Behavior of Confined Self-Compacting Concrete under Compression at Elevated Temperatures
Abstract
:1. Introduction
2. Research Significance
3. Methodology
3.1. Equations and Procedure
3.1.1. Load-Carrying Capacity
3.1.2. Unconfined and Confined Concrete Stress and Strain
3.2. Multiple Regression
4. Results and Discussion
4.1. Load–Axial Shortening Variation
4.2. Compressive Strength at Elevated Temperatures
4.3. Modulus of Elasticity at Elevated Temperatures
4.4. Effect of Poisson’s Ratio
4.5. Multiple Regression Fit
4.5.1. Peak Load of Confined SCCFSTs
4.5.2. Confinement Factor of Confined SCCFSTs
5. Conclusions
- The tested specimens had varying behaviors under elevated temperatures; at 30 °C one specimen showed hardening, while the others exhibited softening tendencies, and at 500 °C, one specimen presented the steepest strength reduction, indicating that elevated temperature played a dominant role in determining the peak behavior.
- The circular SCCFST specimens revealed comparable maximum normalized strength values ranging from 0.91 to 1.65, with remarkable effects from the surrounding temperatures, particularly when exposed to temperatures of 400 °C and above 500 °C.
- The compressive stress–strain curve of the circular SCCFSTs experienced a sudden drop of 14.77 MPa (22.65%) at 500 °C, followed by a gradual decrease in the mechanical strength beyond 400 °C up to 800 °C, which was attributed to the steel tube maintaining its strength up to 400 °C with only minimal reduction. But recrystallization above 400 °C resulted in a significant reduction in the mechanical strength of the confined SCCFSTs, and the most substantial drop in the reduction ratio occurred between 400 °C and 800 °C.
- The confined concrete displayed a relatively smaller reduction in the overall modulus of elasticity compared to its unconfined counterpart under elevated temperatures, with an average percentage of reduction ranging between 5.05% and 12.68%.
- A close relationship was found between the lateral strain and longitudinal strain within elastic limits under compression for temperatures ranging from 30 °C to 400 °C, but a sudden increase in strain was seen beyond 400 °C.
- The multiple regression analysis demonstrated a close alignment between the predicted and experimental P0 values at elevated temperatures. The temperature was set between 30 °C and 400 °C, and the average variation was 2.23%, while above 400 °C, the average variation increased to 11.88%.
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gowripalan, N.; Shakor, P.; Rocker, P. Pressure exerted on formwork by self-compacting concrete at early ages: A review. Case Stud. Constr. Mater. 2021, 15, e00642. [Google Scholar] [CrossRef]
- Kumar, M.A.; Balaji, S.; Selvapraveen, S.; Kulanthaivel, P. Laboratory study on mechanical properties of self compacting concrete using marble waste and polypropylene fiber. Clean. Mater. 2022, 6, 100156. [Google Scholar] [CrossRef]
- Alshahrani, A.; Kulasegaram, S.; Kundu, A. Elastic modulus of self-compacting fibre reinforced concrete: Experimental approach and multi-scale simulation. Case Stud. Constr. Mater. 2023, 18, e01723. [Google Scholar] [CrossRef]
- Hassan, A.A.; Ismail, M.K.; Mayo, J. Mechanical properties of self-consolidating concrete containing lightweight recycled aggregate in different mixture compositions. J. Build. Eng. 2015, 4, 113–126. [Google Scholar] [CrossRef]
- Ganapathy, G.P.; Keshav, L.; Ravindiran, G.; Razack, N.A. Strength prediction of self-consolidating concrete containing steel fibre with different fibre aspect ratio. J. Nanomater. 2022, 2022, 7604383. [Google Scholar] [CrossRef]
- Tejaswini, G.L.S.; Rao, A.V. A detailed report on various behavioral aspects of self-compacting concrete. Mater. Today Proc. 2020, 33, 839–844. [Google Scholar] [CrossRef]
