of High-Rise Facades in Hong Kong Using Machine Learning: An Application for FIPV Optimization. Sustain. Cities Soc. 2024, 117, 105978. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, X.; Yang, D.; Cheng, R.; Zhao, Y.; Liu, D. An Adaptive Photovoltaic Power Interval Prediction Based on Multi-Objective Optimization. Comput. Electr. Eng. 2024, 120, 109717. [Google Scholar] [CrossRef]
- Mrazek, M.; Honc, D.; Riva Sanseverino, E.; Zizzo, G. Simplified Energy Model and Multi-Objective Energy Consumption Optimization of a Residential House. Appl. Sci. 2022, 12, 10212. [Google Scholar] [CrossRef]
- Sadatifar, S.; Johlin, E. Multi-Objective Optimization of Building Integrated Photovoltaic Solar Shades. Sol. Energy 2022, 242, 191–200. [Google Scholar] [CrossRef]
- Ye, Y.; Zhu, R.; Yan, J.; Lu, L.; Wong, M.S.; Luo, W.; Chen, M.; Zhang, F.; You, L.; Wang, Y.; et al. Planning the Installation of Building-Integrated Photovoltaic Shading Devices: A GIS-Based Spatiotemporal Analysis and Optimization Approach. Renew. Energy 2023, 216, 119084. [Google Scholar] [CrossRef]
- Liu, J.; Baghoolizadeh, M.; Basem, A.; Hamza, H.; Sudhamsu, G.; Al-Musawi, T.J.; Sultan, A.J.; Salahshour, S.; Alizadeh, A. Geometrical Optimization of Solar Venetian Blinds in Residential Buildings to Improve the Economic Costs of the Building and the Visual Comfort of the Residents Using the NSGA-II Algorithm. Int. Commun. Heat Mass Transf. 2024, 157, 107723. [Google Scholar] [CrossRef]
- Sadatifar, S.; Hannoufa, E.; Johlin, E. Design of Multi-Objective Optimized Dynamic Photovoltaic Shades and Thin Films. Sol. Energy 2024, 278, 112759. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Liu, F.; Li, X.; Wang, J.; Li, C. Multi-Objective Optimization of Bifacial Photovoltaic Sunshade: Towards Better Optical, Electrical and Economical Performance. Sustainability 2024, 16, 5977. [Google Scholar] [CrossRef]
- Samarasinghalage, T.I.; Wijeratne, W.M.P.U.; Yang, R.J.; Wakefield, R. Multi-Objective Optimization Framework for Building-Integrated PV Envelope Design Balancing Energy and Cost. J. Clean. Prod. 2022, 342, 130930. [Google Scholar] [CrossRef]
- Ke Liu, L.; Xiaodong, X.; Wengxin, H.; Ran, Z.; Lingyu, K.; Xi, W. A Multi-Objective Optimization Framework for Designing Urban Block Forms Considering Daylight, Energy Consumption, and Photovoltaic Energy Potential. Build. Environ. 2023, 242, 110585. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, M.; Xiong, Q. Evaluation of Energy Performance in Positive Energy Building: X HOUSE at Solar Decathlon Middle East 2021. Renew. Sustain. Energy Rev. 2024, 192, 114163. [Google Scholar] [CrossRef]
- Waibel, C.; Hsieh, S.; Schlüter, A. Impact of Demand Response on BIPV and District Multi-Energy Systems Design in Singapore and Switzerland. J. Phys.: Conf. Ser. 2021, 2042, 012096. [Google Scholar] [CrossRef]
- Sankara Kumar, S.; Karthick, A.; Shankar, R.; Dharmaraj, G. Energy Forecasting of the Building Integrated Photovoltaic System Based on Deep Learning Dragonfly-Firefly Algorithm. Energy 2024, 308, 132926. [Google Scholar] [CrossRef]
- Pandu, S.; Sagai, A.; Sekhar, P.; Vijayarajan, P.; Albraikan, A.; Al-Wesabi, F.; Duhayyim, M. Artificial Intelligence Based Solar Radiation Predictive Model Using Weather Forecasts. CMC 2021, 71, 109–124. [Google Scholar]