- Mousavi Alizadeh, S.M.; Rezaeian, A.; Rasoolan, I.; Tahmouresi, B. Compressive stress-strain model and residual strength of self-compacting concrete containing recycled ceramic aggregate after exposure to fire. J. Build. Eng. 2021, 38, 102206. [Google Scholar] [CrossRef]
- Lu, X.; Hsu, C.-T.T. Tangent Poisson’s ratio of high-strength concrete in triaxial compression. Mag. Concr. Res. 2007, 59, 69–77. [Google Scholar] [CrossRef]
- Boğa, A.R.; Karakurt, C.; Şenol, A.F. The effect of elevated temperature on the properties of SCC’s produced with different types of fibers. Constr. Build. Mater. 2022, 340, 127803. [Google Scholar] [CrossRef]
- Yang, Y.F.; Han, L.H. Concrete filled steel tube (CFST) columns subjected to concentrically partial compression. Thin-Walled Struct. 2012, 50, 147–156. [Google Scholar] [CrossRef]
- Wei, X.; Yang, Y.; Liu, J.; Yang, W.; Chen, Y.F.; Zhang, H. Experimental and numerical study of fire performance of L-shaped concrete-filled steel tubular columns under eccentric compression. J. Build. Eng. 2022, 50, 104149. [Google Scholar] [CrossRef]
- Wu, B.; Yu, Y.; Zhao, X.-Y. Residual mechanical properties of compound concrete containing demolished concrete lumps after exposure to high temperatures. Fire Saf. J. 2019, 105, 62–78. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, W.; Wang, R.; Yan, L.; He, M. Deformation characteristics of cement mortar under triaxial cyclic loading: An experimental investigation. Int. J. Fatigue 2021, 150, 106305. [Google Scholar] [CrossRef]
- Tu, W.; Zhang, M. Behaviour of alkali-activated concrete at elevated temperatures: A critical review. Cem. Concr. Compos. 2023, 138, 104961. [Google Scholar] [CrossRef]
- Chan, Y.; Peng, G.; Anson, M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cem. Concr. Compos. 1999, 21, 23–27. [Google Scholar] [CrossRef]
- Ning, X.; Li, J.; Li, Y. An explorative study into the influence of different fibers on the spalling resistance and mechanical properties of self-compacting concrete after exposure to elevated temperatures. Appl. Sci. 2022, 12, 12779. [Google Scholar] [CrossRef]
- Chan, S.; Peng, G.F.; Anson, M. Fire behavior of high-performance concrete made with silica fume at various moisture contents. Materials 1999, 96, 405–409. [Google Scholar]
- DD ENV 1994-1-1.2004; Eurocode 4: Design of Composite Steel and Concrete Structures—Part 1-1: General Rules and Rules for Buildings [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]. British Standards Institution: London, UK, 1994.
- DD ENV 1994-1-2.2005; Eurocode 4: Design of Composite Steel and Concrete Structures—Part 1-2: General Rules—Structural Fire Design [Authority: The European Union Per Regulation 05/2011, Directive 98/34/EC, Directive 2004/18/EC]. British Standards Institution: London, UK, 1994.
- ACI 318-99; ACI Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Detroit, MI, USA, 1999.
- Mander, J.B.; Priestley, M.J.N.; Park, R. Theoretical stress-strain model for confined concrete. J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef]
- Zhao, Y.-G.; Lin, S.; Lu, Z.-H.; Saito, T.; He, L. Loading paths of confined concrete in circular concrete loaded CFT stub columns subjected to axial compression. Eng. Struct. 2018, 156, 21–31. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Su, Y. Ultra-high performance concrete-filled steel tubular columns. In Development of Ultra-High Performance Concrete against Blasts; Elsevier: Duxford, UK, 2018; pp. 283–395. [Google Scholar] [CrossRef]
- Geiker, M.; Jacobsen, S. Self-compacting concrete (SCC). In Developments in the Formulation and Reinforcement of Concrete; Elsevier: Duxford, UK, 2019; pp. 229–256. [Google Scholar] [CrossRef]
- Ellobody, E.; Young, B.; Lam, D. Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. J. Constr. Steel Res. 2006, 62, 706–715. [Google Scholar] [CrossRef]
- CSA Standard A23.3-04; Concrete Design Handbook. Cement Association of Canada: Ottawa, ON, Canada, 2004.
- Park, R.; Paulay, T. Reinforced Concrete Structures; John Wiley & Sons: New York, NY, USA, 1975. [Google Scholar]
- Hu, H.T.; Huang, C.S.; Wu, M.H.; Wu, Y.M. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. J. Struct. Eng. 2003, 129, 1322–1329. [Google Scholar] [CrossRef]
- Richart, F.E.; Brandzaeg, A.; Brown, R.L. A Study of the Failure of Concrete under Combined Compressive Stresses; Bulletin No. 185; University of Illinois Engineering Experimental Station: Champaign, IL, USA, 1928. [Google Scholar]
- Saenz, L.P. Discussion of ‘Equation for the stress–strain curve of concrete’ by P. Desayi, and S. Krishnan. J. Am. Concr. Inst. 1964, 61, 1229–1235. [Google Scholar]
- Hu, H.T.; Schnobrich, W.C. Constitutive modeling of concrete by using nonassociated plasticity. J. Mater. Civ. Eng. 1989, 1, 199–216. [Google Scholar] [CrossRef]
- Giakoumelis, G.; Lam, D. Axial capacity of circular concrete-filled tube columns. J. Constr. Steel Res. 2004, 60, 1049–1068. [Google Scholar] [CrossRef]
- Tomii, M. Ductile and strong columns composed of steel tube, infilled concrete and longitudinal steel bars. In Proceedings of the 3rd International Conference on Steel-Concrete Composite Structures, Fukuoka, Japan, 18 February 1991. [Google Scholar]
- Mursi, M.; Uy, B. Strength of concrete filled steel box columns incorporating interaction buckling. J. Struct. Eng. 2003, 129, 626–639. [Google Scholar] [CrossRef]
- Petchko, K. Data and Methodology. In How to Write About Economics and Public Policy; Academic Press: Cambridge, MA, USA, 2018; pp. 241–270. [Google Scholar] [CrossRef]
- Petchko, K. Results, Discussion, and Conclusion. In How to Write about Economics and Public Policy; Academic Press: Cambridge, MA, USA, 2018; pp. 271–300. [Google Scholar] [CrossRef]
- Nematzadeh, M.; Karimi, A.; Gholampour, A. Pre- and post-heating behavior of concrete-filled steel tube stub columns containing steel fiber and tire rubber. Structures 2020, 27, 2346–2364. [Google Scholar] [CrossRef]
- Ho, J.; Ou, X.; Li, C.; Song, W.; Wang, Q.; Lai, M. Uni-axial behaviour of expansive CFST and DSCFST stub columns. Eng. Struct. 2021, 237, 112193. [Google Scholar] [CrossRef]
- Agra, R.R.; Serafini, R.; de Figueiredo, A.D. Effect of high temperature on the mechanical properties of concrete reinforced with different fiber contents. Constr. Build. Mater. 2021, 301, 124242. [Google Scholar] [CrossRef]
- Singh, R. Heat Treatment of Steels. In Applied Welding Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 111–124. [Google Scholar] [CrossRef]
- López, B. Recrystallisation and grain growth in hot working of steels. In Microstructure Evolution in Metal Forming Processes; Elsevier: Amsterdam, The Netherlands, 2012; pp. 67–113. [Google Scholar] [CrossRef]
- Mellor, M. A Review of Basic Snow Mechanics; US Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1974. [Google Scholar]