- Qureshi, U.R.; Rashid, A.; Altini, N.; Bevilacqua, V.; La Scala, M. Explainable Intelligent Inspection of Solar Photovoltaic Systems with Deep Transfer Learning: Considering Warmer Weather Effects Using Aerial Radiometric Infrared Thermography. Electronics 2025, 14, 755. [Google Scholar] [CrossRef]
- Zayed, M.E.; Aboelmaaref, M.M.; Chazy, M. Design of Solar Air Conditioning System Integrated with Photovoltaic Panels and Thermoelectric Coolers: Experimental Analysis and Machine Learning Modeling by Random Vector Functional Link Coupled with White Whale Optimization. Therm. Sci. Eng. Prog. 2023, 44, 102051. [Google Scholar] [CrossRef]
- Ejaz, A.; Babar, H.; Ali, H.M.; Jamil, F.; Janjua, M.M.; Fattah, I.M.R.; Said, Z.; Li, C. Concentrated Photovoltaics as Light Harvesters: Outlook, Recent Progress, and Challenges. Sustain. Energy Technol. Assess. 2021, 46, 101199. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Chang, R.; Forzano, C.; Giuzio, G.F.; Mondol, J.; Palombo, A.; Pugsley, A.; Smyth, M. Aggelos Zacharopoulos Modelling and Simulation of Building Integrated Concentrating Photovoltaic/Thermal Glazing (CoPVTG) Systems: Comprehensive Energy and Economic Analysis. Renew. Energy 2022, 193, 1121–1131. [Google Scholar] [CrossRef]
- Nwokolo, S.C.; Eyime, E.E.; Obiwulu, A.U.; Meyer, E.L.; Ahia, C.C.; Ogbulezie, J.C.; Proutsos, N. A Multi-Model Approach Based on CARIMA-SARIMA-GPM for Assessing the Impacts of Climate Change on Concentrated Photovoltaic (CPV) Potential. Phys. Chem. Earth Parts A/B/C 2024, 134, 103560. [Google Scholar] [CrossRef]
- O’Shaughnessy, E.; Cruce, J.R.; Xu, K. Too Much of a Good Thing? Global Trends in the Curtailment of Solar PV. Sol. Energy 2020, 208, 1068–1077. [Google Scholar] [CrossRef]
- Kohút, R.; Kvasnica, M. Power Output Reconstruction of Photovoltaic Curtailment. In Proceedings of the 2023 24th International Conference on Process Control (PC), Strbske Pleso, Slovakia, 6–9 June 2023; pp. 174–179. [Google Scholar]
- Wang, Y.; Wu, J. Minimum PV Curtailment for Distribution Networks Based on Moment Difference Analysis Theory. Int. J. Electr. Power Energy Syst. 2025, 167, 110654. [Google Scholar] [CrossRef]
- Saadatmandi, S.; Chicco, G.; Favenza, A.; Mozzato, A.; Giordano, F.; Arnone, M. Smart Electric Vehicle Charging for Reducing Photovoltaic Energy Curtailment. Electr. Power Syst. Res. 2024, 230, 110181. [Google Scholar] [CrossRef]
- Song, H.; Seo, G.-S.; Won, D. Pricing Strategy of Electric Vehicle Aggregators Based on Locational Marginal Price to Minimize Photovoltaic (PV) Curtailment. IEEE Access 2025, 13, 11232–11247. [Google Scholar] [CrossRef]
- Solar Photovoltaic System Cost Benchmarks. Available online: https://www.energy.gov/eere/solar/solar-photovoltaic-system-cost-benchmarks (accessed on 9 May 2025).
- Kim, S.; Kim, S. Agricultural Research and Development Center Design with Building Integrated Photovoltaics in Fiji. Energies 2024, 17, 207. [Google Scholar] [CrossRef]
- Alrashidi, H.; Issa, W.; Sellami, N.; Ghosh, A.; Mallick, T.K.; Sundaram, S. Performance Assessment of Cadmium Telluride-Based Semi-Transparent Glazing for Power Saving in Façade Buildings. Energy Build. 2020, 215, 109585. [Google Scholar] [CrossRef]
- Lau, S.-K.; Kosorić, V.; Bieri, M.; Nobre, A.M. Identification of Factors Influencing Development of Photovoltaic (Pv) Implementation in Singapore. Sustainability 2021, 13, 2630. [Google Scholar] [CrossRef]
- HDB|SolarNova. Available online: https://www.hdb.gov.sg/about-us/our-role/smart-and-sustainable-living/solarnova-page (accessed on 25 April 2025).