- Lee, H.-J.; Park, H.-G.; Choi, I.-R. Compression loading test for concrete-filled tubular columns with high-strength steel slender section. J. Constr. Steel Res. 2019, 159, 507–520. [Google Scholar] [CrossRef]
Chemical Composition | OPC | Fine Aggregate (M-Sand) | Coarse Aggregate | Silica Fume (Admixture) | Fosroc Conplast SP430 (Superplasticizer) | |
---|---|---|---|---|---|---|
SiO2 | 22% | 67% | 67% | 91% | — | |
Al2O3 | 5% | 15% | 15% | 0.3% | — | |
Fe2O3 | 1.5% | 5% | 5% | 1% | — | |
CaO | 62% | 3% | 3% | 0.7% | — | |
MgO | 2% | — | — | 0.2% | — | |
CaSO4 | 0.3% | — | — | — | — | |
SO3 | 1% | — | — | — | — | |
Na2O | 0.5% | 3% | 3% | 0.4% | 72 g per liter | |
H2O | — | 2% | 0.5% | — | — | |
Properties | ||||||
Density (kg/m3) | 1438 | 1690 | 1463 | 525 | 1200 | |
Specific gravity | 3.1 | 2.68 | 2.74 | 2.2 | 1.2 | |
Setting time (min) | Initial | 43 | — | — | — | — |
Final | 250 | — | — | — | — | |
Days | Compressive strength (MPa) | |||||
M25 | M30 | M40 | ||||
3 | 10.2 | 13.8 | 18.1 | |||
7 | 15.5 | 19.0 | 25.2 | |||
14 | 23.5 | 26.7 | 36.5 | |||
28 | 26.5 | 32.0 | 43.1 |
Element (%) | ||||||
---|---|---|---|---|---|---|
C | Mn | S | P | Si | Al | |
0.064 | 0.330 | 0.010 | 0.015 | 0.011 | 0.042 | |
Properties | Value (MPa) | |||||
Yield strength | 348.80 | |||||
Ultimate strength | 457.90 |
Grade | Cement (C) in kg/m3 | Fine Aggregate (FA) in kg/m3 | Coarse Aggregate (CA) in kg/m3 | Mix Proportion (C:FA:CA) | Silica Fume (Admixture) | Fosroc Conplast SP430 (Superplasticizer) | W/B |
---|---|---|---|---|---|---|---|
M25 | 363.54 | 895.19 | 604.69 | 1:2.46:1.66 | 5% | 1.5% | 0.55 |
M30 | 524.31 | 778.57 | 773.06 | 1:1.48:1.47 | 7.5% | 2% | 0.45 |
M40 | 494.4 | 932.04 | 688.867 | 1:1.88:1.39 | 10% | 2.5% | 0.40 |
Dimension | d in mm | L in mm | L/d ratio | Temperature (°C) | |||
M25 M30 M40 | 50 | 400 and 500 | 8 and 10 | 30 and 100 to 800 | |||
60 | 480 and 600 | 8 and 10 |
Notations Based on Temperature | Length-to-Diameter Ratio | Diameter-to-Thickness Ratio (t = 2 mm) | Area of Cross-Section (mm2) | |||||
---|---|---|---|---|---|---|---|---|
Concrete | Steel | |||||||
L | d | L/d | d/t | Ac | As | |||
T = 30 °C | T = 400 °C | T = 500 °C | (mm) | (mm) | ||||
A1 | A13 | A25 | 400 | 50 | 8 | 25 | 1661.9 | 301.59 |
A2 | A14 | A26 | 400 | 50 | 8 | 25 | 1661.9 | 301.59 |
A3 | A15 | A27 | 400 | 50 | 8 | 25 | 1661.9 | 301.59 |
A4 | A16 | A28 | 480 | 60 | 8 | 30 | 2463 | 364.42 |
A5 | A17 | A29 | 480 | 60 | 8 | 30 | 2463 | 364.42 |
A6 | A18 | A30 | 480 | 60 | 8 | 30 | 2463 | 364.42 |
A7 | A19 | A31 | 500 | 50 | 10 | 25 | 1661.9 | 301.59 |
A8 | A20 | A32 | 500 | 50 | 10 | 25 | 1661.9 | 301.59 |
A9 | A21 | A33 | 500 | 50 | 10 | 25 | 1661.9 | 301.59 |
A10 | A22 | A34 | 600 | 60 | 10 | 30 | 2463 | 364.42 |