- Kim, D.; Matos, J.; Dang, S.N. Development of BIM Platform for Semantic Data Based on Standard WBS Codes. Buildings 2025, 15, 711. [Google Scholar] [CrossRef]
Climate Characteristics | Humid Hot Climate (Singapore [24]) | Dry Hot Climate (United Arab Emirates [25]) |
---|---|---|
Temperature |
|
|
Humidity |
|
|
Precipitation |
|
|
Solar radiation intensity |
|
|
Availability of solar energy |
|
|
Wind environment |
|
|
Materials | EVA [82,83,84,88,89] | POE [84,88,89] | TPO [84,88,89] |
---|---|---|---|
Moisture and heat resistance | Low | High | Middle |
The melting temperature before aging | 60–64 °C | 71–75 °C | 78–94 °C |
The thermal degradation temperature of commercial encapsulation films | 260 °C | 370 °C | 340 °C |
The rate of crystallinity change during the 85 °C aging test | 1% 1.5% | 0% 0.5% | 1 1.5% |
Optical stability | Prone to yellowing | Maintains a light transmittance of over 90% | High light transmittance (with stable crystallinity) |
Yellowness index | 0.74 2.86 | 2.01 3.63 | 1.44 2.71 |
Situations of application | dry climates/short-term, low-cost applications | Humid and hot climate | Arid climate with high solar radiation |
Advantages | Low cost and mature manufacturing process | High weather resistance and compatibility with double glass modules | High temperature resistance and anti-aging properties |
Limitations | Humid heat lifetime is less than 20 years | UV absorbers need to be added | The cost is relatively high |
Climate | Main Features | Applicable Cooling Technologies | Cooling Performance |
---|---|---|---|
Arid and hot climate | High temperature, low humidity, and strong solar radiation |
|
|
|
| ||
|
| ||
|
| ||
|
| ||
|
| ||
Humid and hot climate | High temperature, high humidity, and strong solar radiation |
|
|
| |||
| |||
|
| ||
|
| ||
| |||
|
| ||
|
| ||
|
| ||
|
|
Climate Type (Köppen Classification) | Location | Latitude and Longitude (Approximate) | Optimal Orientation and Findings |
---|---|---|---|
Tropical desert climate (BWh) | Sharjah (United Arab Emirates) | 25.3° N, 55.5° E | 45° south of east: The vertical surface has the highest radiation conversion factor [109]. |
Dubai (United Arab Emirates) | 25.2° N, 55.3° E | South: Highest annual yield; West: Afternoon power generation peak matches the electricity demand (12:00 18:00) [74]. | |
Upington (South Africa) | 28.4° S, 21.2° E | East–West: Power generation is 45–48% higher than north; due to arid and less cloudy conditions, annual power generation is 10% higher than in Nelspruit [169]. | |
Tropical rainforest climate (Af) | Bandung (Indonesia) | 6.9° S, 107.6° E | South: Best daylight performance throughout the year, with optimal integrated energy production and indoor lighting, despite the highest annual power generation being in the north direction [168]. |
João Pessoa (Brazil) | 7.1° S, 34.8° W | West and East: Annual power generation is 59% and 28% higher than north, respectively, challenging the traditional notion that north facing is optimal in regions south of the equator [167]. | |
Subtropical monsoon climate (Cwa) | Guangzhou (China) | 23.1° N, 113.3° E | West: Highest annual power generation, followed by south and east [10]. |
Hong Kong (China) | 22.3° N, 114.2° E | South: Optimal for winter and overall annual performance; East and West: Highest radiation in summer; North façade: Potential for diffuse power generation [27]. |
System | Variables | Objectives | Optimal Parameters | Location/Climate |
---|---|---|---|---|
PVSD | Shading angle, length, and quantity. | Electricity generation; Indoor daylight quality; Radiant heating; Cooling load. | Using twice the number of shading panels, but with half the length. Increasing the photovoltaic area by 2.5 times only results in a system value increase of less than 25%. | Singapore/ Tropical rainforest climate (Af) [173] |