A11 | A23 | A35 | 600 | 60 | 10 | 30 | 2463 | 364.42 |
A12 | A24 | A36 | 600 | 60 | 10 | 30 | 2463 | 364.42 |
Designation | Compressive Strength (MPa) | Confinement Factor | Load-Carrying Capacity (kN) | Comparison of Load-Carrying Capacity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concrete Mix | Steel | Pu | P0 | Pu/P0 | |||||||||
fck | fc | fy | λ | Tested | EC4 [18,19] | ACI [20] | Zhao et al. [22] | Mander et al. [21] | EC4 [18,19] | ACI [20] | Zhao et al. [22] | Mander et al. [21] | |
At ambient temperature | |||||||||||||
A1 | 26.5 | 21.2 | 347.13 | 2.97 | 128 | 130.23 | 135.5 | 111.29 | 105.75 | 0.98 | 0.94 | 1.15 | 1.21 |
A2 | 32 | 25.6 | 347.13 | 2.46 | 135 | 137.55 | 141.72 | 112.90 | 114.45 | 0.98 | 0.95 | 1.20 | 1.18 |
A3 | 43.1 | 34.48 | 347.13 | 1.83 | 148 | 152.3 | 154.26 | 120.41 | 132.01 | 0.97 | 0.96 | 1.23 | 1.12 |
A4 | 26.5 | 21.2 | 347.13 | 2.42 | 167 | 167.01 | 171.93 | 143.96 | 135.55 | 1.00 | 0.97 | 1.16 | 1.23 |
A5 | 32 | 25.6 | 347.13 | 2.01 | 178 | 177.85 | 181.14 | 147.73 | 148.07 | 1.00 | 0.98 | 1.20 | 1.20 |
A6 | 43.1 | 34.48 | 347.13 | 1.49 | 193 | 199.72 | 199.73 | 160.56 | 173.35 | 0.97 | 0.97 | 1.20 | 1.11 |
A7 | 26.5 | 21.2 | 347.13 | 2.97 | 125 | 130.23 | 135.5 | 111.29 | 105.75 | 0.96 | 0.92 | 1.12 | 1.18 |
A8 | 32 | 25.6 | 347.13 | 2.46 | 133 | 137.55 | 141.72 | 112.90 | 114.45 | 0.97 | 0.94 | 1.18 | 1.16 |
A9 | 43.1 | 34.48 | 347.13 | 1.83 | 145 | 152.3 | 154.26 | 120.41 | 132.01 | 0.95 | 0.94 | 1.20 | 1.10 |
A10 | 26.5 | 21.2 | 347.13 | 2.42 | 164 | 167.01 | 171.93 | 143.96 | 135.55 | 0.98 | 0.95 | 1.14 | 1.21 |
A11 | 32 | 25.6 | 347.13 | 2.01 | 175 | 177.85 | 181.14 | 147.73 | 148.07 | 0.98 | 0.97 | 1.18 | 1.18 |
A12 | 43.1 | 34.48 | 347.13 | 1.49 | 190 | 199.72 | 199.73 | 160.56 | 173.35 | 0.95 | 0.95 | 1.18 | 1.10 |
At 400 °C temperature | |||||||||||||
A13 | 26.5 | 21.2 | 244.6 | 2.09 | 119 | 121.43 | 128.02 | 109.13 | 75.27 | 0.98 | 0.93 | 1.09 | 1.58 |
A14 | 32 | 25.6 | 244.6 | 1.73 | 121 | 126.91 | 132.68 | 107.56 | 81.56 | 0.95 | 0.91 | 1.12 | 1.48 |
A15 | 43.1 | 34.48 | 244.6 | 1.29 | 130 | 137.98 | 142.09 | 109.16 | 94.25 | 0.94 | 0.91 | 1.19 | 1.38 |
A16 | 26.5 | 21.2 | 244.6 | 1.71 | 151 | 153.96 | 160.84 | 138.92 | 96.6 | 0.98 | 0.94 | 1.09 | 1.56 |
A17 | 32 | 25.6 | 244.6 | 1.41 | 162 | 162.08 | 167.74 | 138.3 | 105.65 | 1.00 | 0.97 | 1.17 | 1.53 |
A18 | 43.1 | 34.48 | 244.6 | 1.05 | 173 | 178.49 | 181.69 | 142.87 | 123.92 | 0.97 | 0.95 | 1.21 | 1.40 |
A19 | 26.5 | 21.2 | 244.6 | 2.09 | 117 | 121.43 | 128.02 | 109.13 | 75.27 | 0.96 | 0.91 | 1.07 | 1.55 |
A20 | 32 | 25.6 | 244.6 | 1.73 | 119 | 126.91 | 132.68 | 107.56 | 81.56 | 0.94 | 0.90 | 1.11 | 1.46 |
A21 | 43.1 | 34.48 | 244.6 | 1.29 | 125 | 137.98 | 142.09 | 109.16 | 94.25 | 0.91 | 0.88 | 1.15 | 1.33 |
A22 | 26.5 | 21.2 | 244.6 | 1.71 | 142 | 153.96 | 160.84 | 138.92 | 96.6 | 0.92 | 0.88 | 1.02 | 1.47 |
A23 | 32 | 25.6 | 244.6 | 1.41 | 154 | 162.08 | 167.74 | 138.3 | 105.65 | 0.95 | 0.92 | 1.11 | 1.46 |
A24 | 43.1 | 34.48 | 244.6 | 1.05 | 165 | 178.49 | 181.69 | 142.87 | 123.92 | 0.92 | 0.91 | 1.15 | 1.33 |
At 500 °C temperature | |||||||||||||
A25 | 26.5 | 21.2 | 194.79 | 1.67 | 99 | 95.24 | 100.3 | 96.08 | 60.1 | 1.04 | 0.99 | 1.03 | 1.65 |
A26 | 32 | 25.6 | 194.79 | 1.38 | 105 | 99.63 | 104.03 | 93.95 | 65.14 | 1.05 | 1.01 | 1.12 | 1.61 |
A27 | 43.1 | 34.48 | 194.79 | 1.03 | 109 | 108.48 | 111.56 | 93.98 | 75.31 | 1.00 | 0.98 | 1.16 | 1.45 |
A28 | 26.5 | 21.2 | 194.79 | 1.36 | 125 | 120.87 | 126.12 | 121.73 | 77.16 | 1.03 | 0.99 | 1.03 | 1.62 |
A29 | 32 | 25.6 | 194.79 | 1.13 | 130 | 127.37 | 131.64 | 120.15 | 84.41 | 1.02 | 0.99 | 1.08 | 1.54 |
A30 | 43.1 | 34.48 | 194.79 | 0.84 | 145 | 140.49 | 142.8 | 122.27 | 99.06 | 1.03 | 1.02 | 1.19 | 1.46 |
A31 | 26.5 | 21.2 | 194.79 | 1.67 | 95 | 95.24 | 100.3 | 96.08 | 60.1 | 1.00 | 0.95 | 0.99 | 1.58 |
A32 | 32 | 25.6 | 194.79 | 1.38 | 100 | 99.63 | 104.03 | 93.95 | 65.14 | 1.00 | 0.96 | 1.06 | 1.54 |
A33 | 43.1 | 34.48 | 194.79 | 1.03 | 105 | 108.48 | 111.56 | 93.98 | 75.31 | 0.97 | 0.94 | 1.12 | 1.39 |
A34 | 26.5 | 21.2 | 194.79 | 1.36 | 120 | 120.87 | 126.12 | 121.73 | 77.16 | 0.99 | 0.95 | 0.99 | 1.56 |
A35 | 32 | 25.6 | 194.79 | 1.13 | 124 | 127.37 | 131.64 | 120.15 | 84.41 | 0.97 | 0.94 | 1.03 | 1.47 |
A36 | 43.1 | 34.48 | 194.79 | 0.84 | 135 | 140.49 | 142.8 | 122.27 | 99.06 | 0.96 | 0.95 | 1.10 | 1.36 |
Length-to-Diameter Ratio | Diameter-to-Thickness Ratio (t = 2 mm) | Compressive Strength (MPa) | Confined Compressive Strength (MPa) (fcc) for Various Temperatures (°C) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Concrete Mix | ||||||||||
L/d | d/t | fck | fc | 30 | 100 | 200 | 300 | 400 | 500 | 600 |
8 | 25 | 26.5 | 21.2 | 65.19 | 64.68 | 64.17 | 61.62 | 60.61 | 50.42 | 34.63 |
32 | 25.6 | 68.75 | 67.23 | 66.21 | 63.66 | 61.62 | 53.48 | 36.67 | ||
43.1 | 34.48 | 75.38 | 73.85 | 72.32 | 69.26 | 66.21 | 55.51 | 40.74 | ||
30 | 26.5 | 21.2 | 59.06 | 58.36 | 56.94 | 54.82 | 53.41 | 44.21 | 33.25 | |
32 | 25.6 | 62.95 | 62.25 | 60.83 | 59.42 | 57.30 | 45.98 | 33.95 | ||
43.1 | 34.48 | 68.26 | 67.20 | 65.78 | 63.31 | 61.19 | 51.28 | 37.14 | ||
10 | 25 | 26.5 | 21.2 | 63.66 | 63.15 | 62.64 | 60.61 | 59.59 | 48.38 | 33.10 |
32 | 25.6 | 67.74 | 66.21 | 65.19 | 62.64 | 60.61 | 50.93 | 34.63 | ||
43.1 | 34.48 | 73.85 | 72.83 | 70.28 | 65.19 | 63.66 | 53.48 | 38.20 | ||
30 | 26.5 | 21.2 | 58.00 | 57.30 | 55.88 | 53.05 | 50.22 | 42.44 | 30.06 | |
32 | 25.6 | 61.89 | 60.83 | 59.06 | 56.94 | 54.47 | 43.86 | 31.83 | ||
43.1 | 34.48 | 67.20 | 65.78 | 63.66 | 60.83 | 58.36 | 47.75 | 33.60 |
Temperature (°C) | Reduction Ratio | |||
---|---|---|---|---|
EC4 [18,19] | Tested (Confined Concrete) | |||
Unconfined Concrete | M25 | M30 | M40 | |