The installation location and width of PVSDs. | Distributed solar power generation; Effective shading duration; Area of PVSDs. | Horizontally installed at 0.7 m; Tilted installed at 0.9 m; Real-time rotating installed at 0.7 m. | Hong Kong/ Humid subtropical climate (Cwa) [174] | |
Shading type; Photovoltaic location; Tilt angle; Distance from the blind to the window; Window height; Window width; Distance from the occupant to the window; Orientation. | Percentage improvement in the annual economic cost of the building; Percentage improvement in the daylight glare index. | The optimal installation orientation is south facing. | Bandar Abbas, Iran/Hot desert climate (BWh) [175] | |
Dynamic and static PVSD | The quantity and length of shading devices; Optimal angles at multiple dynamic frequencies. | Electricity generation; Solar heat gain; Daylighting conditions. | A shading device that is 0.5 m in length, with a total area equal to the window area, is the optimal universal design; The optimal static angle is 65°. | Singapore/ Tropical rainforest climate (Af) [176] |
BiPVS | Number of photovoltaic modules; Module width; Module height; Distance from the module edge to the wall; Angle between the front surface of the module and the wall; Photovoltaic cell coverage rate; Window glass transmittance. | Useful indoor solar irradiance; Air conditioning energy consumption; PP. | The number of photovoltaic modules is 17; Module width is 1.0 m; Module height is 3.0 m; The angle between the front surface of the module and the wall is 115 degrees; The photovoltaic cell coverage rate is 98%; Window glass transmissivity is 0.89. | Shenzhen, China/ Subtropical monsoon climate (Cwa) [177] |
BIPV envelope | Tilt angle; PV product type; WWR; PV placement. | Life Cycle Energy (LCE), Life Cycle Cost (LCC) | The tilt angle is 35°. | [178] |
Urban block | Building type; Number of floors; Location of open space. | South facing first floor solar exposure duration; Total building energy consumption; Monthly load matching index. | A layout with lower heights to the south and higher heights to the north; Simple building types; Open space located at the southwest corner. | Hot summer and cold winter climate zone [179] |
Project | Singapore | Dubai |
---|---|---|
(kWh/m2·year) | 1 600 | 2 100 |
0.75 | 0.80 | |
(USD/kWh) | 0.31 | 0.10 |
(USD/kWp·year) | 15 | 25 (Higher cleaning frequency) |
0.75 | 0.75 |
Configurations | (USD/kWp) | Region | (USD/kWp) | (USD/kWp) | PP (year) | |
---|---|---|---|---|---|---|
Baseline CdTe BIPV | data | 0 | Singapore | 279 | 0 | 5.9 |
Dubai | 126 | 0 | 15.3 | |||
CdTe with PRC | 1750 | 5% | Singapore | 293 | 0 | 6.3 |
Dubai | 132.3 | 0 | 16.3 | |||
CdTe combined with a naturally ventilated DSF | 1850 | 4% | Singapore | 290 | 5 | 6.6 |
Dubai | 131 | 5 | 16.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Wang, Y.; Deng, S.; Su, P. Climate-Responsive Design of Photovoltaic Façades in Hot Climates: Materials, Technologies, and Implementation Strategies. Buildings 2025, 15, 1648. https://doi.org/10.3390/buildings15101648
Wu X, Wang Y, Deng S, Su P. Climate-Responsive Design of Photovoltaic Façades in Hot Climates: Materials, Technologies, and Implementation Strategies. Buildings. 2025; 15(10):1648. https://doi.org/10.3390/buildings15101648
Chicago/Turabian StyleWu, Xiaohui, Yanfeng Wang, Shile Deng, and Ping Su. 2025. "Climate-Responsive Design of Photovoltaic Façades in Hot Climates: Materials, Technologies, and Implementation Strategies" Buildings 15, no. 10: 1648. https://doi.org/10.3390/buildings15101648
APA StyleWu, X., Wang, Y., Deng, S., & Su, P. (2025). Climate-Responsive Design of Photovoltaic Façades in Hot Climates: Materials, Technologies, and Implementation Strategies. Buildings, 15(10), 1648. https://doi.org/10.3390/buildings15101648