30 | 1.00 | 1.000 | 1.000 | 1.000 |
100 | 1.00 | 0.992 | 0.978 | 0.980 |
200 | 0.95 | 0.984 | 0.963 | 0.959 |
300 | 0.85 | 0.945 | 0.926 | 0.919 |
400 | 0.75 | 0.930 | 0.896 | 0.878 |
500 | 0.60 | 0.773 | 0.778 | 0.736 |
600 | 0.45 | 0.531 | 0.533 | 0.541 |
700 | 0.30 | 0.281 | 0.304 | 0.304 |
800 | 0.15 | 0.156 | 0.185 | 0.189 |
Mix | Grade of Concrete (MPa) | Compressive Strength (fc) in MPa | Unconfined Modulus of Elasticity (Ecu) in GPa | Confined Modulus of Elasticity (Ecc) in GPa | ||
---|---|---|---|---|---|---|
30 °C | 400 °C | 500 °C | ||||
M25 | 25 | 27.5 | 28.51 | 37.95 | 36.59 | 33.37 |
M25 | 25 | 25.5 | 27.36 | 36.12 | 34.35 | 31.25 |
M25 | 25 | 26.5 | 26.47 | 37.5 | 36.28 | 32.69 |
M30 | 30 | 29 | 29.01 | 38.97 | 36.90 | 34.37 |
M30 | 30 | 34 | 29.13 | 37.29 | 35.58 | 31.87 |
M30 | 30 | 33 | 28.24 | 38.68 | 36.59 | 33.54 |
M40 | 40 | 44.5 | 31.63 | 40.81 | 38.24 | 35.02 |
M40 | 40 | 43.4 | 32.06 | 38.83 | 36.76 | 33.66 |
M40 | 40 | 41.4 | 30.54 | 40.39 | 37.50 | 34.37 |
Mix | Grade of Concrete (MPa) | Compressive Strength (fc) in MPa | Poisson’s Ratio of Unconfined Concrete | Poisson’s Ratio of Confined Concrete | ||
---|---|---|---|---|---|---|
30 °C | 400 °C | 500 °C | ||||
M25 | 25 | 27.5 | 0.185 | 0.282 | 0.283 | 0.396 |
M25 | 25 | 25.5 | 0.180 | 0.258 | 0.240 | 0.317 |
M25 | 25 | 26.5 | 0.178 | 0.258 | 0.265 | 0.384 |
M30 | 30 | 29.0 | 0.165 | 0.280 | 0.275 | 0.360 |
M30 | 30 | 34.0 | 0.158 | 0.280 | 0.278 | 0.391 |
M30 | 30 | 33.0 | 0.161 | 0.245 | 0.253 | 0.350 |
M40 | 40 | 44.5 | 0.140 | 0.320 | 0.338 | 0.470 |
M40 | 40 | 43.4 | 0.135 | 0.279 | 0.378 | 0.351 |
M40 | 40 | 41.4 | 0.138 | 0.337 | 0.344 | 0.480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulla Khan, A.; Sateesh Kumar, N.; Bahrami, A.; Özkılıç, Y.O.; Imran, M.; Althaqafi, E.; Islam, S. Behavior of Confined Self-Compacting Concrete under Compression at Elevated Temperatures. Buildings 2023, 13, 3115. https://doi.org/10.3390/buildings13123115
Ulla Khan A, Sateesh Kumar N, Bahrami A, Özkılıç YO, Imran M, Althaqafi E, Islam S. Behavior of Confined Self-Compacting Concrete under Compression at Elevated Temperatures. Buildings. 2023; 13(12):3115. https://doi.org/10.3390/buildings13123115
Chicago/Turabian StyleUlla Khan, Athiq, Nanjundaswamy Sateesh Kumar, Alireza Bahrami, Yasin Onuralp Özkılıç, Mohammed Imran, Essam Althaqafi, and Saiful Islam. 2023. "Behavior of Confined Self-Compacting Concrete under Compression at Elevated Temperatures" Buildings 13, no. 12: 3115. https://doi.org/10.3390/buildings13123115
APA StyleUlla Khan, A., Sateesh Kumar, N., Bahrami, A., Özkılıç, Y. O., Imran, M., Althaqafi, E., & Islam, S. (2023). Behavior of Confined Self-Compacting Concrete under Compression at Elevated Temperatures. Buildings, 13(12), 3115. https://doi.org/10.3390/buildings13123115